1
|
Zhang S, Wang S, Yang Z, Li Y, Li J, Chen X, Yao H, Zheng Z, Guo X. Leucine 7 is a key residue for mutant huntingtin-induced mitochondrial pathology and neurotoxicity in Huntington's disease. J Biol Chem 2025; 301:108297. [PMID: 39947473 PMCID: PMC11930128 DOI: 10.1016/j.jbc.2025.108297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/16/2025] [Accepted: 02/04/2025] [Indexed: 03/09/2025] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by the abnormal expansion of CAG repeats in exon 1 of the HTT gene. Mutant huntingtin (mHTT) associates with mitochondria, resulting in mitochondrial dysfunction and neuronal cell death. However, the underlying molecular mechanisms remain unknown. In this study, we investigate the role of N-terminal first 17 amino acids (N17) of mHTT in regulating its mitochondrial localization. Specifically, we demonstrate that the mutation at leucine 7 of N17 domain suppresses the association of mHTT with mitochondria. Blocking mitochondrial localization of HTT exon 1 with 73 glutamine repeats (HTT-Q73) strongly ameliorates polyglutamine-induced reduction of mitochondrial membrane potential, increase of reactive oxygen species production, and decrease in NAD+/NADH ratio. We observe that HTT-Q73-mediated abnormal mitochondrial morphology, mitochondrial DNA deletion, and cell death are abolished by HTT-Q73-L7A mutation. Finally, overexpression of HTT-Q73-L7A do not cause neurodegeneration and motor dysfunction in vivo. These findings highlight the pivotal role of the L7 residue which contributes to mHTT-caused HD pathology. Targeting the L7 residue of N17 domain may be a novel therapeutic strategy to alleviate mitochondrial dysfunction and neurodegeneration in HD.
Collapse
Affiliation(s)
- Shengrong Zhang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shengda Wang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zeyue Yang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanbo Li
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinping Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xushen Chen
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Yao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Zhilong Zheng
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Xing Guo
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China; The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, China.
| |
Collapse
|
2
|
Sharma Y, Gupta JK, Babu MA, Singh S, Sindhu RK. Signaling Pathways Concerning Mitochondrial Dysfunction: Implications in Neurodegeneration and Possible Molecular Targets. J Mol Neurosci 2024; 74:101. [PMID: 39466510 DOI: 10.1007/s12031-024-02269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
Mitochondrion is an important organelle present in our cells responsible for meeting energy requirements. All higher organisms rely on efficient mitochondrial bioenergetic machinery to sustain life. No other respiratory process can produce as much power as generated by mitochondria in the form of ATPs. This review is written in order to get an insight into the magnificent working of mitochondrion and its implications in cellular homeostasis, bioenergetics, redox, calcium signaling, and cell death. However, if this machinery gets faulty, it may lead to several disease states. Mitochondrial dysfunctioning is of growing concern today as it is seen in the pathogenesis of several diseases which includes neurodegenerative disorders, cardiovascular disorders, diabetes mellitus, skeletal muscle defects, liver diseases, and so on. To cover all these aspects is beyond the scope of this article; hence, our study is restricted to neurodegenerative disorders only. Moreover, faulty functioning of this organelle can be one of the causes of early ageing in individuals. This review emphasizes mutations in the mitochondrial DNA, defects in oxidative phosphorylation, generation of ROS, and apoptosis. Researchers have looked into new approaches that might be able to control mitochondrial failure and show a lot of promise as treatments.
Collapse
Affiliation(s)
- Yati Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Jeetendra Kumar Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Sumitra Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Rakesh K Sindhu
- School of Pharmacy, Sharda University, Gautam Buddha Nagar, Greater Noida, Uttar Paresdh, 201310, India.
| |
Collapse
|
3
|
Bamshad C, Najafi-Ghalehlou N, Pourmohammadi-Bejarpasi Z, Tomita K, Kuwahara Y, Sato T, Feizkhah A, Roushnadeh AM, Roudkenar MH. Mitochondria: how eminent in ageing and neurodegenerative disorders? Hum Cell 2023; 36:41-61. [PMID: 36445534 DOI: 10.1007/s13577-022-00833-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Numerous factors are implicated in the onset and progression of ageing and neurodegenerative disorders, with defects in cell energy supply and free radicals regulation designated as being the main functions of mitochondria and highly accentuated in plentiful studies. Hence, analysing the role of mitochondria as one of the main factors implicated in these disorders could undoubtedly come in handy with respect to disease prevention and treatment. In this review, first, we will explore how mitochondria account for neurodegenerative disorders and ageing and later will draw the various pathways contributing to mitochondrial dysfunction in their distinct way. Also, we will discuss the deviation-countering mechanisms, particularly mitophagy, a subset of autophagy known as a much larger cellular defence mechanism and regulatory system, along with its potential therapeutic effects. Last but not least, we will be highlighting the mitochondrial transfer experiments with animal models of neurodegenerative disorders.
Collapse
Affiliation(s)
- Chia Bamshad
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nima Najafi-Ghalehlou
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Pourmohammadi-Bejarpasi
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Kazuo Tomita
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshikazu Kuwahara
- Division of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomoaki Sato
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Alireza Feizkhah
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushnadeh
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
4
|
Delussi M, Sciruicchio V, Taurisano P, Morgante F, Salvatore E, Ferrara IP, Clemente L, Sorbera C, de Tommaso M. Lower Prevalence of Chronic Pain in Manifest Huntington's Disease: A Pilot Observational Study. Brain Sci 2022; 12:676. [PMID: 35625062 PMCID: PMC9139182 DOI: 10.3390/brainsci12050676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
Pain is a minor problem compared with other Huntington Disease (HD) symptoms. Nevertheless, in HD it is poorly recognized and underestimated. So far, no study evaluated the presence of chronic pain in HD. The aim of this pilot study was to evaluate the presence and features of chronic pain in a cohort of HD gene carriers. An observational cross-sectional study was conducted in a cohort of HD gene carriers compared to not gene carriers (n.134 HD subjects, n.74 not gene mutation carriers). A specific pain interview, alongside a neurological, cognitive and behavioural examination, was performed in order to classify the type of pain, subjective intensity. A significant prevalence of "no Pain" in HD was found, which tended to increase with HD progression and a reduced frequency of pain in the last 3 months. A clear difference was found between manifest and premanifest HD in terms of intensity of pain, which did not change significantly with HD progression; however, a tendency emerges to a progressive reduction. No significant group difference was present in analgesic use, type and the site of pain. These findings could support a lower prevalence of chronic pain in manifest HD. Prevalence and intensity of chronic pain seem directly influenced by the process of neurodegeneration rather than by an incorrect cognitive and emotional functioning.
