1
|
Bette M, Mandic R. Cottontail Rabbit Papillomavirus (CRPV) Related Animal Models for Head and Neck Cancer Research: A Comprehensive Review of the Literature. Viruses 2024; 16:1722. [PMID: 39599834 PMCID: PMC11598981 DOI: 10.3390/v16111722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Having suitable animal models is crucial to mimic human disease states and for the successful transfer of experimental data into clinical practice. In the field of papillomavirus research, the domestic rabbit (Oryctolagus cuniculus) has served as an indispensable model organism for almost 100 years. The identification and characterization of the first papillomaviruses in rabbits, their carcinogenic potential and their immunogenicity have contributed significantly to the state of knowledge on the genetics and life cycle of papillomaviruses in general, as well as the development of antiviral strategies such as vaccination procedures. Due to the high species specificity of papillomaviruses, only rabbit papillomaviruses (RPVs) can be used for animal studies on papilloma-based tumor diseases in the rabbit. The major focus of this article is on cottontail rabbit papillomavirus (CRPV)-related rabbit squamous cell carcinoma (RSCC). A brief history outlines the discovery and generation of experimentally used RSCC tumors. A comprehensive overview of the current CRPV-associated VX2 carcinoma-based tumor models with a major focus on human head and neck squamous cell carcinoma (HNSCC) tumor models is provided, and their strengths in terms of transferability to human HNSCC are discussed.
Collapse
Affiliation(s)
- Michael Bette
- Institute of Anatomy and Cell Biology, Philipps-Universität Marburg, 35037 Marburg, Germany
| | - Robert Mandic
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, 35033 Marburg, Germany;
| |
Collapse
|
2
|
Modeling HPV-Associated Disease and Cancer Using the Cottontail Rabbit Papillomavirus. Viruses 2022; 14:v14091964. [PMID: 36146770 PMCID: PMC9503101 DOI: 10.3390/v14091964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 01/06/2023] Open
Abstract
Approximately 5% of all human cancers are attributable to human papillomavirus (HPV) infections. HPV-associated diseases and cancers remain a substantial public health and economic burden worldwide despite the availability of prophylactic HPV vaccines. Current diagnosis and treatments for HPV-associated diseases and cancers are predominantly based on cell/tissue morphological examination and/or testing for the presence of high-risk HPV types. There is a lack of robust targets/markers to improve the accuracy of diagnosis and treatments. Several naturally occurring animal papillomavirus models have been established as surrogates to study HPV pathogenesis. Among them, the Cottontail rabbit papillomavirus (CRPV) model has become known as the gold standard. This model has played a pivotal role in the successful development of vaccines now available to prevent HPV infections. Over the past eighty years, the CRPV model has been widely applied to study HPV carcinogenesis. Taking advantage of a large panel of functional mutant CRPV genomes with distinct, reproducible, and predictable phenotypes, we have gained a deeper understanding of viral–host interaction during tumor progression. In recent years, the application of genome-wide RNA-seq analysis to the CRPV model has allowed us to learn and validate changes that parallel those reported in HPV-associated cancers. In addition, we have established a selection of gene-modified rabbit lines to facilitate mechanistic studies and the development of novel therapeutic strategies. In the current review, we summarize some significant findings that have advanced our understanding of HPV pathogenesis and highlight the implication of the development of novel gene-modified rabbits to future mechanistic studies.
Collapse
|
3
|
Cladel NM, Peng X, Christensen N, Hu J. The rabbit papillomavirus model: a valuable tool to study viral-host interactions. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180294. [PMID: 30955485 DOI: 10.1098/rstb.2018.0294] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cottontail rabbit papillomavirus (CRPV) was the first DNA virus shown to be tumorigenic. The virus has since been renamed and is officially known as Sylvilagus floridanus papillomavirus 1 (SfPV1). Since its inception as a surrogate preclinical model for high-risk human papillomavirus (HPV) infections, the SfPV1/rabbit model has been widely used to study viral-host interactions and has played a pivotal role in the successful development of three prophylactic virus-like particle vaccines. In this review, we will focus on the use of the model to gain a better understanding of viral pathogenesis, gene function and host immune responses to viral infections. We will discuss the application of the model in HPV-associated vaccine testing, in therapeutic vaccine development (using our novel HLA-A2.1 transgenic rabbits) and in the development and validation of novel anti-viral and anti-tumour compounds. Our goal is to demonstrate the role the SfPV1/rabbit model has played, and continues to play, in helping to unravel the intricacies of papillomavirus infections and to develop tools to thwart the disease. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.
