1
|
Bressan GN, Rodrigues T, da Silva MEB, Schetinger MRC, Scussel R, Machado-de-Ávila RA, Abel JDS, Fachinetto R. Effects of Acute Haloperidol Treatment on Dopaminergic Markers, GAD 67, and A 2A Receptors in Rats with High and Low VCMs. Neurochem Res 2024; 50:4. [PMID: 39540951 DOI: 10.1007/s11064-024-04275-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/26/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024]
Abstract
Vacuous chewing movements (VCM) have been utilized as an experimental model of orofacial dyskinesia (OD) in rodents to study the underlying molecular mechanisms related to tardive dyskinesia (TD). This study aimed to investigate if the acute treatment with haloperidol can alter components of the dopaminergic synapse or its modulators such as glutamic acid decarboxylase (GAD67) and adenosine 2A (A2A) receptor. Furthermore, to evaluate if changes in molecular markers are associated with the number of VCMs induced by haloperidol in rats it is proposing a method to classify the animals into High and Low VCM groups. Here, we treated rats with haloperidol decanoate (single injection, intramuscularly, 28 mg/Kg of unconjugated haloperidol) and evaluated the number of VCMs after 4 weeks. Haloperidol-treated rats were divided into three groups (Low, High, and Spontaneous VCM) according to the evaluation of the VCM profile proposed here. After, dopamine (DA) levels, monoamine oxidase (MAO) activity, and the immunoreactivity of tyrosine hydroxylase (TH), dopamine transporter (DAT), D2 receptor, GAD67, and A2A were determined in brain structures. No significant differences were found in DA levels, MAO activity, and immunoreactivity of the TH, DAT, D2 receptor, GAD67, and A2A receptor in brain structures. VCM intensity was correlated with TH immunoreactivity in Sn in the High VCM group while it was inversely correlated with the immunoreactivity of the A2A receptor in the striatum of the Spontaneous VCM group. Other significant correlations were found considering the VCM profile suggesting that High VCM after acute haloperidol treatment seems to be associated with the lack of ability to reorganize the neurotransmission in the nigrostriatal pathway. Further studies could clarify the main targets involved in the motor side effects of antipsychotics. The present study demonstrated an easy way to separate the animals into High and Low VCMs.
Collapse
Affiliation(s)
- Getulio Nicola Bressan
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
| | - Talita Rodrigues
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | | | | | - Rahisa Scussel
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | | | - Jéssica da Silva Abel
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Roselei Fachinetto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil.
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil.
- Centro de Ciências da Saúde, Departamento de Fisiologia e Farmacologia, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
2
|
Abstract
SummaryThe hypothesis that tardive dyskinesias observed after long-term administration of neuroleptics are due to the formation of free radicals following this medication has prompted studies on the use of vitamin E (α-tocopherol), an antioxidant to treat patients suffering from such side-effects. The present study aimed at reproducing earlier encouraging results in treating 23 patients with vitamin E, using a double-blind crossover design. Inclusion criteria were: duration of tardive dyskinesia for at least 3 months, appearance of the symptoms during neuroleptic treatment or after stopping this kind of medication. The 10 subjects in the first group (Gl) were treated for 14 days with 1 200 mg vitamin E per day and then for 14 days with placebo. For the second group (G2) with 9 subjects, the treatment periods were inversed. The 2 dropouts in each group were not due to experimental problems: there was no complication due to vitamin E intake, or only negligible side-effects. Side-effects were rated on the AIM scale on days 0, 14 and 28. The results of the present study do not confirm earlier reports: there was no significant difference in the therapeutic effect between placebo and vitamin E in any of the groups. However, the fact of taking these symptoms into account in the physician-patient relationship has contributed significantly to a decrease of tardive dyskinesia in both groups, from the beginning until the end of the investigation period, during which both neuroleptic and tranquilizing treatments were kept constant. Further studies should include longer treatment periods with vitamin E or even test the preventive effect of vitamin E in the production of tardive dyskinesia by neuroleptics.
Collapse
|
3
|
Patel RS, Mansuri Z, Motiwala F, Saeed H, Jannareddy N, Patel H, Zafar MK. A systematic review on treatment of tardive dyskinesia with valbenazine and deutetrabenazine. Ther Adv Psychopharmacol 2019; 9:2045125319847882. [PMID: 31205680 PMCID: PMC6535739 DOI: 10.1177/2045125319847882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/10/2019] [Indexed: 11/16/2022] Open
Abstract
Recent reports state that the prevalence of tardive dyskinesia (TD) is 32% with typical antipsychotics, and 13% with atypical antipsychotics. Current evidence-based recommendations determine an unmet need for efficacious treatment of TD. This systematic review was planned to update the evidence for TD treatment, comparing two vesicular monoamine transporter 2 (VMAT2) inhibitors, deutetrabenazine (DBZ), and valbenazine (VBZ). Of 75 PubMed search results, 11 studies met the review criteria. Efficacy and tolerability were demonstrated in a series of randomized, placebo-controlled clinical trials in our review study, and the Abnormal Involuntary Movement Scale response of ⩾50% reduction in score was robust for VBZ 80 mg/day in short-term and long-term studies. On the contrary, DBZ was equally efficacious at 12 mg twice daily, but additional information about long-term efficacy and persistence of effect is needed.
Collapse
Affiliation(s)
- Rikinkumar S Patel
- Department of Psychiatry, Griffin Memorial Hospital, 900 E Main St, Norman, OK 73071, USA
| | - Zeeshan Mansuri
- Department of Psychiatry, Texas Tech University Health Science Center, Midland, TX, USA
| | - Fatima Motiwala
- Department of Psychiatry, Texas Tech University Health Science Center, Midland, TX, USA
| | - Hina Saeed
- Horizon Treatment Centers of Louisiana, Baton Rouge, LA, USA
| | | | - Hiren Patel
- Department of Psychiatry, Texas Tech University Health Science Center, Midland, TX, USA
| | - Muhammad Khalid Zafar
- Department of Psychiatry, Texas Tech University Health Science Center, Midland, TX, USA
| |
Collapse
|
4
|
Abstract
SUMMARYThe development of rational treatments for tardive dyskinesia has been held back by limitations to our understanding of its aetiology, which even now does not extend far beyond its association with centrally acting dopamine-blocking drugs. This article reviews briefly the major aetiological theories and addresses general management and specific treatment options. Primary prevention and early recognition remain the crucial management issues because, once the condition is established, there are no satisfactory treatments. The article considers two newly developed drugs, valbenazine and deutetrabenazine, in some detail as, although they are not yet licensed in Europe, they have largely been responsible for an upsurge in interest in tardive dyskinesia in the North American literature and are likely to be widely promoted in the future. Although possessed of undoubted benefits, the evidence suggests that these represent small steps rather than large leaps forward in treatment.LEARNING OBJECTIVES•Be able to discuss the major aetiological theories on the causation of a common, and sometimes serious, adverse action of antidopaminergic drugs•Understand general management and specific treatment options•Understand the pharmacology and efficacy of two drugs recently approved by the FDA for the treatment of tardive dyskinesiaDECLARATION OF INTERESTD.C.O. is psychiatric commissioner on the Commission on Human Medicines, the UK drug regulator, and chair of its expert advisory group on CNS drugs. He is also a member of the psychiatry Scientific Advisory Group of the European Medicines Agency.
Collapse
|
5
|
Ceretta APC, de Freitas CM, Schaffer LF, Reinheimer JB, Dotto MM, de Moraes Reis E, Scussel R, Machado-de-Ávila RA, Fachinetto R. Gabapentin reduces haloperidol-induced vacuous chewing movements in mice. Pharmacol Biochem Behav 2018; 166:21-26. [DOI: 10.1016/j.pbb.2018.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/16/2018] [Accepted: 01/23/2018] [Indexed: 10/18/2022]
|
6
|
Lockwood JT, Remington G. Emerging drugs for antipsychotic-induced tardive dyskinesia: investigational drugs in Phase II and Phase III clinical trials. Expert Opin Emerg Drugs 2015; 20:407-21. [DOI: 10.1517/14728214.2015.1050376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Lister J, Nobrega JN, Fletcher PJ, Remington G. Oxidative stress and the antipsychotic-induced vacuous chewing movement model of tardive dyskinesia: evidence for antioxidant-based prevention strategies. Psychopharmacology (Berl) 2014; 231:2237-49. [PMID: 24752659 DOI: 10.1007/s00213-014-3582-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/02/2014] [Indexed: 12/23/2022]
Abstract
RATIONALE Despite decades of research, tardive dyskinesia (TD) remains a poorly understood iatrogenic movement disorder with few effective treatments and no known cure. Accordingly, the development of an innocuous strategy to prevent or mitigate antipsychotic (AP)-associated TD would represent an important clinical advance. Supporting evidence for antioxidant (AX)-based treatment regimens can be found in the preclinical literature, where AP-induced vacuous chewing movements (VCMs) in rats are attenuated by the concurrent administration of direct and indirect AXs. OBJECTIVES Our aim was to review the preclinical literature examining the role of AX-promoting treatments in the prevention of AP-induced VCMs in rats. METHODS A literature search using Google Scholar and PubMed was performed. Relevant results were qualitatively reviewed. RESULTS Studies featuring a variety of naturally occurring and synthetic AX treatments were identified and included in the review. The majority of studies used haloperidol (HAL), a typical AP, to induce VCMs. Studies revealed reduced VCMs in co-treated rats, with favorable changes seen in markers of oxidative stress (OS) and AX status, but were limited by their short durations. CONCLUSIONS Some preclinical evidence suggests that the inclusion of a naturally occurring and benign AX compound as an adjunct to AP treatment may help guard patients against TD, but additional long-duration studies are needed. This AX-based strategy is further substantiated by accumulating evidence of preexisting OS abnormalities in schizophrenia (SZ).