Collapse
Affiliation(s)
- Marianna Delussi
- AOU Policlinico, Applied Neurophysiology and Pain Unit, Basic Medical Sciences, Neurosciences and Sense Organs Department, Aldo Moro University, 70124 Bari, Italy; (P.T.); (L.C.); (M.d.T.)
| | - Vittorio Sciruicchio
- Children Epilepsy and EEG Center, PO, San Paolo ASL (Azienda Sanitaria Locale), 70019 Bari, Italy;
| | - Paolo Taurisano
- AOU Policlinico, Applied Neurophysiology and Pain Unit, Basic Medical Sciences, Neurosciences and Sense Organs Department, Aldo Moro University, 70124 Bari, Italy; (P.T.); (L.C.); (M.d.T.)
| | - Francesca Morgante
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0RE, UK;
- Department of Experimental and Clinical Medicine, University of Messina, 98951 Messina, Italy
| | - Elena Salvatore
- AOU Federico II, Department of Advanced Biomedical Sciences, Università di Napoli, 80138 Napoli, Italy; (E.S.); (I.P.F.)
| | - Isabella Pia Ferrara
- AOU Federico II, Department of Advanced Biomedical Sciences, Università di Napoli, 80138 Napoli, Italy; (E.S.); (I.P.F.)
| | - Livio Clemente
- AOU Policlinico, Applied Neurophysiology and Pain Unit, Basic Medical Sciences, Neurosciences and Sense Organs Department, Aldo Moro University, 70124 Bari, Italy; (P.T.); (L.C.); (M.d.T.)
| | - Chiara Sorbera
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy;
| | - Marina de Tommaso
- AOU Policlinico, Applied Neurophysiology and Pain Unit, Basic Medical Sciences, Neurosciences and Sense Organs Department, Aldo Moro University, 70124 Bari, Italy; (P.T.); (L.C.); (M.d.T.)
| |
Collapse
|
5
|
Sawant N, Morton H, Kshirsagar S, Reddy AP, Reddy PH. Mitochondrial Abnormalities and Synaptic Damage in Huntington's Disease: a Focus on Defective Mitophagy and Mitochondria-Targeted Therapeutics. Mol Neurobiol 2021; 58:6350-6377. [PMID: 34519969 DOI: 10.1007/s12035-021-02556-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022]
Abstract
Huntington's disease (HD) is a fatal and pure genetic disease with a progressive loss of medium spiny neurons (MSN). HD is caused by expanded polyglutamine repeats in the exon 1 of HD gene. Clinically, HD is characterized by chorea, seizures, involuntary movements, dystonia, cognitive decline, intellectual impairment, and emotional disturbances. Several years of intense research revealed that multiple cellular changes, including defective axonal transport, protein-protein interactions, defective bioenergetics, calcium dyshomeostasis, NMDAR activation, synaptic damage, mitochondrial abnormalities, and selective loss of medium spiny neurons are implicated in HD. Recent research on mutant huntingtin (mHtt) and mitochondria has found that mHtt interacts with the mitochondrial division protein, dynamin-related protein 1 (DRP1), enhances GTPase DRP1 enzymatic activity, and causes excessive mitochondrial fragmentation and abnormal distribution, leading to defective axonal transport of mitochondria and selective synaptic degeneration. Recent research also revealed that failure to remove dead and/or dying mitochondria is an early event in the disease progression. Currently, efforts are being made to reduce abnormal protein interactions and enhance synaptic mitophagy as therapeutic strategies for HD. The purpose of this article is to discuss recent research in HD progression. This article also discusses recent developments of cell and mouse models, cellular changes, mitochondrial abnormalities, DNA damage, bioenergetics, oxidative stress, mitophagy, and therapeutics strategies in HD.
Collapse
Affiliation(s)
- Neha Sawant
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Hallie Morton
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Neurology, Department of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Department of Internal Medicine, Cell Biology & Biochemistry, Public Health and School of Health Professions, Texas Tech University Health Sciences Center, Neuroscience & Pharmacology3601 4th Street, NeurologyLubbock, TX, 79430, USA.
| |
Collapse
|
6
|
Merelli A, Repetto M, Lazarowski A, Auzmendi J. Hypoxia, Oxidative Stress, and Inflammation: Three Faces of Neurodegenerative Diseases. J Alzheimers Dis 2021; 82:S109-S126. [PMID: 33325385 DOI: 10.3233/jad-201074] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cerebral hypoxia-ischemia can induce a wide spectrum of biologic responses that include depolarization, excitotoxicity, oxidative stress, inflammation, and apoptosis, and result in neurodegeneration. Several adaptive and survival endogenous mechanisms can also be activated giving an opportunity for the affected cells to remain alive, waiting for helper signals that avoid apoptosis. These signals appear to help cells, depending on intensity, chronicity, and proximity to the central hypoxic area of the affected tissue. These mechanisms are present not only in a large list of brain pathologies affecting commonly older individuals, but also in other pathologies such as refractory epilepsies, encephalopathies, or brain trauma, where neurodegenerative features such as cognitive and/or motor deficits sequelae can be developed. The hypoxia inducible factor 1α (HIF-1α) is a master transcription factor driving a wide spectrum cellular response. HIF-1α may induce erythropoietin (EPO) receptor overexpression, which provides the therapeutic opportunity to administer pharmacological doses of EPO to rescue and/or repair affected brain tissue. Intranasal administration of EPO combined with other antioxidant and anti-inflammatory compounds could become an effective therapeutic alternative, to avoid and/or slow down neurodegenerative deterioration without producing adverse peripheral effects.
Collapse
Affiliation(s)
- Amalia Merelli
- Universidad de Buenos Aires, Facultad de Farmacia y Bioqummica, Departamento de Bioquímica Clínica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Argentina
| | - Marisa Repetto
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica; Instituto de Bioquímica y Medicina Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas (IBIMOL, UBA-CONICET), Argentina
| | - Alberto Lazarowski
- Universidad de Buenos Aires, Facultad de Farmacia y Bioqummica, Departamento de Bioquímica Clínica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Argentina
| | - Jerónimo Auzmendi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioqummica, Departamento de Bioquímica Clínica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
7
|
Sawant N, Reddy PH. Role of Phosphorylated Tau and Glucose Synthase Kinase 3 Beta in Huntington's Disease Progression. J Alzheimers Dis 2020; 72:S177-S191. [PMID: 31744007 DOI: 10.3233/jad-190851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The purpose of our article is to critically assess the role of phosphorylated tau in Huntington's disease (HD) progression and pathogenesis. HD is a fatal and pure genetic disease, characterized by chorea, seizures, involuntary movements, dystonia, cognitive decline, intellectual impairment, and emotional disturbances. HD is caused by expanded polyglutamine (polyQ or CAG) repeats within the exon 1 of the HD gene. HD has an autosomal dominant pattern of inheritance with genetic anticipation. Although the HD gene was discovered 26 years ago, there is no complete understanding of how mutant huntingtin (mHTT) selectively targets medium spiny projection neurons in the basal ganglia of the brain in patients with HD. Several years of intense research revealed that multiple cellular changes are involved in disease process, including transcriptional dysregulation, mitochondrial abnormalities and impaired bioenergetics, defective axonal transport, calcium dyshomeostasis, synaptic damage and caspase, and NMDAR activations. Recent research also revealed that phosphorylated tau and defective GSK-3β signaling are strongly linked to progression of the disease. This article summarizes the recent developments of cellular and pathological changes in disease progression of HD. This article also highlights recent developments in phosphorylated tau and defective GSK-3β signaling and the involvement of calcineurin in HD progression and pathogenesis.
Collapse
Affiliation(s)
- Neha Sawant
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
8
|
Tittelmeier J, Nachman E, Nussbaum-Krammer C. Molecular Chaperones: A Double-Edged Sword in Neurodegenerative Diseases. Front Aging Neurosci 2020; 12:581374. [PMID: 33132902 PMCID: PMC7572858 DOI: 10.3389/fnagi.2020.581374] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Abstract
Aberrant accumulation of misfolded proteins into amyloid deposits is a hallmark in many age-related neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS). Pathological inclusions and the associated toxicity appear to spread through the nervous system in a characteristic pattern during the disease. This has been attributed to a prion-like behavior of amyloid-type aggregates, which involves self-replication of the pathological conformation, intercellular transfer, and the subsequent seeding of native forms of the same protein in the neighboring cell. Molecular chaperones play a major role in maintaining cellular proteostasis by assisting the (re)-folding of cellular proteins to ensure their function or by promoting the degradation of terminally misfolded proteins to prevent damage. With increasing age, however, the capacity of this proteostasis network tends to decrease, which enables the manifestation of neurodegenerative diseases. Recently, there has been a plethora of studies investigating how and when chaperones interact with disease-related proteins, which have advanced our understanding of the role of chaperones in protein misfolding diseases. This review article focuses on the steps of prion-like propagation from initial misfolding and self-templated replication to intercellular spreading and discusses the influence that chaperones have on these various steps, highlighting both the positive and adverse consequences chaperone action can have. Understanding how chaperones alleviate and aggravate disease progression is vital for the development of therapeutic strategies to combat these debilitating diseases.