Collapse
Affiliation(s)
- Nancy M Cladel
- 1 The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine , Hershey, PA 17033 , USA.,2 Department of Pathology, Pennsylvania State University College of Medicine , Hershey, PA 17033 , USA
| | - Xuwen Peng
- 3 Department of Comparative Medicine, Pennsylvania State University College of Medicine , Hershey, PA 17033 , USA
| | - Neil Christensen
- 1 The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine , Hershey, PA 17033 , USA.,2 Department of Pathology, Pennsylvania State University College of Medicine , Hershey, PA 17033 , USA.,4 Department of Microbiology and Immunology, Pennsylvania State University College of Medicine , Hershey, PA 17033 , USA
| | - Jiafen Hu
- 1 The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine , Hershey, PA 17033 , USA.,2 Department of Pathology, Pennsylvania State University College of Medicine , Hershey, PA 17033 , USA
| |
Collapse
|
4
|
Young JM, Zine El Abidine A, Gómez-Martinez RA, Ozbun MA. The Known and Potential Intersections of Rab-GTPases in Human Papillomavirus Infections. Front Cell Dev Biol 2019; 7:139. [PMID: 31475144 PMCID: PMC6702953 DOI: 10.3389/fcell.2019.00139] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 07/09/2019] [Indexed: 12/16/2022] Open
Abstract
Papillomaviruses (PVs) were the first viruses recognized to cause tumors and cancers in mammalian hosts by Shope, nearly a century ago (Shope and Hurst, 1933). Over 40 years ago, zur Hausen (1976) first proposed that human papillomaviruses (HPVs) played a role in cervical cancer; in 2008, he shared the Nobel Prize in Medicine for his abundant contributions demonstrating the etiology of HPVs in genital cancers. Despite effective vaccines and screening, HPV infection and morbidity remain a significant worldwide burden, with HPV infections and HPV-related cancers expected increase through 2040. Although HPVs have long-recognized roles in tumorigenesis and cancers, our understanding of the molecular mechanisms by which these viruses interact with cells and usurp cellular processes to initiate infections and produce progeny virions is limited. This is due to longstanding challenges in both obtaining well-characterized infectious virus stocks and modeling tissue-based infection and the replicative cycles in vitro. In the last 20 years, the development of methods to produce virus-like particles (VLPs) and pseudovirions (PsV) along with more physiologically relevant cell- and tissue-based models has facilitated progress in this area. However, many questions regarding HPV infection remain difficult to address experimentally and are, thus, unanswered. Although an obligatory cellular uptake receptor has yet to be identified for any PV species, Rab-GTPases contribute to HPV uptake and transport of viral genomes toward the nucleus. Here, we provide a general overview of the current HPV infection paradigm, the epithelial differentiation-dependent HPV replicative cycle, and review the specifics of how HPVs usurp Rab-related functions during infectious entry. We also suggest other potential interactions based on how HPVs alter cellular activities to complete their replicative-cycle in differentiating epithelium. Understanding how HPVs interface with Rab functions during their complex replicative cycle may provide insight for the development of therapeutic interventions, as current viral counter-measures are solely prophylactic and therapies for HPV-positive individuals remain archaic and limited.
Collapse
Affiliation(s)
- Jesse M. Young
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, UNM Comprehensive Cancer Center, Albuquerque, NM, United States
| | - Amira Zine El Abidine
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, UNM Comprehensive Cancer Center, Albuquerque, NM, United States
| | - Ricardo A. Gómez-Martinez
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, UNM Comprehensive Cancer Center, Albuquerque, NM, United States
- Department of Obstetrics & Gynecology, University of New Mexico School of Medicine, UNM Comprehensive Cancer Center, Albuquerque, NM, United States
| | - Michelle A. Ozbun
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, UNM Comprehensive Cancer Center, Albuquerque, NM, United States
- Department of Obstetrics & Gynecology, University of New Mexico School of Medicine, UNM Comprehensive Cancer Center, Albuquerque, NM, United States
| |
Collapse
|
5
|
Uberoi A, Yoshida S, Lambert PF. Development of an in vivo infection model to study Mouse papillomavirus-1 (MmuPV1). J Virol Methods 2017; 253:11-17. [PMID: 29253496 DOI: 10.1016/j.jviromet.2017.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022]
Abstract
Preclinical model systems to study multiple features of the papillomavirus life cycle are extremely valuable tools to aid our understanding of Human Papillomavirus (HPV) biology, disease progression and treatments. Mouse papillomavirus (MmuPV1) is the first ever rodent papillomavirus that can infect the laboratory strain of mice and was discovered recently in 2011. This model is an attractive model to study papillomavirus pathogenesis due to the ubiquitous availability of lab mice and the fact that this mouse species is easily genetically modifiable. Several other groups, including ours, have reported that MmuPV1-induced papillomas are restricted to T-cell deficient immunosuppressed mice. In our lab we showed for the first time that MmuPV1 causes skin cancers in UVB-irradiated immunocompetent animals. In this report we describe in detail the MmuPV1-UV infection model that can be adapted to study MmuPV1 biology in immunocompetent animals.