Collapse
Affiliation(s)
- Josh Lister
- Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada,
| | | | | | | |
Collapse
|
8
|
Blanchet PJ, Parent MT, Rompré PH, Lévesque D. Relevance of animal models to human tardive dyskinesia. Behav Brain Funct 2012; 8:12. [PMID: 22404856 PMCID: PMC3338072 DOI: 10.1186/1744-9081-8-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 03/09/2012] [Indexed: 11/15/2022] Open
Abstract
Tardive dyskinesia remains an elusive and significant clinical entity that can possibly be understood via experimentation with animal models. We conducted a literature review on tardive dyskinesia modeling. Subchronic antipsychotic drug exposure is a standard approach to model tardive dyskinesia in rodents. Vacuous chewing movements constitute the most common pattern of expression of purposeless oral movements and represent an impermanent response, with individual and strain susceptibility differences. Transgenic mice are also used to address the contribution of adaptive and maladaptive signals induced during antipsychotic drug exposure. An emphasis on non-human primate modeling is proposed, and past experimental observations reviewed in various monkey species. Rodent and primate models are complementary, but the non-human primate model appears more convincingly similar to the human condition and better suited to address therapeutic issues against tardive dyskinesia.
Collapse
Affiliation(s)
- Pierre J Blanchet
- Faculty of Dental Medicine, University of Montreal, PO Box 6128, Succ, Centre-ville, Montreal, QC H3C 3J7, Canada.
| | | | | | | |
Collapse
|
9
|
Kang NR, Kim MD. Tardive dyskinesia: treatment with aripiprazole. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2011; 9:1-8. [PMID: 23430384 PMCID: PMC3568649 DOI: 10.9758/cpn.2011.9.1.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/29/2010] [Accepted: 01/10/2011] [Indexed: 01/23/2023]
Abstract
Tardive dyskinesia is characterized by choreiform movements, or rhythmic abnormal involuntary movements of the face, mouth, tongue, trunk, and limbs. It is frequently associated with the use of neuroleptic medications. The choreiform movements are irreversible in some patients, even after the drug is withdrawn. Although no reliable treatment for tardive dyskinesia exists, atypical antipsychotics are associated with a significantly lower incidence of tardive dyskinesia than typical antipsychotics. Moreover, recent reports suggest that atypical antipsychotics may have a beneficial effect on tardive dyskinesia remission. Until recently, evidence for the effectiveness of aripiprazole on tardive dyskinesia has been mixed. Aripiprazole has a unique mechanism of action and has various effects in tardive dyskinesia. The drug acts as a partial D2 receptor agonist that can stabilize D2 up-regulation, and as a partial 5-HT1A receptor agonist and a 5-HT2A receptor antagonist, and can increase the release of dopamine in the striatum.
Collapse
Affiliation(s)
- Na-Ri Kang
- Department of Psychiatry, Cheju National University Hospital, Jeju, Korea
| | | |
Collapse
|
10
|
Valeriana officinalis ameliorates vacuous chewing movements induced by reserpine in rats. J Neural Transm (Vienna) 2011; 118:1547-57. [DOI: 10.1007/s00702-011-0640-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 03/23/2011] [Indexed: 12/23/2022]
|
11
|
|
12
|
|
13
|
Dopamine, schizophrenia, mania, and depression: Toward a unified hypothesis of cortico-striatopallido-thalamic function. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00047488] [Citation(s) in RCA: 490] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AbstractConsiderable evidence from preclinical and clinical investigations implicates disturbances of brain dopamine (DA) function in the pathophysiology of several psychiatric and neurologic disorders. We describe a neural model that may help organize theseindependent experimental observations. Cortical regions classically associated with the limbic system interact with infracortical structures, including the nucleus accumbens, ventral pallidum, and dorsomedial nucleus of the thalamus. In our model, overactivity in forebrain DA systems results in the loss of lateral inhibitory interactions in the nucleus accumbens, causing disinhibition of pallidothalamic efferents; this in turn causes rapid changes and a loss of focused corticothalamic activity in cortical regions controlling cognitive and emotional processes. These effects might be manifested clinically by some symptoms of psychoses. Underactivity of forebrain DA results in excess lateral inhibition in the nucleus accumbens, causing tonic inhibition of pallidothalamic efferents; this perpetuates tonic corticothalamic activity and prevents the initiation of new activity in other critical cortical regions. These effects might be manifested clinically by some symptoms of depression. This model parallels existing explanations for the etiology of several movement disorders, and may lead to testable inferences regarding the neural substrates of specific psychopathologies.
Collapse
|
14
|
|
15
|
|
16
|
|
17
|
|
18
|
|
19
|
|
20
|
|
21
|
|
22
|
Sandyk R, Kay SR. The relationship of pineal calcification and melatonin secretion to the pathophysiology of tardive dyskinesia and tourette's syndrome. Int J Neurosci 2009; 58:215-47. [PMID: 1365044 DOI: 10.3109/00207459108985437] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Despite current intensive research, the pathophysiology of tardive dyskinesia (TD), a serious neurological side effect of neuroleptic treatment, is poorly understood. Prompted by the observation of an increased incidence and severity of abnormal perioral movements in neuroleptic-treated pinealectomized, as compared to intact rats, we suggested that the pineal gland exerts a protective effect which mitigates against the development of TD and, by inference, that reduced melatonin secretion may be related to the pathophysiology of TD. To investigate this proposition further, we studied the association of TD with pineal calcification (PC) on CT scan in chronic schizophrenic patients. Our findings revealed a significant association between TD and PC and suggest, furthermore, that PC may be a neuroradiological marker of TD. Since PC may reflect diminished secretory activity of the gland, these findings support the hypothesis that the pathophysiology of TD is linked to disturbances of melatonin secretion. The clinical and therapeutic implications of these novel findings are discussed. In the following communication, in which we introduce the hypothesis that disturbances of 5-HT and melatonin secretion are related to the pathophysiology of TD. Subsequently, we present a series of studies which relate to the association of TD with PC. We conclude by presenting the hypothesis that disturbances in melatonin secretion may also be relevant to the pathophysiology of Tourette's syndrome.
Collapse
Affiliation(s)
- R Sandyk
- Department of Psychiatry, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461
| | | |
Collapse
|
23
|
Thelma B, Srivastava V, Tiwari AK. Genetic underpinnings of tardive dyskinesia: passing the baton to pharmacogenetics. Pharmacogenomics 2009; 9:1285-306. [PMID: 18781856 DOI: 10.2217/14622416.9.9.1285] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Manifestation of tardive dyskinesia (TD) among schizophrenia subjects on long-term antipsychotic treatment with typical drugs has been a clinical concern. Despite its association with extrapyramidal symptoms, typical drugs are still routinely prescribed globally though marginally superior atypical drugs have long been available. The genetic component in the etiology of TD is well documented. Search for these determinants has led to a few consensus associations of CYP2D6 *10, CYP1A2*1F, DRD2 Taq1A (rs1800497), DRD3 Ser9Gly (rs6280) and MnSOD Ala9Val (rs4880) variants with TD. However, translation of these observations into the clinic has not been achieved so far. This review discusses the salient features of TD etiopathology, current status of TD genetics, interactions between genetic and nongenetic factors, some major drawbacks, challenges and expected focus in TD research over the next decade, with emphasis on pharmacogenetics.