Collapse
Affiliation(s)
- Jessica Tittelmeier
- German Cancer Research Center (DKFZ), Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Eliana Nachman
- German Cancer Research Center (DKFZ), Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Carmen Nussbaum-Krammer
- German Cancer Research Center (DKFZ), Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
9
|
Kang TC. Nuclear Factor-Erythroid 2-Related Factor 2 (Nrf2) and Mitochondrial Dynamics/Mitophagy in Neurological Diseases. Antioxidants (Basel) 2020; 9:antiox9070617. [PMID: 32679689 PMCID: PMC7402121 DOI: 10.3390/antiox9070617] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/01/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria play an essential role in bioenergetics and respiratory functions for cell viability through numerous biochemical processes. To maintain mitochondria quality control and homeostasis, mitochondrial morphologies change rapidly in response to external insults and changes in metabolic status through fusion and fission (so called mitochondrial dynamics). Furthermore, damaged mitochondria are removed via a selective autophagosomal process, referred to as mitophagy. Although mitochondria are one of the sources of reactive oxygen species (ROS), they are themselves vulnerable to oxidative stress. Thus, endogenous antioxidant defense systems play an important role in cell survival under physiological and pathological conditions. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a redox-sensitive transcription factor that maintains redox homeostasis by regulating antioxidant-response element (ARE)-dependent transcription and the expression of antioxidant defense enzymes. Although the Nrf2 system is positively associated with mitochondrial biogenesis and mitochondrial quality control, the relationship between Nrf2 signaling and mitochondrial dynamics/mitophagy has not been sufficiently addressed in the literature. This review article describes recent clinical and experimental observations on the relationship between Nrf2 and mitochondrial dynamics/mitophagy in various neurological diseases.
Collapse
Affiliation(s)
- Tae-Cheon Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; ; Tel.: +82-33-248-2524; Fax: +82-33-248-2525
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
10
|
So KH, Choi JH, Islam J, Kc E, Moon HC, Won SY, Kim HK, Kim S, Hyun SH, Park YS. An Optimization of AAV-82Q-Delivered Rat Model of Huntington's Disease. J Korean Neurosurg Soc 2020; 63:579-589. [PMID: 32131152 PMCID: PMC7477157 DOI: 10.3340/jkns.2019.0182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/25/2019] [Indexed: 11/27/2022] Open
Abstract
Objective No optimum genetic rat Huntington model both neuropathological using an adeno-associated virus (AAV-2) vector vector has been reported to date. We investigated whether direct infection of an AAV2 encoding a fragment of mutant huntingtin (AV2-82Q) into the rat striatum was useful for optimizing the Huntington rat model.
Methods We prepared ten unilateral models by injecting AAV2-82Q into the right striatum, as well as ten bilateral models. In each group, five rats were assigned to either the 2×1012 genome copies (GC)/mL of AAV2-82Q (×1, low dose) or 2×1013 GC/mL of AAV2-82Q (×10, high dose) injection model. Ten unilateral and ten bilateral models injected with AAV-empty were also prepared as control groups. We performed cylinder and stepping tests 2, 4, 6, and 8 weeks after injection, tested EM48 positive mutant huntingtin aggregates.
Results The high dose of unilateral and bilateral AAV2-82Q model showed a greater decrease in performance on the stepping and cylinder tests. We also observed more prominent EM48-positive mutant huntingtin aggregates in the medium spiny neurons of the high dose of AAV2-82Q injected group.
Conclusion Based on the results from the present study, high dose of AAV2-82Q is the optimum titer for establishing a Huntington rat model. Delivery of high dose of human AAV2-82Q resulted in the manifestation of Huntington behaviors and optimum expression of the huntingtin protein in vivo.
Collapse
Affiliation(s)
- Kyoung-Ha So
- Institute for Stem Cell & Regenerative Medicine (ISCRM), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea.,Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Jai Ho Choi
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jaisan Islam
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Elina Kc
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Hyeong Cheol Moon
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea.,Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Korea
| | - So Yoon Won
- Department of Biochemistry and Medical Research Center, Chungbuk National University, Cheongju, Korea
| | - Hyong Kyu Kim
- Department of Biochemistry and Medical Research Center, Chungbuk National University, Cheongju, Korea
| | - Soochong Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Sang-Hwan Hyun
- Institute for Stem Cell & Regenerative Medicine (ISCRM), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea.,Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Young Seok Park
- Institute for Stem Cell & Regenerative Medicine (ISCRM), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea.,Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea.,Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Korea
| |
Collapse
|
11
|
Wu Y, Chen M, Jiang J. Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling. Mitochondrion 2019; 49:35-45. [PMID: 31288090 DOI: 10.1016/j.mito.2019.07.003] [Citation(s) in RCA: 262] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/24/2019] [Accepted: 07/05/2019] [Indexed: 12/17/2022]
Abstract
Mitochondrial dysfunction is becoming one of the most emerging pathological process in the etiology of neurological disorders. Other common etiologies of the neurological disorders are aging and oxidative stress. Neurodegenerative disorders for instance Huntington's disease, Parkinson's disease, Amyotrophic lateral sclerosis, Epilepsy, Schizophrenia, Multiple sclerosis, Neuropathic pain and Alzheimer's disease involves mitochondrial dysfunction and is regarded as the core of their pathological processes. Most central pathological feature of the neurodegenerative diseases is apoptosis which is regulated by mitochondria. Altered signaling of the apoptotic mechanisms are involved in neurodegeneration. Abnormal levels of these molecular apoptotic proteins promotes the pathogenesis of neurological disorders. Mitochondria are also implicated in the production of reactive oxygen species (ROS). Raised ROS levels initiates the cascade leading to the non-apoptotic death of cells. ROS produced in cells acts as signaling molecules, but when produced in abundance will result in cellular consequences to deoxyribonucleic acid, proteins and lipids, decreased effectiveness of cellular mechanisms, initiation of inflammatory pathways, excitotoxicity, protein agglomeration and apoptosis. Protecting mitochondrial function has been identified as the most effective therapeutic approach to attenuate the pathogenesis of neurodegenerative diseases. This review aims to provide an insight into the mitochondrial dysfunction in the pathogenesis of neurological disorders, alteration in signaling cascades of apoptosis in mitochondrial dysfunction and the therapeutic strategies (both natural and synthetic drugs) targeting these mitochondrial apoptotic pathways and oxidative stress that holds great promise.