Collapse
Affiliation(s)
- Aayushi Uberoi
- McArdle Laboratory of Cancer Research, 1111 Highland Avenue, University of Wisconsin, Madison 53705, United States
| | - Satoshi Yoshida
- McArdle Laboratory of Cancer Research, 1111 Highland Avenue, University of Wisconsin, Madison 53705, United States
| | - Paul F Lambert
- McArdle Laboratory of Cancer Research, 1111 Highland Avenue, University of Wisconsin, Madison 53705, United States.
| |
Collapse
|
6
|
Maglennon GA, Doorbar J. The biology of papillomavirus latency. Open Virol J 2012; 6:190-7. [PMID: 23341854 PMCID: PMC3547330 DOI: 10.2174/1874357901206010190] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 12/12/2022] Open
Abstract
The presence of viral DNA in the absence of disease has suggested that papillomaviruses, like many other viruses, can exist as latent infections in the skin or other epithelial sites. In animal models, where detailed investigation has been carried out, papillomavirus DNA can be found at sites of previous infection following immune regression, with the site of latent infection being the epithelial basal layer. Such studies suggest that immune surveillance can restrict viral gene expression in the basal and parabasal layers without efficiently suppressing viral genome replication, most probably through the action of memory T-cells in the skin or dermis. Although gradual papillomavirus genome loss appears to occur over time at latent sites, immunosuppression can arrest this, and can lead to an elevation in viral genome copy number in experimental systems. In addition to immune-mediated latency, it appears that a similar situation can be achieved following infection at low virus titres and/or infection at epithelial sites where the virus life cycle is not properly supported. Such silent of asymptomatic infections do not necessarily involve the host immune system and may be controlled by different mechanisms. It appears that virus reactivation can be triggered by mechanical irritation, wounding or by UV irradiation which changes the local environment. Although the duration of papillomavirus latency in humans is not yet known, it is likely that some of the basic principles will resemble those elucidated in these model systems, and that persistence in the absence of disease may be the default outcome for at least some period of time following regression.
Collapse
Affiliation(s)
- Gareth Adam Maglennon
- Pathology & Infectious Diseases, The Royal Veterinary College, North Mymms, AL9 7TA, UK
| | - John Doorbar
- Division of Virology, National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| |
Collapse
|
7
|
Abstract
The role of cell polarity regulators in the development of cancer has long been an enigma. Despite displaying characteristics of tumour suppressors, the core regulators of polarity are rarely mutated in tumours and there are few data from animal models to suggest that they directly contribute to cancer susceptibility, thus questioning their relevance to human carcinogenesis. However, a body of data from human tumour viruses is now providing compelling evidence of a central role for the perturbation of cell polarity in the development of cancer.
Collapse
Affiliation(s)
- Lawrence Banks
- The International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy.
| | | | | |
Collapse
|
8
|
Maglennon GA, McIntosh P, Doorbar J. Persistence of viral DNA in the epithelial basal layer suggests a model for papillomavirus latency following immune regression. Virology 2011; 414:153-63. [PMID: 21492895 PMCID: PMC3101335 DOI: 10.1016/j.virol.2011.03.019] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/21/2011] [Accepted: 03/17/2011] [Indexed: 11/24/2022]
Abstract
Rabbit oral papillomavirus (ROPV) causes benign and spontaneously regressing oral lesions in rabbits, and is a useful model of disease associated with low-risk human papillomavirus types. Here we have adapted the ROPV system to study papillomavirus latency. Following lesion regression, ROPV DNA persists at the majority of regressed sites at levels substantially lower than those found in productive papillomas. Spliced viral transcripts were also detected. ROPV persistence in the absence of disease could be demonstrated for a year following infection and lesion-regression. This was not associated with completion of the virus life-cycle or new virion production, indicating that ROPV persists in a latent state. Using novel laser capture microdissection techniques, we could show that the site of latency is a subset of basal epithelial cells at sites of previous experimental infection. We hypothesize that these cells are epithelial stem cells and that reactivation of latency may be a source of recurrent disease.