Collapse
Affiliation(s)
- Bk Thelma
- Department of Genetics, University of Delhi, South Campus, New Delhi 110021, India.
| | | | | |
Collapse
|
24
|
Fachinetto R, Villarinho JG, Wagner C, Pereira RP, Avila DS, Burger ME, Calixto JB, Rocha JBT, Ferreira J. Valeriana officinalis does not alter the orofacial dyskinesia induced by haloperidol in rats: role of dopamine transporter. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31:1478-86. [PMID: 17669571 DOI: 10.1016/j.pnpbp.2007.06.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2007] [Revised: 06/25/2007] [Accepted: 06/27/2007] [Indexed: 10/23/2022]
Abstract
Chronic treatment with classical neuroleptics in humans can produce a serious side effect, known as tardive dyskinesia (TD). Here, we examined the effects of V. officinalis, a medicinal herb widely used as calming and sleep-promoting, in an animal model of orofacial dyskinesia (OD) induced by long-term treatment with haloperidol. Adult male rats were treated during 12 weeks with haloperidol decanoate (38 mg/kg, i.m., each 28 days) and with V. officinalis (in the drinking water). Vacuous chewing movements (VCMs), locomotor activity and plus maze performance were evaluated. Haloperidol treatment produced VCM in 40% of the treated rats and the concomitant treatment with V. officinalis did not alter either prevalence or intensity of VCMs. The treatment with V. officinalis increased the percentage of the time spent on open arm and the number of entries into open arm in the plus maze test. Furthermore, the treatment with haloperidol and/or V. officinalis decreased the locomotor activity in the open field test. We did not find any difference among the groups when oxidative stress parameters were evaluated. Haloperidol treatment significantly decreased [(3)H]-dopamine uptake in striatal slices and V. officinalis was not able to prevent this effect. Taken together, our data suggest a mechanism involving the reduction of dopamine transport in the maintenance of chronic VCMs in rats. Furthermore, chronic treatment with V. officinalis seems not produce any oxidative damage to central nervous system (CNS), but it also seems to be devoid of action to prevent VCM, at least in the dose used in this study.
Collapse
Affiliation(s)
- Roselei Fachinetto
- Departamento de Química, Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bishnoi M, Chopra K, Kulkarni SK. Possible anti-oxidant and neuroprotective mechanisms of zolpidem in attenuating typical anti-psychotic-induced orofacial dyskinesia: a biochemical and neurochemical study. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31:1130-8. [PMID: 17513028 DOI: 10.1016/j.pnpbp.2007.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 04/07/2007] [Accepted: 04/07/2007] [Indexed: 10/23/2022]
Abstract
Tardive dyskinesia is a serious motor side effect of chronic anti-psychotic therapy. The pathophysiology of this disabling and commonly irreversible movement disorder continues obscure and may be caused due to GABAergic hypofunction or increased oxidative damage and free radical generation. Chronic treatment with typical antipsychotics leads to the development of abnormal hyperkinetic orofacial movements (vacuous chewing movements, tongue protrusions and facial jerking) in rats and is widely accepted as the animal model for tardive dyskinesia. Zolpidem, a GABA-mimetic drug is structurally related to melatonin and has been reported to possess anti-oxidant and neuroprotective effects both in vivo and in vitro. The study was carried out to investigate whether zolpidem can be used in the treatment of typical anti-psychotic-induced orofacial dyskinesia. Chronic haloperidol (1 mg/kg, i.p. for 21 days) and chlorpromazine (5 mg/kg, i.p. for 21 days) treatment significantly induced orofacial hyperkinetic movements and zolpidem [N, N, 6-trimethyl-2-p-tolyl-imidazo (1, 2-a) pyridine 3-acetamideL-(+)] dose dependently (1, 2, 5 mg/kg i.p. for 21 days) reduced these haloperidol and chlorpromazine-induced hyperkinetic orofacial movements. Biochemical analysis revealed that haloperidol and chlorpromazine treatment significantly induced increase in lipid peroxidation and decrease in the levels of total nitric oxide levels, non-protein thiols (NPSH) and of anti-oxidant defense enzymes, superoxide dismutase (SOD) and catalase in the striatum of rat brain. Co-administration of zolpidem (1, 2, 5 mg/kg i.p. for 21 days) significantly reduced the lipid peroxidation and restored the non-protein thiols and total nitric oxide levels induced by chronic haloperidol and chlorpromazine treatment. It also significantly reversed the haloperidol and chlorpromazine-induced decrease in brain SOD and catalase activity. Neurochemical analysis (Neurotransmitter and their metabolite level estimation) revealed that haloperidol and chlorpromazine significantly decreased the dopamine, norepinephrine and serotonin levels in brain homogenates where as it caused a significant increase in the metabolite (VMA and HVA) levels in urine, which were significantly reversed by zolpidem at higher doses. Result of the present study support the therapeutic use of zolpidem in the treatment of typical anti-psychotic-induced orofacial dyskinesia.
Collapse
Affiliation(s)
- Mahendra Bishnoi
- Centre with Potential for Excellence in Biomedical Sciences, Panjab University, Chandigarh, India
| | | | | |
Collapse
|
26
|
Saldaña M, Bonastre M, Aguilar E, Marin C. Differential nigral expression of Bcl-2 protein family in chronically haloperidol and clozapine-treated rats: role in neurotoxicity and stereotyped behavior. Exp Neurol 2006; 203:302-8. [PMID: 17069804 DOI: 10.1016/j.expneurol.2006.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 08/09/2006] [Accepted: 08/10/2006] [Indexed: 10/24/2022]
Abstract
Tardive dyskinesia (TD) is a syndrome characterized by repetitive involuntary movements induced by the administration of typical neuroleptics such as haloperidol. TD generally persists after haloperidol withdrawal indicating that haloperidol produces long-lasting changes in brain function. In contrast to the typicals, atypical medications, such as clozapine, have very low rates of TD. The mechanisms underlying drug-induced TD are poorly understood. We have investigated the role of nigral expression of the bcl-2 family of proteins on haloperidol-induced neurotoxicity. Rats were treated for 21 days with the following drugs: haloperidol (1 mg/kg), clozapine (1 mg/kg) or saline. After a 3-day washout period, apomorphine-induced stereotyped behavior was scored. Western blotting was performed to evaluate the nigral expression of the dopamine transporter (DAT), bax, bcl-x(L) and bcl-2 proteins. Haloperidol administration, but not clozapine, increased stereotyped behavior (p<0.01) in association with a decrease in striatal DAT expression (p<0.05). Haloperidol and clozapine treatment significantly decreased the nigral expression of bax (p<0.05, p<0.01, respectively). Neither treatment modified bcx(L) expression. Haloperidol increased (p<0.05), whereas clozapine did not significantly modify the nigral expression of bcl-2. Our results suggest that the increase in bcl-2 expression in the haloperidol-treated animals might be a compensatory mechanism that may reflect cellular damage induced by haloperidol in the dopaminergic neurons in the pars compacta of the substantia nigra.
Collapse
Affiliation(s)
- M Saldaña
- Laboratori de Neurologia Experimental, Fundació Clínic-Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | |
Collapse
|
27
|
Saldaña M, Bonastre M, Aguilar E, Marin C. Role of nigral NFkappaB p50 and p65 subunit expression in haloperidol-induced neurotoxicity and stereotyped behavior in rats. Eur Neuropsychopharmacol 2006; 16:491-7. [PMID: 16500086 DOI: 10.1016/j.euroneuro.2006.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 12/09/2005] [Accepted: 01/10/2006] [Indexed: 12/21/2022]
Abstract
Long-term use of typical neuroleptics such as haloperidol may be limited by unwanted motor side effects like tardive dyskinesia (TD) characterized by repetitive involuntary movements, involving the mouth, face and tongue. TD generally persists after haloperidol withdrawal indicating long lasting changes in brain function that are no longer related to the presence of the drug. The precise mechanisms of the neuronal toxicity induced by haloperidol are poorly understood. Haloperidol has been shown to induce the expression of the transcription factor nuclear factor-kappaB (NFkappaB). NFkappaB resembles a heterodimer protein composed of a 50 and a 65 kDa subunits and the role of the NFkappaB subunits on haloperidol-induced toxicity remains still unknown. The aim of the present study is to investigate the role of the p65 and p50 subunits of NFkappaB on the toxicity induced by chronic haloperidol administration in an experimental model of TD. Rats were treated for 21 days with: haloperidol (1mg/kg), clozapine (1mg/kg) or saline. Apomorphine-induced stereotyped behavior was evaluated. Striatal expression of the dopamine transporter (DAT) and the nigral expression of the NFkappaB p65 and p50 subunits were measured by Western Blot. Haloperidol, but not clozapine, increased stereotyped behavior associated to a decreased striatal DAT expression (p<0.01). Haloperidol did not modify the nigral expression of the p65 subunit whereas clozapine decreased it (p<0.01). Both drugs induced a significant decrease in the nigral expression of the NFkappaB p50 (p<0.05 and p<0.01, respectively). The decrease in nigral expression of the p50 subunit may increase the vulnerability of the dopaminergic neurons to a possible neurotoxic effect of p65 subunits in the haloperidol-treated rats.