Collapse
Affiliation(s)
- Yuanbo Wu
- Department of Neurology, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui Province 230001, PR China; Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, PR China
| | - Meiqiao Chen
- Department of Neurology, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui Province 230001, PR China
| | - Jielong Jiang
- Department of Nephrology, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui Province 230001, PR China; Department of Nephrology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, PR China.
| |
Collapse
|
12
|
Hafycz JM, Naidoo NN. Sleep, Aging, and Cellular Health: Aged-Related Changes in Sleep and Protein Homeostasis Converge in Neurodegenerative Diseases. Front Aging Neurosci 2019; 11:140. [PMID: 31244649 PMCID: PMC6579877 DOI: 10.3389/fnagi.2019.00140] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/23/2019] [Indexed: 01/17/2023] Open
Abstract
Many neurodegenerative diseases manifest in an overall aged population, the pathology of which is hallmarked by abnormal protein aggregation. It is known that across aging, sleep quality becomes less efficient and protein homeostatic regulatory mechanisms deteriorate. There is a known relationship between extended wakefulness and poorly consolidated sleep and an increase in cellular stress. In an aged population, when sleep is chronically poor, and proteostatic regulatory mechanisms are less efficient, the cell is inundated with misfolded proteins and suffers a collapse in homeostasis. In this review article, we explore the interplay between aging, sleep quality, and proteostasis and how these processes are implicated in the development and progression of neurodegenerative diseases like Alzheimer's disease (AD). We also present data suggesting that reducing cellular stress and improving proteostasis and sleep quality could serve as potential therapeutic solutions for the prevention or delay in the progression of these diseases.
Collapse
Affiliation(s)
- Jennifer M Hafycz
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, United States
| | - Nirinjini N Naidoo
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, United States
| |
Collapse
|
13
|
Castelli V, Benedetti E, Antonosante A, Catanesi M, Pitari G, Ippoliti R, Cimini A, d'Angelo M. Neuronal Cells Rearrangement During Aging and Neurodegenerative Disease: Metabolism, Oxidative Stress and Organelles Dynamic. Front Mol Neurosci 2019; 12:132. [PMID: 31191244 PMCID: PMC6546816 DOI: 10.3389/fnmol.2019.00132] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/07/2019] [Indexed: 12/22/2022] Open
Abstract
Brain cells normally respond adaptively to oxidative stress or bioenergetic challenges, resulting from ongoing activity in neuronal circuits. During aging and in neurodegenerative disorders, these mechanisms are compromised. In fact, neurons show unique age-related changes in functions and metabolism, resulting in greater susceptibility to insults and disease. Aging affects the nervous system as well as other organs. More precisely, as the nervous system ages, neuron metabolism may change, inducing glucose hypometabolism, impaired transport of critical substrates underlying metabolism, alterations in calcium signaling, and mitochondrial dysfunction. Moreover, in neuronal aging, an accumulation of impaired and aggregated proteins in the cytoplasm and in mitochondria is observed, as the result of oxidative stress: reduced antioxidant defenses and/or increase of reactive oxygen species (ROS). These changes lead to greater vulnerability of neurons in various regions of the brain and increased susceptibility to several diseases. Specifically, the first part of the review article will focus on the major neuronal cells’ rearrangements during aging in response to changes in metabolism and oxidative stress, while the second part will cover the neurodegenerative disease areas in detail.
Collapse
Affiliation(s)
- Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Giuseppina Pitari
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, PA, United States
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| |
Collapse
|
14
|
Fuhrmann-Stroissnigg H, Niedernhofer LJ, Robbins PD. Hsp90 inhibitors as senolytic drugs to extend healthy aging. Cell Cycle 2018; 17:1048-1055. [PMID: 29886783 DOI: 10.1080/15384101.2018.1475828] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aging is characterized by progressive decay of biological systems and although it is not considered a disease, it is one of the main risk factors for chronic diseases and many types of cancers. The accumulation of senescent cells in various tissues is thought to be a major factor contributing to aging and age-related diseases. Removal of senescent cells during aging by either genetic or therapeutic methods have led to an improvement of several age related disease in mice. In this preview, we highlight the significance of developing senotherapeutic approaches to specifically kill senescent cells (senolytics) or suppress the senescence-associated secretory phenotype (SASP) that drives sterile inflammation (senomorphics) associated with aging to extend healthspan and potentially lifespan. Also, we provide an overview of the senotherapeutic drugs identified to date. In particular, we discuss and expand upon the recent identification of inhibitors of the HSP90 co-chaperone as a new class of senolytics.
Collapse
Affiliation(s)
- Heike Fuhrmann-Stroissnigg
- a Department of Molecular Medicine and The Center on Aging , The Scripps Research Institute , Jupiter , FL , USA
| | - Laura J Niedernhofer
- a Department of Molecular Medicine and The Center on Aging , The Scripps Research Institute , Jupiter , FL , USA
| | - Paul D Robbins
- a Department of Molecular Medicine and The Center on Aging , The Scripps Research Institute , Jupiter , FL , USA
| |
Collapse
|
15
|
Yin X, Manczak M, Reddy PH. Mitochondria-targeted molecules MitoQ and SS31 reduce mutant huntingtin-induced mitochondrial toxicity and synaptic damage in Huntington's disease. Hum Mol Genet 2016; 25:1739-53. [PMID: 26908605 DOI: 10.1093/hmg/ddw045] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/15/2016] [Indexed: 01/28/2023] Open
Abstract
The objective of this study was to determine the protective effects of the mitochondria-targeted molecules MitoQ and SS31 in striatal neurons that stably express mutant huntingtin (Htt) (STHDhQ111/Q111) in Huntington's disease (HD). We studied mitochondrial and synaptic activities by measuring mRNA and the protein levels of mitochondrial and synaptic genes, mitochondrial function, and ultra-structural changes in MitoQ- and SS31-treated mutant Htt neurons relative to untreated mutant Htt neurons. We used gene expression analysis, biochemical methods, transmission electron microscopy (TEM) and confocal microscopy methods. In the MitoQ- and SS31-treated mutant Htt neurons, fission genes Drp1 and Fis1 were down-regulated, and fusion genes Mfn1, Mfn2 and Opa1 were up-regulated relative to untreated neurons, suggesting that mitochondria-targeted molecules reduce fission activity. Interestingly, the mitochondrial biogenesis genes PGC1α, PGC1β, Nrf1, Nrf2 and TFAM were up-regulated in MitoQ- and SS31-treated mutant Htt neurons. The synaptic genes synaptophysin and PSD95 were up-regulated, and mitochondrial function was normal in the MitoQ- and SS31-treated mutant Htt neurons. Immunoblotting findings of mitochondrial and synaptic proteins agreed with the mRNA findings. TEM studies revealed decreased numbers of structurally intact mitochondria in MitoQ- and SS31-treated mutant Htt neurons. These findings suggest that mitochondria-targeted molecules MitoQ and SS31 are protective against mutant Htt-induced mitochondrial and synaptic damage in HD neurons, and these mitochondria-targeted molecules are potential therapeutic molecules for the treatment of HD neurons.
Collapse
Affiliation(s)
| | | | - P Hemachandra Reddy
- Garrison Institute on Aging, Cell Biology and Biochemistry, Neuroscience & Pharmacology, Neurology and Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA
| |
Collapse
|
16
|
Bowles KR, Brooks SP, Dunnett SB, Jones L. Huntingtin Subcellular Localisation Is Regulated by Kinase Signalling Activity in the StHdhQ111 Model of HD. PLoS One 2015; 10:e0144864. [PMID: 26660732 PMCID: PMC4679340 DOI: 10.1371/journal.pone.0144864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 11/23/2015] [Indexed: 12/03/2022] Open
Abstract
Huntington's disease is a neurodegenerative disorder characterised primarily by motor abnormalities, and is caused by an expanded polyglutamine repeat in the huntingtin protein. Huntingtin dynamically shuttles between subcellular compartments, and the mutant huntingtin protein is mislocalised to cell nuclei, where it may interfere with nuclear functions, such as transcription. However, the mechanism by which mislocalisation of mutant huntingtin occurs is currently unknown. An immortalised embryonic striatal cell model of HD (StHdhQ111) was stimulated with epidermal growth factor in order to determine whether the subcellular localisation of huntingtin is dependent on kinase signalling pathway activation. Aberrant phosphorylation of AKT and MEK signalling pathways was identified in cells carrying mutant huntingtin. Activity within these pathways was found to contribute to the regulation of huntingtin and mutant huntingtin localisation, as well as to the expression of immediate-early genes. We propose that altered kinase signalling is a phenotype of Huntington's disease that occurs prior to cell death; specifically, that altered kinase signalling may influence huntingtin localisation, which in turn may impact upon nuclear processes such as transcriptional regulation. Aiming to restore the balance of activity between kinase signalling networks may therefore prove to be an effective approach to delaying Huntington's disease symptom development and progression.