Collapse
Affiliation(s)
| | | | - John Doorbar
- Division of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| |
Collapse
|
9
|
Pokorna D, Rubio I, Müller M. DNA-vaccination via tattooing induces stronger humoral and cellular immune responses than intramuscular delivery supported by molecular adjuvants. GENETIC VACCINES AND THERAPY 2008; 6:4. [PMID: 18257910 PMCID: PMC2267179 DOI: 10.1186/1479-0556-6-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 02/07/2008] [Indexed: 01/13/2023]
Abstract
Tattooing is one of a number of DNA delivery methods which results in an efficient expression of an introduced gene in the epidermal and dermal layers of the skin. The tattoo procedure causes many minor mechanical injuries followed by hemorrhage, necrosis, inflammation and regeneration of the skin and thus non-specifically stimulates the immune system. DNA vaccines delivered by tattooing have been shown to induce higher specific humoral and cellular immune responses than intramuscularly injected DNA. In this study, we focused on the comparison of DNA immunization protocols using different routes of administrations of DNA (intradermal tattoo versus intramuscular injection) and molecular adjuvants (cardiotoxin pre-treatment or GM-CSF DNA co-delivery). For this comparison we used the major capsid protein L1 of human papillomavirus type 16 as a model antigen. L1-specific immune responses were detected after three and four immunizations with 50 μg plasmid DNA. Cardiotoxin pretreatment or GM-CSF DNA co-delivery substantially enhanced the efficacy of DNA vaccine delivered intramuscularly by needle injection but had virtually no effect on the intradermal tattoo vaccination. The promoting effect of both adjuvants was more pronounced after three rather than four immunizations. However, three DNA tattoo immunizations without any adjuvant induced significantly higher L1-specific humoral immune responses than three or even four intramuscular DNA injections supported by molecular adjuvants. Tattooing also elicited significantly higher L1-specific cellular immune responses than intramuscularly delivered DNA in combination with adjuvants. In addition, the lymphocytes of mice treated with the tattoo device proliferated more strongly after mitogen stimulation suggesting the presence of inflammatory responses after tattooing. The tattoo delivery of DNA is a cost-effective method that may be used in laboratory conditions when more rapid and more robust immune responses are required.
Collapse
Affiliation(s)
- Dana Pokorna
- Department of Experimental Virology, Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
| | | | | |
Collapse
|
10
|
Roberts JN, Buck CB, Thompson CD, Kines R, Bernardo M, Choyke PL, Lowy DR, Schiller JT. Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan. Nat Med 2007; 13:857-61. [PMID: 17603495 DOI: 10.1038/nm1598] [Citation(s) in RCA: 375] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Accepted: 05/04/2007] [Indexed: 11/08/2022]
Abstract
Genital human papillomavirus (HPV) infection is the most common sexually transmitted infection, and virtually all cases of cervical cancer are attributable to infection by a subset of HPVs (reviewed in ref. 1). Despite the high incidence of HPV infection and the recent development of a prophylactic vaccine that confers protection against some HPV types, many features of HPV infection are poorly understood. It remains worthwhile to consider other interventions against genital HPVs, particularly those that target infections not prevented by the current vaccine. However, productive papillomavirus infection is species- and tissue-restricted, and traditional models use animal papillomaviruses that infect the skin or oral mucosa. Here we report the development of a mouse model of cervicovaginal infection with HPV16 that recapitulates the establishment phase of papillomavirus infection. Transduction of a reporter gene by an HPV16 pseudovirus was characterized by histology and quantified by whole-organ, multispectral imaging. Disruption of the integrity of the stratified or columnar genital epithelium was required for infection, which occurred after deposition of the virus on the basement membrane underlying basal keratinocytes. A widely used vaginal spermicide, nonoxynol-9 (N-9), greatly increased susceptibility to infection. In contrast, carrageenan, a polysaccharide present in some vaginal lubricants, prevented infection even in the presence of N-9, suggesting that carrageenan might serve as an effective topical HPV microbicide.
Collapse
Affiliation(s)
- Jeffrey N Roberts
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4263, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Brandsma JL, Shlyankevich M, Buonocore L, Roberts A, Becker SM, Rose JK. Therapeutic efficacy of vesicular stomatitis virus-based E6 vaccination in rabbits. Vaccine 2006; 25:751-62. [PMID: 16962690 DOI: 10.1016/j.vaccine.2006.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 08/04/2006] [Accepted: 08/09/2006] [Indexed: 10/24/2022]
Abstract
Millions of people worldwide are currently infected with human papillomaviruses (HPVs). A therapeutic HPV vaccine would have widespread applicability because HPV-associated lesions are difficult to treat and may progress to carcinoma. We developed three attenuated VSV recombinants expressing the cottontail rabbit papillomavirus (CRPV) early protein E6 for use as vaccines. In cultured cells, two vectors expressed different levels of the E6 protein, and one expressed a ubiquitin-E6 fusion protein. All three were tested for therapeutic efficacy in the cottontail rabbit papillomavirus (CRPV)-rabbit model. Mock vaccination had no effect on papilloma growth. In contrast, inoculation with any of the VSV-E6 vaccines reduced the rate of papilloma growth to as little as 24% the rate in the controls. In five experiments, these effects were achieved after a single immunization. Furthermore, complete papilloma regression occurred in some rabbits observed for 4 months. A VSV-based papillomavirus E6 vaccine could have significant advantages over other therapeutic HPV vaccine candidates described to date.