Collapse
Affiliation(s)
- M Saldaña
- Laboratori de Neurologia Experimental, Fundació Clínic-Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | | | | |
Collapse
|
28
|
Burger ME, Fachinetto R, Wagner C, Perottoni J, Pereira RP, Zeni G, Rocha JBT. Effects of diphenyl–diselenide on orofacial dyskinesia model in rats. Brain Res Bull 2006; 70:165-70. [PMID: 16782505 DOI: 10.1016/j.brainresbull.2006.05.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 04/11/2006] [Accepted: 05/03/2006] [Indexed: 11/24/2022]
Abstract
Recently, we have described the beneficial effects of Diphenyl diselenide, an organochalcogen with glutathione peroxidase-like activity, on reserpine-induced orofacial dyskinesia in old rats. In this study, our aim was to examine the effects of diselenide on haloperidol-induced orofacial dyskinesia in rats. Male wistar rats received one single dose of Haloperidol decanoate (57 mg/kg/im) or control. After this dose, the animals received daily administration of diphenyl diselenide (1, 5 or 10 mg/kg/sc) or control, during 28 days. Twenty-four hours after the last diselenide or control solution injection, all the rats were observed for quantification of oral dyskinesia through the frequency of vacuous chewing movements (VCM) and tongue protrusion (TP) and the duration of facial twitching (FT). Haloperidol caused a significant increase in VCM, TP and FT observed in the 4 weekly evaluations (p<0.05). The co-administration of diselenide (5 mg/kg) reversed this effect for all the parameters in four behavioral sessions. The results of the present study demonstrate the possible protective activity of diphenyl diselenide on haloperidol-induced orofacial diskinesia. This effect is in accordance to the involvement of neurotoxicity in orofacial dyskinesia and suggest that studies be continued with new antioxidant compounds.
Collapse
Affiliation(s)
- Marilise E Burger
- Departamento de Fisiologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria 97105-900, Santa Maria, RS, Brazil.
| | | | | | | | | | | | | |
Collapse
|
29
|
Castro JPMV, Frussa-Filho R, Fukushiro DF, Silva RH, Medrano WA, Ribeiro RDA, Abílio VC. Effects of baclofen on reserpine-induced vacuous chewing movements in mice. Brain Res Bull 2006; 68:436-41. [PMID: 16459199 DOI: 10.1016/j.brainresbull.2005.09.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 05/31/2005] [Accepted: 09/30/2005] [Indexed: 10/25/2022]
Abstract
We have described that GABA mimetic drugs present the ability to inhibit the expression of reserpine-induced oral movements. In this respect, oral movements is associated with important neuropathologies. This study investigates the effects of an acute or a repeated treatment of different doses of the GABA(B) agonist baclofen, as well as withdrawal from these treatments, on the development and/or expression of reserpine-induced vacuous chewing movements (VCM). Male mice received two injections of vehicle or of 1mg/kg reserpine separated by 48 h. In the first experiment, 24h later, animals were acutely treated with vehicle or baclofen (1, 2 or 4 mg/kg). In the second experiment, animals were treated with vehicle or baclofen (1 or 4 mg/kg) for four consecutive days receiving a concomitant injection of 1mg/kg reserpine (or vehicle) on Days 2 and 4. Twenty-four hours later, animals received vehicle or baclofen. Thirty minutes after the last injection, they were observed for quantification of VCM and open-field general activity. The acute administration of all the doses of baclofen abolished the manifestation of reserpine-induced VCM. Repeated treatment with 1mg/kg baclofen induced tolerance to the ability of an acute injection of this dose to reduce VCM. Treatment with baclofen (4 mg/kg) did not modify spontaneous VCM. Acute administration of the highest dose induced a decrease in general motor activity and a potentiation of the reserpine-induced decrease in general activity. These results reinforce the involvement of GABAergic hypofunction in the expression of oral movements and suggest that a repeated treatment with baclofen induces compensatory changes in GABAergic transmission that can attenuate its acute property to decrease VCM.
Collapse
Affiliation(s)
- Juliana P M V Castro
- Department of Pharmacology, Escola Paulista de Medicina/UNIFESP, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
30
|
Peixoto MF, Araujo NP, Silva RH, Castro JPMV, Fukushiro DF, Faria RR, Zanier-Gomes PH, Medrano WA, Frussa-Filho R, Abílio VC. Effects of gabaergic drugs on reserpine-induced oral dyskinesia. Behav Brain Res 2005; 160:51-9. [PMID: 15836900 DOI: 10.1016/j.bbr.2004.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 11/09/2004] [Accepted: 11/14/2004] [Indexed: 11/25/2022]
Abstract
Recently we have described the antidyskinetic property of the GABA mimetic drugs valproic acid and topiramate on reserpine-induced oral dyskinesia. In this respect, oral dyskinesia has been associated with important neuropathologies. The present study investigates the effects of different doses of the GABA(A) agonist tetrahydroisoxazolopyridine (THIP), of the GABA(B) agonist baclofen as well as of the GABA(A) modulator diazepam on the manifestation of reserpine-induced orofacial dyskinesia. Male Wistar rats received two injections of vehicle or of 1mg/kg reserpine separated by 48 h. Twenty-four hours later, animals were acutely treated with vehicle or THIP (2, 4 or 8 mg/kg), baclofen (1, 2 or 4 mg/kg) or diazepam (1, 2 or 4 mg/kg) and were observed for quantification of oral dyskinesia and open-field general activity. In order to verify the effects of these drugs per se on spontaneous oral movements, male Wistar rats were acutely treated with vehicle, 8 mg/kg THIP, 4 mg/kg baclofen or 4 mg/kg diazepam and observed for quantification of oral dyskinesia. The two highest doses of THIP or of baclofen abolished the manifestation of reserpine-induced oral dyskinesia while the lowest dose of baclofen attenuated it. Diazepam did not modify reserpine-induced oral dyskinesia at any dose tested. The highest doses of these drugs did not modify spontaneous oral movements. Reserpine-induced decrease in open-field general activity was not modified by any of the doses of THIP and diazepam or by the two lowest doses of baclofen. The highest dose of baclofen potentiated the increase in the duration of immobility induced by reserpine. These results reinforce the involvement of GABAergic hypofunction in the expression of oral dyskinesias, and support the potential therapeutic use of THIP and baclofen in the treatment of oral dyskinesias.
Collapse
Affiliation(s)
- Marcello F Peixoto
- Department of Pharmacology, Escola Paulista de Medicina/UNIFESP, Edifício José Leal Prado, Rua Botucatu, 862 CEP 04023 062, São Paulo, SP, Brasil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Burger ME, Fachineto R, Alves A, Callegari L, Rocha JBT. Acute reserpine and subchronic haloperidol treatments change synaptosomal brain glutamate uptake and elicit orofacial dyskinesia in rats. Brain Res 2005; 1031:202-10. [PMID: 15649445 DOI: 10.1016/j.brainres.2004.10.038] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2004] [Indexed: 11/24/2022]
Abstract
Reserpine- and haloperidol-induced orofacial dyskinesia are putative animal models of tardive dyskinesia (TD) whose pathophysiology has been related to free radical generation and oxidative stress. In the present study, the authors induced orofacial dyskinesia by acute reserpine and subchronic haloperidol administration to rats. Reserpine injection (one dose of 1 mg/kg s.c.) every other day for 3 days caused a significant increase in vacuous chewing, tongue protrusion and duration of facial twitching, compared to the control. Haloperidol administration (one dose of 12 mg/kg once a week s.c.) for 4 weeks caused an increase in vacuous chewing, tongue protrusion and duration of facial twitching observed in four weekly evaluations. After the treatments and behavioral observation, glutamate uptake by segments of the brain was analyzed. A decreased glutamate uptake was observed in the subcortical parts of animals treated with reserpine and haloperidol, compared to the control. Importantly, a decrease in glutamate uptake correlates negatively with an increase in the incidence of orofacial diskinesia. These results indicate that early changes in glutamate transport may be related to the development of vacuous chewing movements in rats.
Collapse
Affiliation(s)
- Marilise Escobar Burger
- Departamento de Fisiologia, Centro de Ciências da Saúde, Bioquimica Toxicologica, 97105-900 Santa Maria RS, Brazil.
| | | | | | | | | |
Collapse
|
32
|
Burger M, Fachinetto R, Calegari L, Paixão MW, Braga AL, Rocha JBT. Effects of age on reserpine-induced orofacial dyskinesia and possible protection of diphenyl diselenide. Brain Res Bull 2004; 64:339-45. [PMID: 15561469 DOI: 10.1016/j.brainresbull.2004.09.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 08/31/2004] [Accepted: 09/02/2004] [Indexed: 11/29/2022]
Abstract
Acute reserpine administration produces persistent oral dyskinesia in rats, an alleged animal model of tardive dyskinesia. The pathophysiology of the syndrome remains unclear, but experimental evidence suggests that neurodegeneration in the basal ganglia caused by oxidative stress plays a pivotal role in TD development. In this paper, the authors examined whether diphenyl diselenide, an organochalcogen with antioxidant properties, changes the behavioral and neurochemical effect of acute reserpine administration in old rats. The basal vacuous chewing movements (VCMs) and facial twitching (FT) duration was higher in old rats (15 months of age), when compared with adult rats (3 months of age; 0.01). Basal thiobarbituric acid-reactive species (TBARS) levels were increased only in the cortex of old rats, when compared to adult animals (p < .05). Reserpine injection (1mg/kg, s.c. for 3 days every other day) caused a significant increase on the tongue protusion (TP) frequency (p < .01) and facial twitching duration (p < .01) in old rats. Diphenyl diselenide (10 mg/kg, i.p. for 4 days, starting the day before reserpine) reversed only reserpine-induced TP increase (p < .01). Reserpine caused a significant increase in striatal TBARS levels (p < .01) and diselenide reversed (p < .01) the effect of reserpine on TBARS levels in the striatum. In subcortical parts, isolated reserpine or diselenide administration significantly increased (p < .01) the levels of TBARS, while simultaneous treatment with reserpine and diselenide reverted this effect (p < .01). The results of the present study confirmed the effects of age on orofacial dyskinesia. Diphenyl diselenide, an organochalcogen with antioxidant properties, showed modest effects on reserpine-induced orofacial dyskinesia. However, additional studies are still necessary to establish whether this compound can be considered an effective antioxidant in other models of neurotoxicity.