Collapse
Affiliation(s)
- Kathryn R. Bowles
- Institute of Psychological Medicine and Clinical Neurosciences, MRC centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Hadyn Ellis building, Maindy Road, Cardiff University, Cardiff CF24 4HQ, Wales, United Kingdom
| | - Simon P. Brooks
- The Brain Repair Group, School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, United Kingdom
| | - Stephen B. Dunnett
- The Brain Repair Group, School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, United Kingdom
| | - Lesley Jones
- Institute of Psychological Medicine and Clinical Neurosciences, MRC centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Hadyn Ellis building, Maindy Road, Cardiff University, Cardiff CF24 4HQ, Wales, United Kingdom
| |
Collapse
|
17
|
Rosiglitazone activation of PPARγ-dependent signaling is neuroprotective in mutant huntingtin expressing cells. Exp Cell Res 2015; 338:183-93. [DOI: 10.1016/j.yexcr.2015.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 08/26/2015] [Accepted: 09/06/2015] [Indexed: 11/24/2022]
|
18
|
Manczak M, Reddy PH. Mitochondrial division inhibitor 1 protects against mutant huntingtin-induced abnormal mitochondrial dynamics and neuronal damage in Huntington's disease. Hum Mol Genet 2015; 24:7308-25. [PMID: 26464486 DOI: 10.1093/hmg/ddv429] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/06/2015] [Indexed: 12/15/2022] Open
Abstract
The objective of this study was to determine the protective effects of the mitochondrial division inhibitor 1 (Mdivi1) in striatal neurons that stably express mutant Htt (STHDhQ111/Q111) and wild-type (WT) Htt (STHDhQ7/Q7). Using gene expression analysis, biochemical methods, transmission electron microscopy (TEM) and confocal microscopy methods, we studied (i) mitochondrial and synaptic activities by measuring mRNA and the protein levels of mitochondrial and synaptic genes, (ii) mitochondrial function and (iii) ultra-structural changes in mutant Htt neurons relative to WT Htt neurons. We also studied these parameters in Mdivil-treated and untreated WT and mutant Htt neurons. Increased expressions of mitochondrial fission genes, decreased expression of fusion genes and synaptic genes were found in the mutant Htt neurons relative to the WT Htt neurons. Electron microscopy of the mutant Htt neurons revealed a significantly increased number of mitochondria, indicating that mutant Htt fragments mitochondria. Biochemical analysis revealed defective mitochondrial functioning. In the Mdivil-treated mutant Htt neurons, fission genes were down-regulated, and fusion genes were up-regulated, suggesting that Mdivil decreases fission activity. Synaptic genes were up-regulated, and mitochondrial function was normal in the Mdivi1-treated mutant Htt neurons. Immunoblotting findings of mitochondrial and synaptic proteins agreed with mRNA findings. The TEM studies revealed that increased numbers of structurally intact mitochondria were present in Mdivi1-treated mutant Htt neurons. Increased synaptic and mitochondrial fusion genes and decreased fission genes were found in the Mdivi1-treated WT Htt neurons, indicating that Mdivi1 beneficially affects healthy neurons. Taken together, these findings suggest that Mdivi1 is protective against mutant Htt-induced mitochondrial and synaptic damage in HD neurons and that Mdivi1 may be a promising molecule for the treatment of HD patients.
Collapse
Affiliation(s)
| | - P Hemachandra Reddy
- Garrison Institute on Aging and Cell Biology and Biochemistry, Neuroscience/Pharmacology and Neurology Departments, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
19
|
Abstract
Here we describe biosensors that provide readouts for protein stability in the cytosolic compartment of prokaryotes. These biosensors consist of tripartite sandwich fusions that link the in vitro stability or aggregation susceptibility of guest proteins to the in vivo resistance of host cells to the antibiotics kanamycin, spectinomycin, and nourseothricin. These selectable markers confer antibiotic resistance in a wide range of hosts and are easily quantifiable. We show that mutations within guest proteins that affect their stability alter the antibiotic resistances of the cells expressing the biosensors in a manner that is related to the in vitro stabilities of the mutant guest proteins. In addition, we find that polyglutamine tracts of increasing length are associated with an increased tendency to form amyloids in vivo and, in our sandwich fusion system, with decreased resistance to aminoglycoside antibiotics. We demonstrate that our approach allows the in vivo analysis of protein stability in the cytosolic compartment without the need for prior structural and functional knowledge.
Collapse
|
20
|
Skillings EA, Wood NI, Morton AJ. Beneficial effects of environmental enrichment and food entrainment in the R6/2 mouse model of Huntington's disease. Brain Behav 2014; 4:675-86. [PMID: 25328844 PMCID: PMC4107380 DOI: 10.1002/brb3.235] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/06/2014] [Accepted: 04/14/2014] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND In addition to their cognitive and motor deficits, R6/2 mice show a progressive disintegration in circadian rhythms that mirrors the problems associated with sleep-wake disturbances experienced by patients with Huntington's disease (HD). It has been shown previously that motor and cognitive performance, as well as survival, can be improved in transgenic mouse models of HD through the provision of environmental enrichment. METHODS We compared the effect of two different overnight entrainment paradigms presented either separately or in combination. The first was environmental enrichment, the second was temporal food-entrainment. Environmental enrichment was provided in the dark period (the natural active period for mice) in the form of access to a Perspex playground containing running wheels, tunnels, climbing frame, ropes and chew blocks. Food entrainment was imposed by allowing access to food only during the dark period. We assessed a number of different aspects of function in the mice, measuring general health (by SHIRPA testing, body temperature and body weight measurements), cognitive performance in the touchscreen and locomotor behavior in the open field. RESULTS There were no significant differences in cognitive performance between groups on different schedules. Environmental enrichment delayed the onset of general health deterioration, while food entrainment slowed the loss of body weight, aided the maintenance of body temperature and improved locomotor behavior. Effects were limited however, and in combination had deleterious effects on survival. CONCLUSIONS Our results support previous studies showing that environmental enrichment can be beneficial and might be used to enhance the quality of life of HD patients. However, improvements are selective and 'enrichment' per se is likely to only be useful as an adjunct to a more direct therapy.