Collapse
Affiliation(s)
- Janet L Brandsma
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520-8016, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Govan VA, Christensen ND, Berkower C, Jacobs WR, Williamson AL. Immunisation with recombinant BCG expressing the cottontail rabbit papillomavirus (CRPV) L1 gene provides protection from CRPV challenge. Vaccine 2005; 24:2087-93. [PMID: 16343704 DOI: 10.1016/j.vaccine.2005.11.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 08/14/2005] [Accepted: 11/08/2005] [Indexed: 12/31/2022]
Abstract
Recombinant Bacille Calmette-Guerin (rBCG) could potentially be the vaccine vehicle of choice to deliver foreign antigens from multiple pathogens. In this study we have used the cottontail rabbit papillomavirus (CRPV) rabbit model to provide a "proof of concept" that immunisation with rBCG expressing the CRPV major capsid protein, L1 (rBCG/CRPVL1), will protect outbred New Zealand White rabbits against CRPV challenge. Rabbits immunised with rBCG/CRPVL1 (10(7) cfu/ml) were protected 5 weeks post-CRPV challenge. Rabbits immunised with rBCG/CRPVL1 (10(5) cfu/ml) had papillomas, which were smaller and took longer to appear than the control rabbits. None of the negative control rabbits vaccinated with rBCG expressing an irrelevant gene or PBS were protected from CRPV challenge. Sera from rabbits immunised with rBCG/CRPVL1 (10(7) cfu/ml) were able to neutralise 54.5% of CRPV at serum dilutions of 1:200. These results provide evidence that BCG could potentially be used as a vaccine delivery vehicle for human papillomavirus proteins as a possible prophylactic vaccine.
Collapse
Affiliation(s)
- V A Govan
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Medical School, Observatory 7925, and National Health Laboratory Service, Groote Schuur Hospital, Observatory, Cape Town, South Africa
| | | | | | | | | |
Collapse
|
13
|
Reuter JD, Vivas-Gonzalez BE, Gomez D, Wilson JH, Brandsma JL, Greenstone HL, Rose JK, Roberts A. Intranasal vaccination with a recombinant vesicular stomatitis virus expressing cottontail rabbit papillomavirus L1 protein provides complete protection against papillomavirus-induced disease. J Virol 2002; 76:8900-9. [PMID: 12163609 PMCID: PMC136419 DOI: 10.1128/jvi.76.17.8900-8909.2002] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunizations with live recombinant vesicular stomatitis viruses (rVSV) expressing foreign viral proteins have successfully protected animals from challenges with several heterologous viruses. We developed an rVSV expressing the major capsid protein (L1) of cottontail rabbit papillomavirus (CRPV) and tested the efficacy of protection following CRPV challenge. An rVSV expressing L1 of CRPV (VSV-L1) was characterized for the protective ability afforded by intranasal, intradermal, or intramuscular vaccination in rabbits subsequently challenged with CRPV. Protein expression of L1 in VSV-L1 was confirmed by radioimmunoprecipitation assays. Nuclear localization of L1 was demonstrated by indirect immunofluorescence assays. Immunized rabbits elicited significant VSV neutralization and VLP-L1 enzyme-linked immunosorbent assay titers. VSV-L1 vaccination was not associated with weight loss or any other adverse clinical signs in the rabbit model. VSV shedding in nasal secretions occurred in some rabbits, peaking at 4 to 6 days after intranasal vaccination, with no further shedding after day 6. Specific humoral immunity to the L1 protein was consistently seen after a single VSV-L1 vaccination when administered through an intradermal or intramuscular route or after a boost via the intranasal route. Rabbits were completely protected from CRPV-induced papillomas after VSV-L1 vaccination and boost given intranasally or intramuscularly. Vaccination with VSV-L1 is a novel approach to prevent papillomavirus-induced disease and demonstrates a potential strategy for developing a human papillomavirus vaccine that can be given without injection.
Collapse
Affiliation(s)
- Jon D Reuter
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| | | | | | | | | | | | | | | |
Collapse
|