Collapse
Affiliation(s)
- Marilise Burger
- Departamento de Fisiologia, CCS, Curso de Mestrado/Doutorado em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | | | | | | | | | | |
Collapse
|
33
|
Malik P, Andersen MB, Peacock L. The effects of dopamine D3 agonists and antagonists in a nonhuman primate model of tardive dyskinesia. Pharmacol Biochem Behav 2004; 78:805-10. [PMID: 15301939 DOI: 10.1016/j.pbb.2004.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Revised: 05/19/2004] [Accepted: 05/25/2004] [Indexed: 11/22/2022]
Abstract
Tardive dyskinesia (TD), a serious complication of antipsychotic dopamine (DA) antagonist treatment, has been hypothesised to develop due to a dominant DA D1 relative to DA D2 receptor function. Recent genetic and pharmacological studies implicate the DA D3 receptor in TD. The present study examined the role of the DA D3 receptor in relation to the DA D1/D2 imbalance hypothesis of TD in nonhuman primates. Eight Cebus monkeys displaying mild to severe TD due to previous chronic exposure to DA D2 antagonists were acutely injected with SKF 81297 (DA D1 agonist) 0.3 and 0.6 mg/kg, pramipexole (DA D3>D2 agonist) 0.025-0.1 mg/kg, CIS-8-OH-PBZI (DA D3 agonist) 5-10 mg/kg and SB-27701-A (DA D3 antagonist) 1-5 mg/kg and rated for oral dyskinesia. SKF 81297, 0.3 and 0.6 mg/kg, exacerbated TD. Pramipexole and CIS-8-OH-PBZI reduced SKF 81297-induced TD, while SB-27701-A had no effect. When administered alone, SB-27701-A increased TD relative to placebo, while pramipexole and CIS-8-OH-PBZI had no significant effect. Pramipexole did, however, ameliorate TD in those monkeys with severe TD. These results point towards a role of the DA D3 receptor in TD, but indicate that the DA D2 receptor may also play an essential role.
Collapse
Affiliation(s)
- Peter Malik
- Research Institute of Biological Psychiatry, Sct. Hans Hospital, Dk-4000 Roskilde, Denmark
| | | | | |
Collapse
|
34
|
Singh A, Naidu PS, Kulkarni SK. Possible antioxidant and neuroprotective mechanisms of FK506 in attenuating haloperidol-induced orofacial dyskinesia. Eur J Pharmacol 2003; 477:87-94. [PMID: 14519411 DOI: 10.1016/s0014-2999(03)02124-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Tardive dyskinesia is a serious motor side effect of chronic neuroleptic therapy. The pathophysiology of this disabling and commonly irreversible movement disorder is still obscure. It may be caused by a loss of dopaminergic cells, due to free radicals as a product of high synaptic dopamine levels. Chronic treatment with neuroleptics leads to the development of abnormal oral movements in rats called vacuous chewing movements. Vacuous chewing movements in rats are widely accepted as an animal model of tardive dyskinesia. Chronic haloperidol (1 mg/kg for 21 days) treatment significantly induced vacuous chewing movements and tongue protrusions in rats, and FK506 (Tacrolimus) [[3S-[3R*[E(1S*,3S*,4S*)],4S*,5R*,8S*,9E,12R*,14R*,15S*,16R*,18S*,19S*,26aR*]]-5,6,8,11,12,13,14,15,16,17,18,19,24,25,26,26a-hexadecahydro-5, 19-dihydroxy-3-[2-(4-hydroxy-3-methoxycyclohexyl)-1-methylethenyl]-14, 16-dimethoxy-4,10,12, 18-tetramethyl-8-(2-propenyl)-15, 19-epoxy-3H-pyrido[2,1-c][1,4] oxaazacyclotricosine-1,7,20, 21(4H,23H)-tetrone, monohydrate] dose dependently (0.5 and 1 mg/kg) reduced these haloperidol-induced movements. Biochemical analysis revealed that chronic haloperidol treatment significantly induced lipid peroxidation and decreased the levels of glutathione and of the antioxidant defense enzymes, superoxide dismutase and catalase, in the brains of rats. Co-administration of FK506 dose dependently (0.5 and 1 mg/kg) and significantly reduced the lipid peroxidation and restored the decreased glutathione levels induced by chronic haloperidol treatment. It also significantly reversed the haloperidol-induced decrease in brain superoxide dismutase and catalase levels. The major findings of the present study suggest that oxidative stress-induced neuronal death might play a significant role in neuroleptic-induced orofacial dyskinesia. In conclusion, FK506 could be a useful drug for the treatment of neuroleptic-induced orofacial dyskinesia.
Collapse
Affiliation(s)
- Amanpreet Singh
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh-160014, India
| | | | | |
Collapse
|
35
|
Abstract
Tardive dyskinesia has been and continues to be a significant problem associated with long-term antipsychotic use, but its pathophysiology remains unclear. In the last 10 years, preclinical studies of the administration of antipsychotics to animals, as well as clinical studies of oxidative processes in patients given antipsychotic medications, with and without tardive dyskinesia, have continued to support the possibility that neurotoxic free radical production may be an important consequence of antipsychotic treatment, and that such production may relate to the development of dyskinetic phenomena. In line with this hypothesis, evidence has accumulated for the efficacy of antioxidants, primarily vitamin E (alpha-tocopherol), in the treatment and prevention of tardive dyskinesia. Early studies suggested a modest effect of vitamin E treatment on existing tardive dyskinesia, but later studies did not demonstrate a significant effect. Because evidence has continued to accumulate for increased oxidative damage from antipsychotic medications, but less so for the effectiveness of vitamin E, especially in cases of long-standing tardive dyskinesia, alternative antioxidant approaches to the condition may be warranted. These approaches may include the use of antioxidants as a preventive measure for tardive dyskinesia or the use of other antioxidants or neuroprotective drugs, such as melatonin, for established tardive dyskinesia.
Collapse
Affiliation(s)
- James B Lohr
- Department of Psychiatry, University of California San Diego, San Diego, California, USA.
| | | | | |
Collapse
|
36
|
Arnone D, Hansen L, Kerr JS. Acute dystonic reaction in an elderly patient with mood disorder after titration of paroxetine: possible mechanisms and implications for clinical care. J Psychopharmacol 2002; 16:395-7. [PMID: 12503843 DOI: 10.1177/026988110201600418] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The administration of a serotonin reuptake inhibitor may lead to extra pyramidal signs, as reported in the literature. The risk seems to be increased in elderly people. We describe a case of acute dystonic reaction to paroxetine treatment in an elderly patient, who presented with a bipolar affective disorder. The underlying mechanism, possibly generated in the subcortical motor areas, is linked to changes that occur in the pharmacokinetic variables, the decreased neuroplasticity of ageing neurones and to previous exposure to neuroleptic medications.
Collapse
Affiliation(s)
- D Arnone
- Department of Psychiatry, Old Manor Hospital, Salisbury, UK.
| | | | | |
Collapse
|
37
|
Turrone P, Remington G, Nobrega JN. The vacuous chewing movement (VCM) model of tardive dyskinesia revisited: is there a relationship to dopamine D(2) receptor occupancy? Neurosci Biobehav Rev 2002; 26:361-80. [PMID: 12034136 DOI: 10.1016/s0149-7634(02)00008-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tardive dyskinesia (TD) is a late side effect of long-term antipsychotic use in humans, and the vacuous chewing movement (VCM) model has been used routinely to study this movement disorder in rats. Recent receptor occupancy studies in humans and rats have found that antipsychotics given in doses which lead to moderate levels of D(2) receptor blockade can achieve optimal clinical response while minimizing the emergence of acute motor side effects. This suggests that clinicians may have been using inappropriately high doses of antipsychotics. A review of the existing VCM literature indicates that most animal studies have similarly employed antipsychotic doses that are high, i.e. doses that lead to near complete D(2) receptor saturation. To verify whether the incidence or severity of VCMs would decrease with lower antipsychotic doses, we conducted initial experiments with different doses of haloperidol (HAL) given either as repeated daily injections or as depot injections over the course of several weeks. Our results demonstrate that (1) the incidence of VCMs is significantly related to HAL dose, and (2) significant levels of VCMs only emerge when haloperidol is continually present. These findings are consistent with the possibility that total D(2) occupancy, as well as 'transience' of receptor occupation, may be important in the development of late-onset antipsychotic-induced dyskinetic syndromes.