Collapse
Affiliation(s)
- Elizabeth A Skillings
- Department of Physiology, Development and Neuroscience, University of Cambridge Cambridge, CB2 3DY, UK
| | - Nigel I Wood
- Department of Physiology, Development and Neuroscience, University of Cambridge Cambridge, CB2 3DY, UK
| | - A Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge Cambridge, CB2 3DY, UK
| |
Collapse
|
21
|
Increased mitochondrial fission and neuronal dysfunction in Huntington's disease: implications for molecular inhibitors of excessive mitochondrial fission. Drug Discov Today 2014; 19:951-5. [PMID: 24681059 DOI: 10.1016/j.drudis.2014.03.020] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 03/20/2014] [Indexed: 11/22/2022]
Abstract
Huntington's disease (HD) is a fatal, progressive neurodegenerative disease with an autosomal dominant inheritance, characterized by chorea, involuntary movements of the limbs and cognitive impairments. Since identification of the HD gene in 1993, tremendous progress has been made in identifying underlying mechanisms involved in HD pathogenesis and progression, and in developing and testing molecular therapeutic targets, using cell and animal models of HD. Recent studies have found that mutant Huntingtin (mHtt) interacts with Dynamin-related protein 1 (Drp1), causing excessive fragmentation of mitochondria, leading to abnormal mitochondrial dynamics and neuronal damage in HD-affected neurons. Some progress has been made in developing molecules that can reduce excessive mitochondrial fission while maintaining both the normal balance between mitochondrial fusion and fission, and normal mitochondrial function in diseases in which excessive mitochondrial fission has been implicated. In this article, we highlight investigations that are determining the involvement of excessive mitochondrial fission in HD pathogenesis, and that are developing inhibitors of excessive mitochondrial fission for potential therapeutic applications.
Collapse
|
22
|
Wu Y, Janetopoulos C. Systematic analysis of γ-aminobutyric acid (GABA) metabolism and function in the social amoeba Dictyostelium discoideum. J Biol Chem 2013; 288:15280-90. [PMID: 23548898 DOI: 10.1074/jbc.m112.427047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
While GABA has been suggested to regulate spore encapsulation in the social amoeba Dictyostelium discoideum, the metabolic profile and other potential functions of GABA during development remain unclear. In this study, we investigated the homeostasis of GABA metabolism by disrupting genes related to GABA metabolism and signaling. Extracellular levels of GABA are tightly regulated during early development, and GABA is generated by the glutamate decarboxylase, GadB, during growth and in early development. However, overexpression of the prespore-specific homologue, GadA, in the presence of GadB reduces production of extracellular GABA. Perturbation of extracellular GABA levels delays the process of aggregation. Cytosolic GABA is degraded by the GABA transaminase, GabT, in the mitochondria. Disruption of a putative vesicular GABA transporter (vGAT) homologue DdvGAT reduces secreted GABA. We identified the GABAB receptor-like family member GrlB as the major GABA receptor during early development, and either disruption or overexpression of GrlB delays aggregation. This delay is likely the result of an abolished pre-starvation response and late expression of several "early" developmental genes. Distinct genes are employed for GABA generation during sporulation. During sporulation, GadA alone is required for generating GABA and DdvGAT is likely responsible for GABA secretion. GrlE but not GrlB is the GABA receptor during late development.
Collapse
Affiliation(s)
- Yuantai Wu
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
23
|
Integration of apoptosis signal-regulating kinase 1-mediated stress signaling with the Akt/protein kinase B-IκB kinase cascade. Mol Cell Biol 2013; 33:2252-9. [PMID: 23530055 DOI: 10.1128/mcb.00047-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellular processes are tightly controlled through well-coordinated signaling networks that respond to conflicting cues, such as reactive oxygen species (ROS), endoplasmic reticulum (ER) stress signals, and survival factors to ensure proper cell function. We report here a direct interaction between inhibitor of κB kinase (IKK) and apoptosis signal-regulating kinase 1 (ASK1), unveiling a critical node at the junction of survival, inflammation, and stress signaling networks. IKK can be activated by growth factor stimulation or tumor necrosis factor alpha engagement. IKK forms a complex with and phosphorylates ASK1 at a sensor site, Ser967, leading to the recruitment of 14-3-3, counteracts stress signal-triggered ASK1 activation, and suppresses ASK1-mediated functions. An inhibitory role of IKK in JNK signaling has been previously reported to depend on NF-κB-mediated gene expression. Our data suggest that IKK has a dual role: a transcription-dependent and a transcription-independent action in controlling the ASK1-JNK axis, coupling IKK to ROS and ER stress response. Direct phosphorylation of ASK1 by IKK also defines a novel IKK phosphorylation motif. Because of the intimate involvement of ASK1 in diverse diseases, the IKK/ASK1 interface offers a promising target for therapeutic development.
Collapse
|
24
|
RNAi-based therapies for Huntington's disease: delivery challenges and opportunities. Ther Deliv 2012; 3:1061-76. [PMID: 23035592 DOI: 10.4155/tde.12.80] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Huntington's disease (HD) is a polyglutamine neurodegenerative disease caused by a mutation in the HTT gene coding for the Huntingtin protein (HTT). Unfortunately, there is no cure for HD and there is also no known way to modify the disease progression. RNAi approaches offer the promise of a certain degree of control over the disease. However, there are several challenges in potential use of RNAi in the treatment of HD. This article will discuss the details of RNAi technology as applied to the treatment of HD, and novel approaches to overcome the drug delivery challenges.
Collapse
|
25
|
Zheng S, Ghitani N, Blackburn JS, Liu JP, Zeitlin SO. A series of N-terminal epitope tagged Hdh knock-in alleles expressing normal and mutant huntingtin: their application to understanding the effect of increasing the length of normal Huntingtin's polyglutamine stretch on CAG140 mouse model pathogenesis. Mol Brain 2012; 5:28. [PMID: 22892315 PMCID: PMC3499431 DOI: 10.1186/1756-6606-5-28] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 08/09/2012] [Indexed: 12/19/2022] Open
Abstract
Background Huntington’s disease (HD) is an autosomal dominant neurodegenerative disease that is caused by the expansion of a polyglutamine (polyQ) stretch within Huntingtin (htt), the protein product of the HD gene. Although studies in vitro have suggested that the mutant htt can act in a potentially dominant negative fashion by sequestering wild-type htt into insoluble protein aggregates, the role of the length of the normal htt polyQ stretch, and the adjacent proline-rich region (PRR) in modulating HD mouse model pathogenesis is currently unknown. Results We describe the generation and characterization of a series of knock-in HD mouse models that express versions of the mouse HD gene (Hdh) encoding N-terminal hemaglutinin (HA) or 3xFlag epitope tagged full-length htt with different polyQ lengths (HA7Q-, 3xFlag7Q-, 3xFlag20Q-, and 3xFlag140Q-htt) and substitution of the adjacent mouse PRR with the human PRR (3xFlag20Q- and 3xFlag140Q-htt). Using co-immunoprecipitation and immunohistochemistry analyses, we detect no significant interaction between soluble full-length normal 7Q- htt and mutant (140Q) htt, but we do observe N-terminal fragments of epitope-tagged normal htt in mutant htt aggregates. When the sequences encoding normal mouse htt’s polyQ stretch and PRR are replaced with non-pathogenic human sequence in mice also expressing 140Q-htt, aggregation foci within the striatum, and the mean size of htt inclusions are increased, along with an increase in striatal lipofuscin and gliosis. Conclusion In mice, soluble full-length normal and mutant htt are predominantly monomeric. In heterozygous knock-in HD mouse models, substituting the normal mouse polyQ and PRR with normal human sequence can exacerbate some neuropathological phenotypes.
Collapse
Affiliation(s)
- Shuqiu Zheng
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, Box 801392, USA
| | | | | | | | | |
Collapse
|
26
|
Brown MK, Naidoo N. The endoplasmic reticulum stress response in aging and age-related diseases. Front Physiol 2012; 3:263. [PMID: 22934019 PMCID: PMC3429039 DOI: 10.3389/fphys.2012.00263] [Citation(s) in RCA: 268] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/24/2012] [Indexed: 12/25/2022] Open
Abstract
The endoplasmic reticulum(ER) is a multifunctional organelle within which protein folding, lipid biosynthesis, and calcium storage occurs. Perturbations such as energy or nutrient depletion, disturbances in calcium or redox status that disrupt ER homeostasis lead to the misfolding of proteins, ER stress and up-regulation of several signaling pathways coordinately called the unfolded protein response (UPR). The UPR is characterized by the induction of chaperones, degradation of misfolded proteins and attenuation of protein translation. The UPR plays a fundamental role in the maintenance of cellular homeostasis and thus is central to normal physiology. However, sustained unresolved ER stress leads to apoptosis. Aging linked declines in expression and activity of key ER molecular chaperones and folding enzymes compromise proper protein folding and the adaptive response of the UPR. One mechanism to explain age associated declines in cellular functions and age-related diseases is a progressive failure of chaperoning systems. In many of these diseases, proteins or fragments of proteins convert from their normally soluble forms to insoluble fibrils or plaques that accumulate in a variety of organs including the liver, brain or spleen. This group of diseases, which typically occur late in life includes Alzheimer's, Parkinson's, type II diabetes and a host of less well known but often equally serious conditions such as fatal familial insomnia. The UPR is implicated in many of these neurodegenerative and familial protein folding diseases as well as several cancers and a host of inflammatory diseases including diabetes, atherosclerosis, inflammatory bowel disease and arthritis. This review will discuss age-related changes in the ER stress response and the role of the UPR in age-related diseases.
Collapse
Affiliation(s)
- Marishka K Brown
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania Philadelphia, PA, USA
| | | |
Collapse
|
27
|
Bayram-Weston Z, Torres EM, Jones L, Dunnett SB, Brooks SP. Light and electron microscopic characterization of the evolution of cellular pathology in the Hdh(CAG)150 Huntington's disease knock-in mouse. Brain Res Bull 2012; 88:189-98. [PMID: 21511013 DOI: 10.1016/j.brainresbull.2011.03.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 03/15/2011] [Accepted: 03/18/2011] [Indexed: 12/30/2022]
Abstract
Huntington's disease is an autosomal dominant, progressive neurodegenerative disease in which a single mutation in the gene responsible for the protein huntingtin leads to a primarily striatal and cortical neuronal loss, resulting progressive motor, cognitive and psychiatric disability and ultimately death. The mutation induces an abnormal protein accumulation within cells, although the precise role of this accumulation in the disease process is unknown. Several animal models have been created to model the disease. In the present study, the pathology of the Hdh(CAG(150)) mouse model was analyzed longitudinally over 24 months. At 5 months of age, the mutant N-terminal antibody S830 found dense nuclear staining and nuclear inclusions in the olfactory tubercle and striatum of the Hdh(Q150/Q150) mice. Nuclear inclusions increased in number and size with age and disease progression, and spread in ventral to dorsal, and anterior to posterior pattern. Electron microscopy observations at 14 months of age revealed that the neurons showed a normal nucleus having a circular shape and regular membranes in a densely packed cytoplasm, whereas by 21 months the cytoplasm was vacuolated and contained swollen mitochondria with many degenerated cytoplasmic organelles. Immunogold labelling of the S830 antibody was found to be specifically localised to the inner area of the neuronal intra-nuclear inclusions. Our data demonstrate a marked and progressive cellular phenotype that begins at 5 months of age and progresses with time. The pathology the Hdh(Q150/Q150) line was focused on the striatum and cortex until the late stage of the disease, consistent with the human condition.
Collapse
|
28
|
Bayram-Weston Z, Jones L, Dunnett SB, Brooks SP. Light and electron microscopic characterization of the evolution of cellular pathology in YAC128 Huntington's disease transgenic mice. Brain Res Bull 2012; 88:137-47. [PMID: 21620935 DOI: 10.1016/j.brainresbull.2011.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/21/2011] [Accepted: 05/08/2011] [Indexed: 11/19/2022]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disease caused by the insertion of an expanded polyglutamine sequence within the huntingtin protein. This mutation induces the formation of abnormal protein fragment aggregations and intra-nuclear neuronal inclusions in the brain. The present study aimed to produce a detailed longitudinal characterization of the neuronal pathology in the YAC128 transgenic mouse brain, to determine the similarity of this mouse model to other mouse models and the human condition in the spatial and temporal deposition pattern of the mutant protein fragments. Brain samples were taken from mice aged between 4 and 27 months of age, and assessed using S830 and GFAP immunohistochemistry, stereology and electron microscopy. Four month old mice did not exhibit intra-nuclear or extra-nuclear inclusions using the S830 antibody. Diffuse nuclear staining was present in the cortex, hippocampus and cerebellum from 6 months of age onwards. By 15 months of age, intra-nuclear inclusions were visible in most brain regions including nucleus accumbens, ventral striatum, lateral striatum, motor cortex, sensory cortex and cerebellum. The ventral striatum had a greater density of inclusions than the dorsal striatum. At 15 and 24 months of age, the mice showed increased reactive astrogliosis in the cortex, but no differences were found in the striatum. Necrotic cell death with vacuolation, uneven cell membrane and degenerated Golgi apparatus were detected ultrastructurally at 14 months of age, with some cells showing signs of apoptosis. By 26 months of age, most cells were degenerated in the transgenic animals, with lipofuscin granules being more abundant and larger in these mice than in their wildtype littermates. Our results demonstrate a progressive and widespread neuropathology in the YAC128 mice line that shares some similarity to the human condition. This article is part of a Special Issue entitled 'HD Transgenic Mouse'.
Collapse
|
29
|
Bayram-Weston Z, Jones L, Dunnett SB, Brooks SP. Light and electron microscopic characterization of the evolution of cellular pathology in HdhQ92 Huntington's disease knock-in mice. Brain Res Bull 2012; 88:171-81. [PMID: 21513775 DOI: 10.1016/j.brainresbull.2011.03.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 03/15/2011] [Accepted: 03/18/2011] [Indexed: 01/01/2023]
Abstract
Huntington's disease (HD) is a fatally progressive neurodegenerative disease that is characterized anatomically by the abnormal accumulation of fragments of mutant huntingtin protein, within the glia and neurons of the brain. Several genetic (transgenic and knock-in) animal models have been established to mimic human HD. None of these models represent all of the elements of the human disease, but they provide an opportunity to understand the processes of the disease and aid in the development of therapeutic strategies. In this study, the Hdh(Q92) mouse model of Huntington's disease was analysed at different time points across the lifespan of the animal. At 4 months of age, Hdh(Q92/Q92) mice showed dense nuclear staining and nuclear inclusions in the olfactory tubercle and striatum with the mutant N-terminal antibody S830. Widespread formation of mutant huntingtin aggregates in the neuronal nuclei and cytosol increased in number with age and disease progression. Electron microscopy revealed that at 14 and at 21 months of age neurons showed the features of both necrotic and apoptotic cell death, such as irregular nuclear and cytoplasmic membranes, dark condensed nuclei, vacuolated cytoplasm, and swollen mitochondria. The spatial spread of NIIs progressed along the anterior-posterior and ventral-dorsal planes. Our detailed analyses of the Hdh(Q92) mouse line demonstrated a progressive and marked early focal striatal pathology with later widespread neuronal changes, including cellular degeneration, mutant protein aggregation and inclusion formation. We have demonstrated that the distribution of intra- and extra nuclear inclusions in this animal model expresses many features similar to the human pathology.