Collapse
Affiliation(s)
- Peter Turrone
- Institute of Medical Science, University of Toronto, Toronto, Ont., Canada.
| | | | | |
Collapse
|
38
|
Naidu PS, Singh A, Kulkarni SK. Carvedilol attenuates neuroleptic-induced orofacial dyskinesia: possible antioxidant mechanisms. Br J Pharmacol 2002; 136:193-200. [PMID: 12010767 PMCID: PMC1573352 DOI: 10.1038/sj.bjp.0704717] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2002] [Revised: 03/07/2002] [Accepted: 03/12/2002] [Indexed: 11/09/2022] Open
Abstract
1. Tardive dyskinesia (TD), a syndrome of potentially irreversible, involuntary hyperkinetic disorder occurring in 20 - 40% of the patient population undergoing chronic neuroleptic treatment is a major limitation of neuroleptic therapy. 2. Oxidative stress and products of lipid peroxidation are implicated in the pathophysiology of various neurological disorders including tardive dyskinesia. 3. Chronic treatment with neuroleptics leads to the development of abnormal oral movements in rats known as vacuous chewing movements (VCMs). Vacuous chewing movements in rats are widely accepted as an animal model of tardive dyskinesia. 4. All the antipsychotics were administered i.p. once daily for 21 days, whereas carvedilol (also i.p.) was administered twice daily. Rats chronically treated with haloperidol (1.0 mg kg(-1)) or chlorpromazine (5 mg kg(-1)) but not clozapine (2 mg kg(-1)) significantly developed vacuous chewing movements and tongue protrusions. Carvedilol dose dependently (0.5 - 2 mg kg(-1)) reduced the haloperidol or chlorpromazine-induced vacuous chewing movements and tongue protrusions. 5. Biochemical analysis revealed that chronic haloperidol or chlorpromazine but not clozapine treatment significantly induced lipid peroxidation and decreased the glutathione (GSH) levels in the forebrains of rats. Chronic haloperidol or chlorpromazine but not clozapine treated rats showed decreased forebrain levels of antioxidant defence enzymes, superoxide dismutase (SOD) and catalase. 6. Co-administration of carvedilol (0.5-2 mg kg(-1)) significantly reduced the lipid peroxidation and restored the decreased glutathione levels by chronic haloperidol or chlorpromazine treatment. Co-administration of carvedilol (1-2 mg kg(-1)) significantly reversed the haloperidol or chlorpromazine-induced decrease in forebrain SOD and catalase levels in rats. However, lower dose of carvedilol (0.5 mg kg(-1)) failed to reverse chronic haloperidol or chlorpromazine-induced decrease in forebrain SOD and catalase levels. 7. The major findings of the present study suggest that oxidative stress might play a significant role in neuroleptic-induced orofacial dyskinesia. In conclusion, carvedilol could be a useful drug for the treatment of neuroleptic-induced orofacial dyskinesia.
Collapse
Affiliation(s)
- Pattipati S Naidu
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh-160014, India
| | - Amanpreet Singh
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh-160014, India
| | - Shrinivas K Kulkarni
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh-160014, India
| |
Collapse
|
39
|
Mitchell IJ, Cooper AC, Griffiths MR, Cooper AJ. Acute administration of haloperidol induces apoptosis of neurones in the striatum and substantia nigra in the rat. Neuroscience 2002; 109:89-99. [PMID: 11784702 DOI: 10.1016/s0306-4522(01)00455-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chronic administration of typical neuroleptics is associated with tardive dyskinesia in some patients. This dyskinetic syndrome has been associated with loss of GABAergic markers in the basal ganglia but the cause of these GABAergic depletions remains uncertain. Haloperidol, a commonly prescribed typical neuroleptic, is known to be toxic in vitro, possibly as a consequence of its conversion to pyridinium-based metabolites and potentially by raising glutamate-mediated transmission. We report here that the in vivo, acute administration of a large dose of haloperidol resulted in a microglial response indicative of neuronal damage. This was accompanied by an increase in the number of apoptotic cells in the striatum (especially in the dorsomedial caudate putamen) and in the substantia nigra pars reticulata. These apoptotic cells were characterised by the stereotaxic injection of a retrograde neuroanatomical tracer into the projection targets of the striatum and substantia nigra pars reticulata prior to the systemic injection of haloperidol. This procedure confirmed that the dying cells were neurones and demonstrated that within the striatum the majority were striatopallidal neurones though relatively high levels of apoptotic striatoentopeduncular neurones were also seen.The possibility that chronic administration of haloperidol could induce cumulative neuronal loss in the substantia nigra pars reticulata and thereby induce the pathological changes which lead to tardive dyskinesia is discussed.
Collapse
MESH Headings
- Animals
- Antigens, CD
- Antigens, Neoplasm
- Antigens, Surface
- Apoptosis/drug effects
- Apoptosis/physiology
- Avian Proteins
- Basigin
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Blood Proteins
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Corpus Striatum/pathology
- Dopamine Antagonists/toxicity
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Dyskinesia, Drug-Induced/metabolism
- Dyskinesia, Drug-Induced/pathology
- Dyskinesia, Drug-Induced/physiopathology
- Haloperidol/toxicity
- Immunohistochemistry
- In Situ Nick-End Labeling
- Male
- Membrane Glycoproteins/metabolism
- Nerve Degeneration/chemically induced
- Nerve Degeneration/pathology
- Nerve Degeneration/physiopathology
- Neural Pathways/drug effects
- Neural Pathways/metabolism
- Neural Pathways/pathology
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- Rats
- Rats, Sprague-Dawley
- Substantia Nigra/drug effects
- Substantia Nigra/metabolism
- Substantia Nigra/pathology
- Wheat Germ Agglutinin-Horseradish Peroxidase Conjugate
Collapse
Affiliation(s)
- I J Mitchell
- School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | |
Collapse
|
40
|
Marchese G, Casu MA, Bartholini F, Ruiu S, Saba P, Gessa GL, Pani L. Sub-chronic treatment with classical but not atypical antipsychotics produces morphological changes in rat nigro-striatal dopaminergic neurons directly related to "early onset" vacuous chewing. Eur J Neurosci 2002; 15:1187-96. [PMID: 11982629 DOI: 10.1046/j.1460-9568.2002.01944.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present work, we investigated if an impairment of dopaminergic neurons after subchronic haloperidol treatment might be a possible physiopathologic substrate of the "early onset" vacuous chewing movements (VCMs) in rats. For this purpose, different antipsychotics were used to analyse a possible relationship between VCMs development and morphological alterations of tyrosine-hydroxylase-immunostained (TH-IM) neurons. Rats treated twice a day with haloperidol displayed a significant increase of VCMs that was both time- (2-4 weeks) and dose (0.1-1 mg/kg) dependent. Immunocytochemical analysis showed a shrinkage of TH-IM cell bodies in substantia nigra pars compacta and reticulata and a reduction of TH-immunostaining in the striatum of haloperidol treated rats with the arising of VCMs. No differences were observed in TH-IM neurons of ventral tegmental area and nucleus accumbens vs. control rats. The atypical antipsychotics risperidone (2 mg/kg, twice a day), amisulpride (20 mg/kg, twice a day) and clozapine (10 mg/kg, twice a day) did not produce any nigro-striatal morphological changes or VCMs. TH-IM nigro-striatal neuron morphological alterations and VCMs were still present after three days of withdrawal in rats treated for four weeks with haloperidol (1 mg/kg). Both the main morphological changes and the behavioural correlate disappeared after three weeks of withdrawal. These results suggest that haloperidol induces a morphological impairment of the dopaminergic nigro-striatal neurons which is directly associated with the arising, permanency and disappearance of VCMs in rats.
Collapse
Affiliation(s)
- Giorgio Marchese
- Neuroscienze S.c.a.r.l., and B.B. Brodie Department of Neuroscience, University of Cagliari, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
OBJECTIVE To report a case of acute dystonia consisting of neck stiffness, trismus, and unilateral temporomandibular joint (TMJ) pain and subluxation secondary to an increase in sustained-release (SR) bupropion. CASE SUMMARY A 44-year-old white man with a history of chronic low-back pain and tension headaches, taking no other medications, was started on bupropion SR 150 mg once a day for depression. The dosage was increased to 150 mg SR twice a day and eventually augmented with buspirone 15 mg 3 times a day. He developed bilateral trismus, inability to rotate his head laterally, and spontaneous left TMJ subluxation. Symptoms recessed with discontinuation of both medications and failed to reappear with a trial of buspirone 15 mg 3 times a day alone. A retrial of bupropion alone evidenced no adverse effects at a dosage of 150 mg SR once a day. However, when the dosage was increased to 150 mg SR twice a day, the patient reexperienced initial signs of neck stiffness, jaw muscle tightness, and left TMJ subluxation within 24-48 hours. Reduction of the bupropion dosage to 150 mg SR once daily stopped the symptoms; the patient has continued at this dosage without adverse effects for > 1 year. DISCUSSION Medication-induced focal dystonias usually present with dramatic head (most frequently oral-buccal) and neck muscle spasm with occasional jaw clenching, bruxism, and TMJ syndrome. In this case, the rapid onset of neck and jaw symptoms within 24-48 hours of an increase of bupropion SR from 150 mg once a day to 150 mg twice a day suggest that the patient may have been sensitized by an initial trial of bupropion and buspirone, or by the increased dose of bupropion alone. Both agents are reported to interact with both the dopaminergic and serotonergic systems. Although buspirone has been implicated in inducing acute dystonia, it did not do so in this case when used alone at a dose of 45 mg a day. During a second trial of bupropion SR 150 mg a day, neck and jaw symptoms recurred within 24-48 hours of increasing the dose to 150 mg SR twice a day. The symptoms receded when the bupropion dose was returned to 150 mg SR once a day, suggesting a dose-response relationship. The Naranjo probability scale indicated that this untoward reaction was probable. CONCLUSIONS This case suggests that selected patients may experience dose-related acute dystonic adverse reactions to bupropion with or without buspirone augmentation. Dystonias, which usually follow administration of antipsychotics, have been linked to acute dopamine depletion and basal ganglion-derived gamma synchronization dysfunction. Acute dystonia symptoms may begin within hours of starting or changing antipsychotic drug dosage; however, 90% of symptoms are observed during the first 3-5 days of starting or increasing dosage. To the best of our knowledge, there have been no reports of bupropion-induced dystonia.
Collapse
Affiliation(s)
- Mark B Detweiler
- Department of Psychiatric Medicine (116A7), Salem Veterans Affairs Medical Center, University of Virginia, Salem-Roanoke, 1970 Roanoke Blvd., Salem, VA 24153-6478, USA.
| | | |
Collapse
|
42
|
Naidu PS, Kulkarni SK. Effect of 5-HT1A and 5-HT2A/2C receptor modulation on neuroleptic-induced vacuous chewing movements. Eur J Pharmacol 2001; 428:81-6. [PMID: 11779040 DOI: 10.1016/s0014-2999(01)01284-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tardive dyskinesia is a serious motor side effect of chronic neuroleptic therapy. Chronic treatment or rats with neuroleptics leads to the development of abnormal oral movements called vacuous chewing movements. Vacuous chewing movements in rats are widely accepted as an animal model of tardive dyskinesia. Atypical antipsychotics such as clozapine and rispiridone are associated with a lower incidence of extrapyramidal side effects and tardive dyskinesia. The present study was aimed to explore the role of 5-HT1A, 5-HT2A/2C receptors in the expression of neuroleptic-induced orofacial dyskinesia. In the present study rats were chronically (for 21 days) treated with haloperidol (1.5 mg/kg, i.p.) to elicit vacuous chewing movements. The neuroleptic-induced vacuous chewing movements, viz., vertical jaw movements, tongue protrusions and bursts of jaw tremors, were counted during a 5-min observation period. Acute treatment with 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), a 5-HT1A receptor agonist, dose-dependently (0.05, 0.1 and 0.2 mg/kg, i.p.) reduced the haloperidol-induced vacuous chewing movements and headshakes. Both acute and chronic administration of seganserin, ketanserin and ritanserin, 5-HT2A/2C receptor antagonists, also reduced haloperidol-induced vacuous chewing movements in a dose-dependent (0.05, 0.1 and 0.2 mg/kg, i.p.) manner. In acute studies a higher dose of ritanserin (1 mg/kg) but not ketanserin (1 mg/kg) increased vacuous chewing movements, whereas a higher dose of seganserin (1 mg/kg) did not have any effect on vacuous chewing movements. All the drugs reduced haloperidol-induced headshakes in a dose-dependent fashion. These findings indicate that the serotonergic system, and particularly 5-HT1A and 5-HT2A/2C receptors, may be involved in haloperidol-induced orofacial dyskinesia, and that 5-HT receptors may provide novel targets for the development of drugs that can be used to reverse or prevent the extrapyramidal side effects associated with long-term antipsychotic treatment.
Collapse
MESH Headings
- Animals
- Antipsychotic Agents/antagonists & inhibitors
- Antipsychotic Agents/toxicity
- Dose-Response Relationship, Drug
- Dyskinesia, Drug-Induced/drug therapy
- Dyskinesia, Drug-Induced/psychology
- Haloperidol/antagonists & inhibitors
- Haloperidol/toxicity
- Injections, Intraperitoneal
- Male
- Rats
- Rats, Wistar
- Receptor, Serotonin, 5-HT2A
- Receptor, Serotonin, 5-HT2C
- Receptors, Serotonin/drug effects
- Receptors, Serotonin, 5-HT1
- Serotonin Antagonists/pharmacology
- Serotonin Receptor Agonists/pharmacology
- Time Factors
Collapse
Affiliation(s)
- P S Naidu
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarlh, India
| | | |
Collapse
|
43
|
Raghavendra V, Naidu PS, Kulkarni SK. Reversal of reserpine-induced vacuous chewing movements in rats by melatonin: involvement of peripheral benzodiazepine receptors. Brain Res 2001; 904:149-52. [PMID: 11516422 DOI: 10.1016/s0006-8993(01)02455-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several reports have indicated that melatonin modulates striatal dopaminergic functions via its interaction with central and peripheral benzodiazepine (BZ) receptors. Clinical reports and animal studies speculated on the possible involvement of melatonin in the pathophysiology of tardive dyskinesia (TD). In view of this, the present experiment was performed to study the possible effect of melatonin in modulation of reserpine-induced dyskinesia. Melatonin (1-10 mg/kg) dose dependently suppressed the severity of vacuous chewing movements (VCMs) in rats. Prior administration of the putative melatonin receptor antagonists luzindole (2.5 and 5 mg/kg) or prazosin (2.5 and 5 mg/kg) failed to antagonize melatonin (2.5 mg/kg) reversal of reserpine-induced VCMs. However, the peripheral BZ receptor antagonist PK11195 (0.5 and 1 mg/kg) but not flumazenil (1 and 2 mg/kg), dose dependently antagonized melatonin's reversal of reserpine-induced VCMs. Taken together the present results demonstrate that melatonin reverses reserpine-induced VCMs and that this could be due to enhancement of GABAergic activity via peripheral BZ receptors.
Collapse
MESH Headings
- Adrenergic Uptake Inhibitors/pharmacology
- Adrenergic alpha-Antagonists/pharmacology
- Animals
- Antineoplastic Agents/pharmacology
- Dose-Response Relationship, Drug
- Drug Interactions/physiology
- Dyskinesia, Drug-Induced/drug therapy
- Dyskinesia, Drug-Induced/metabolism
- Dyskinesia, Drug-Induced/physiopathology
- Flumazenil/pharmacology
- GABA Modulators/pharmacology
- GABA-A Receptor Agonists
- Isoquinolines/pharmacology
- Male
- Mastication/drug effects
- Mastication/physiology
- Melatonin/metabolism
- Melatonin/pharmacology
- Neostriatum/drug effects
- Neostriatum/metabolism
- Neostriatum/physiopathology
- Prazosin/pharmacology
- Rats
- Rats, Wistar
- Receptors, Cell Surface/agonists
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/metabolism
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, GABA-A/metabolism
- Receptors, Melatonin
- Reserpine/pharmacology
- Tryptamines/pharmacology
- gamma-Aminobutyric Acid/metabolism
Collapse
Affiliation(s)
- V Raghavendra
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, 160014, Chandigarh, India
| | | | | |
Collapse
|
44
|
Naidu PS, Kulkarni SK. Reversal of neuroleptic-induced orofacial dyskinesia by 5-HT3 receptor antagonists. Eur J Pharmacol 2001; 420:113-7. [PMID: 11408032 DOI: 10.1016/s0014-2999(01)00986-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tardive dyskinesia, a syndrome of abnormal, involuntary hyperkinetic movements that occurs during long-term neuroleptic therapy is a major limitation of chronic neuroleptic therapy. The pathophysiology of tardive dyskinesia is still an enigma. The objective of the present study was to elucidate the role of 5-HT3 receptor involvement in neuroleptic-induced vacuous chewing movements in rats. Rats chronically (for 21 days) treated with haloperidol (1.5 mg/kg, i.p.) significantly developed vacuous chewing movements, as compared to vehicle-treated controls. Both ondansetron and tropisetron dose-dependently (0.25, 0.5 and 1.0 mg/kg, i.p.) reversed the haloperidol-induced vacuous chewing movements. Serotonin acting through 5-HT3 receptors might play a significant role in the pathophysiology of tardive dyskinesia, and 5-HT3 receptor ligands can be exploited as novel therapeutic agents for the treatment of tardive dyskinesia.
Collapse
Affiliation(s)
- P S Naidu
- University Institute of Pharmaceutical Sciences, Panjab University, -160014, Chandigarh, India
| | | |
Collapse
|
45
|
Abstract
Tardive dyskinesia develops as a common complication of long-term neuroleptic use. The emergence of such dyskinesias may reflect a shift in the balance of dopamine D(1) and D(2) receptor-mediated activity, with a relative increase in activity in the D(1) receptor-regulated direct striatonigral pathway. In rats, chronic treatment with the antipsychotic fluphenazine triggers a syndrome of vacuous chewing movements, which are attenuated by dopamine D(1) receptor antagonists. A similar syndrome can be seen in drug-naive animals following acute administration of selective dopamine D(1) receptor agonists. However, not all dopamine D(1) receptor agonists elicit these mouth movements. Thus, some investigators have suggested the existence of novel subtypes of the dopamine D(1) receptor. In these studies, we sought to clarify the role of the dopamine D(1A) receptor in vacuous chewing movements induced both by the selective dopamine D(1) receptor agonist SKF 38393, as well as by chronic neuroleptic administration, using in vivo oligonucleotide antisense to dopamine D(1A) receptor messenger RNA. Intrastriatal antisense treatment significantly and selectively attenuated striatal dopamine D(1) receptor binding, accompanied by reductions in SKF 38393- and chronic fluphenazine-induced vacuous chewing movements. These findings suggest that the dopamine D(1A) receptor plays an important role in the expression of vacuous chewing movements in a rodent model of tardive dyskinesia and may contribute to the pathogenesis of the human disorder. This may have important implications for the treatment of tardive dyskinesia in humans.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Antipsychotic Agents/adverse effects
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Binding Sites/drug effects
- Binding Sites/physiology
- Disease Models, Animal
- Dopamine Agonists/pharmacology
- Dyskinesia, Drug-Induced/metabolism
- Dyskinesia, Drug-Induced/pathology
- Dyskinesia, Drug-Induced/physiopathology
- Fluphenazine/pharmacology
- Male
- Mastication/drug effects
- Mastication/physiology
- Neostriatum/drug effects
- Neostriatum/pathology
- Neostriatum/physiopathology
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Raclopride/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/drug effects
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D2/metabolism
- Tritium
Collapse
Affiliation(s)
- J M Van Kampen
- Neurodegenerative Disorders Centre, Faculty of Medicine, University of British Columbia, 2221 Wesbrook Mall, B.C., V6T 2B5, Vancouver, Canada
| | | |
Collapse
|
46
|
Andreassen OA, Jørgensen HA. Neurotoxicity associated with neuroleptic-induced oral dyskinesias in rats. Implications for tardive dyskinesia? Prog Neurobiol 2000; 61:525-41. [PMID: 10748322 DOI: 10.1016/s0301-0082(99)00064-7] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tardive dyskinesia is a serious motor side effect of long-term treatment with neuroleptics, with an unknown pathophysiologic basis. Brain damage and aging are prominent risk-factors, and together with the persistent character of the disorder, it is likely that long-lasting neuronal changes are involved in the pathogenesis. It has been hypothesized that striatal neurodegeneration caused by excitotoxic mechanisms and oxidative stress may play an important role in the development of the disorder, and the scope of the present work is to review the evidence supporting this hypothesis. The rat model of tardive dyskinesia has been used extensively in the field, and the usefulness of this model will be discussed. Neuroleptics are able to induce oxidative stress in vitro and increase striatal glutamatergic activity in rats, which may lead to toxic effects in the striatum. Drugs that block excitotoxicity inhibit the development of persistent oral dyskinesia in the rat model, and impaired energy metabolism leads to increased frequency of oral dyskinesia. There are also signs of altered striatal histology in rats with high frequency of oral dyskinesia. Furthermore, markers of increased oxidative stress and glutamatergic neurotransmission have been found in the cerebrospinal fluid of patients with tardive dyskinesia. In conclusion, several lines of evidence implicate neurotoxic events in the development of neuroleptic induced tardive dyskinesia.
Collapse
Affiliation(s)
- O A Andreassen
- Department of Psychiatry, Sandviken Hospital, University of Bergen, Bergen, Norway.
| | | |
Collapse
|
47
|
Ueda Y, Yokoyama H, Nakajima A, Ohya-Nishiguchi H, Kamada H. In vivo electron spin resonance spectroscopy on signal decay of intrastriatal nitroxide radical after acute administration of haloperidol in rats. Brain Res Bull 2000; 51:313-7. [PMID: 10704781 DOI: 10.1016/s0361-9230(99)00239-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sequential changes in the electron spin resonance (ESR) signal intensity of nitroxide radical perfused in the striatum of rats treated with haloperidol (HPD) were evaluated using a 700-MHz ESR spectrometer. Nitroxide radical was perfused in the striatum by in vivo microdialysis. Nitroxide used was 3-carbamoyl-2,2,5, 5-tetramethylpyrrolidine-1-oxyl. Following 6-h perfusion of the nitroxide radical by dialysis at the rate of 2 microl/min through the radical introducer that had been stereotaxically implanted in the rat's striatum, HPD or saline was injected intraperitoneally into the rats in the resonator. The sequential changes in the ESR spectrum of the nitroxide radical were then evaluated. Spectra were successively observed in all animals. The half-life, which was estimated on the basis of the exponential decay in signal intensity, was used as a parameter of decay rate of the ESR signal intensity of nitroxide radical. The half-life in the rats injected with HPD was significantly longer than that in controls. This finding suggests that the reducing ability of the striatal extracellular space of a rat acutely treated with HPD was decreased in comparison with that of the control.
Collapse
Affiliation(s)
- Y Ueda
- Institute for Life Support Technology, Yamagata Technopolis Foundation, Matsuei, Japan.
| | | | | | | | | |
Collapse
|
48
|
Leo RJ. Movement disturbances associated with the use of selective serotonin-reuptake inhibitors. Ann Pharmacother 1998; 32:712-4. [PMID: 9640492 DOI: 10.1345/aph.18069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- R J Leo
- Department of Psychiatry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, USA
| |
Collapse
|
49
|
Andersson C, Chakos M, Mailman R, Lieberman J. Emerging roles for novel antipsychotic medications in the treatment of schizophrenia. Psychiatr Clin North Am 1998; 21:151-79. [PMID: 9551495 DOI: 10.1016/s0193-953x(05)70365-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antipsychotic medications are the mainstay of treatment for schizophrenia. The recent advent of atypical antipsychotics has provided new clinical options and set higher expectations for the treatment of schizophrenia. It is not yet clear how each different drug will fit within the therapeutic armamentarium and this lack is most evident with considering patients with treatment refractory schizophrenia. On the other hand, the expectation of superior efficacy, more benign side effect profile and potential to impact the longitudinal course of schizophrenia provide a rationale for the use of novel antipsychotics as a first-line treatment of schizophrenia.
Collapse
Affiliation(s)
- C Andersson
- University of North Carolina Neuroscience Center, Chapel Hill, North Carolina, USA
| | | | | | | |
Collapse
|
50
|
Stoessl AJ, James KA, Napier BJ. The neurotensin antagonist SR 48692 fails to modify the behavioural responses to a dopamine D1 receptor agonist in the rat. Neuropharmacology 1997; 36:93-9. [PMID: 9144645 DOI: 10.1016/s0028-3908(96)00163-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of the neurotensin antagonist SR 48692 on the behavioural responses to the dopamine D1 receptor agonist SKF 38393 were investigated in the rat. SKF 38393 (5 mg/kg s.c.) elicited vacuous chewing movements (VCMs) and grooming, which were unaffected by SR 48692 (50 micrograms/kg i.p.). The dopamine D2 receptor antagonist raclopride (0.5 mg/kg s.c.) elicited a small increase in VCMs in animals treated with SR 48692 and attenuated grooming induced by SKF 38393. These effects were not otherwise modified by SR 48692. We conclude that VCMs induced by acute administration of a dopamine D1 receptor agonist are unlikely to be dependent upon enhanced release of neurotensin in the striatum or its projections. This is contrast to the vacuous chewing response which emerges following chronic administration of neuroleptics, which is attenuated by neurotensin receptor antagonist. Thus, inasmuch as chronic neuroleptic-induced VCMs in the rat may be analogous to tardive dyskinesia in humans, the responses induced by acute administration of a D1 agonist to the rat cannot be used as a model of this disorder. Furthermore, the behavioural effects of chronic neuroleptic administration reflect more than a simple shift in the balance of D1 versus D2 receptor stimulation.
Collapse
Affiliation(s)
- A J Stoessl
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Canada.
| | | | | |
Collapse
|