Collapse
|
30
|
Sheline CT, Zhu J, Zhang W, Shi C, Cai AL. Mitochondrial inhibitor models of Huntington's disease and Parkinson's disease induce zinc accumulation and are attenuated by inhibition of zinc neurotoxicity in vitro or in vivo. NEURODEGENER DIS 2012; 11:49-58. [PMID: 22627004 DOI: 10.1159/000336558] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 01/12/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Inhibition of mitochondrial function occurs in many neurodegenerative diseases, and inhibitors of mitochondrial complexes I and II are used to model them. The complex II inhibitor, 3-nitroproprionic acid (3-NPA), kills the striatal neurons susceptible in Huntington's disease. The complex I inhibitor N-methyl-4-phenylpyridium (MPP(+)) and 6-hydroxydopamine (6-OHDA) are used to model Parkinson's disease. Zinc (Zn(2+)) accumulates after 3-NPA, 6-OHDA and MPP(+) in situ or in vivo. OBJECTIVE We will investigate the role of Zn(2+) neurotoxicity in 3-NPA, 6-OHDA and MPP(+). METHODS Murine striatal/midbrain tyrosine hydroxylase positive, or near-pure cortical neuronal cultures, or animals were exposed to 3-NPA or MPP(+) and 6-OHDA with or without neuroprotective compounds. Intracellular zinc ([Zn(2+)](i)), nicotinamide adenine dinucleotide (NAD(+)), NADH, glycolytic intermediates and neurotoxicity were measured. RESULTS We showed that compounds or genetics which restore NAD(+) and attenuate Zn(2+) neurotoxicity (pyruvate, nicotinamide, NAD(+), increased NAD(+) synthesis, sirtuin inhibition or Zn(2+) chelation) attenuated the neuronal death induced by these toxins. The increase in [Zn(2+)](i) preceded a reduction in the NAD(+)/NADH ratio that caused a reversible glycolytic inhibition. Pyruvate, nicotinamide and NAD(+) reversed the reductions in the NAD(+)/NADH ratio, glycolysis and neuronal death after challenge with 3-NPA, 6-OHDA or MPP(+), as was previously shown for exogenous Zn(2+). To test efficacy in vivo, we injected 3-NPA into the striatum of rats and systemically into mice, with or without pyruvate. We observed early striatal Zn(2+) fluorescence, and pyruvate significantly attenuated the 3-NPA-induced lesion and restored behavioral scores. CONCLUSIONS Together, these studies suggest that Zn(2+) accumulation caused by MPP(+) and 3-NPA is a novel preventable mechanism of the resultant neurotoxicity.
Collapse
Affiliation(s)
- Christian T Sheline
- Department of Ophthalmology and the Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA. csheli @ lsuhsc.edu
| | | | | | | | | |
Collapse
|
31
|
Reiner A, Lafferty DC, Wang HB, Del Mar N, Deng YP. The group 2 metabotropic glutamate receptor agonist LY379268 rescues neuronal, neurochemical and motor abnormalities in R6/2 Huntington's disease mice. Neurobiol Dis 2012; 47:75-91. [PMID: 22472187 DOI: 10.1016/j.nbd.2012.03.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 03/14/2012] [Accepted: 03/17/2012] [Indexed: 12/11/2022] Open
Abstract
Excitotoxic injury to striatum by dysfunctional cortical input or aberrant glutamate uptake may contribute to Huntington's disease (HD) pathogenesis. Since corticostriatal terminals possess mGluR2/3 autoreceptors, whose activation dampens glutamate release, we tested the ability of the mGluR2/3 agonist LY379268 to improve the phenotype in R6/2 HD mice with 120-125 CAG repeats. Daily subcutaneous injection of a maximum tolerated dose (MTD) of LY379268 (20mg/kg) had no evident adverse effects in WT mice, and diverse benefits in R6/2 mice, both in a cohort of mice tested behaviorally until the end of R6/2 lifespan and in a cohort sacrificed at 10weeks of age for blinded histological analysis. MTD LY379268 yielded a significant 11% increase in R6/2 survival, an improvement on rotarod, normalization and/or improvement in locomotor parameters measured in open field (activity, speed, acceleration, endurance, and gait), a rescue of a 15-20% cortical and striatal neuron loss, normalization of SP striatal neuron neurochemistry, and to a lesser extent enkephalinergic striatal neuron neurochemistry. Deficits were greater in male than female R6/2 mice, and drug benefit tended to be greater in males. The improvements in SP striatal neurons, which facilitate movement, are consistent with the improved movement in LY379268-treated R6/2 mice. Our data indicate that mGluR2/3 agonists may be particularly useful for ameliorating the morphological, neurochemical and motor defects observed in HD.
Collapse
Affiliation(s)
- A Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | | | |
Collapse
|
32
|
Sandhir R, Sood A, Mehrotra A, Kamboj SS. N-Acetylcysteine reverses mitochondrial dysfunctions and behavioral abnormalities in 3-nitropropionic acid-induced Huntington's disease. NEURODEGENER DIS 2012; 9:145-57. [PMID: 22327485 DOI: 10.1159/000334273] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 09/23/2011] [Indexed: 11/19/2022] Open
Abstract
Mitochondrial dysfunction is a major event involved in the pathogenesis of Huntington's disease (HD). The present study evaluates the role of N-acetyl-L-cysteine (NAC) in preventing mitochondrial dysfunctions in a 3-nitropropionic acid (3-NP)-induced model of HD. Administration of 3-NP to rats (Wistar strain) resulted in significant inhibition of mitochondrial complexes II, IV and V in the striatum. However, no significant effect on complex I was observed. Increased generation of reactive oxygen species and lipid peroxidation was observed in mitochondria of 3-NP-treated animals. Endogenous antioxidants (thiols and manganese-superoxide dismutase) were lowered in mitochondria of 3-NP-treated animals. 3-NP-treated animals showed increased cytosolic cytochrome c levels and mitochondrial swelling. Increased expressions of caspase-3 and p53 were also observed in 3-NP-treated animals. Histopathological examination of the striata of 3-NP-treated animals revealed increased neural space, neurodegeneration and gliosis. This was accompanied by cognitive and motor deficits. NAC treatment, on the other hand, was found to be effective in reversing 3-NP-induced mitochondrial dysfunctions and neurobehavioral deficits. Our findings suggest a beneficial effect of NAC in HD.
Collapse
Affiliation(s)
- Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh, India.
| | | | | | | |
Collapse
|
33
|
Chiang MC, Chern Y, Huang RN. PPARgamma rescue of the mitochondrial dysfunction in Huntington's disease. Neurobiol Dis 2012; 45:322-8. [DOI: 10.1016/j.nbd.2011.08.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 08/04/2011] [Accepted: 08/18/2011] [Indexed: 10/17/2022] Open
|
34
|
Batcha AH, Greferath U, Jobling AI, Vessey KA, Ward MM, Nithianantharajah J, Hannan AJ, Kalloniatis M, Fletcher EL. Retinal dysfunction, photoreceptor protein dysregulation and neuronal remodelling in the R6/1 mouse model of Huntington's disease. Neurobiol Dis 2011; 45:887-96. [PMID: 22198376 DOI: 10.1016/j.nbd.2011.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 10/26/2011] [Accepted: 12/04/2011] [Indexed: 11/15/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurological disease characterised by motor dysfunction, cognitive impairment and personality changes. Previous work in HD patients and animal models of the disease has also highlighted retinal involvement. This study characterised the changes in retinal structure and function early within the progression of disease using the R6/1 mouse model of HD. The retinal phenotype was observed to occur at the same time in the disease process as other neurological deficits such as motor dysfunction (by 13 weeks of age). There was a specific functional deficit in cone response to the electroretinogram and using immunocytochemical techniques, this dysfunction was found to be likely due to a progressive and complete loss of cone opsin and transducin protein expression by 20 weeks of age. In addition, there was an increase in Müller cell gliosis and the presence of ectopic rod photoreceptor terminals. This retinal remodelling is also observed in downstream neurons, namely the rod and cone bipolar cells. While R6/1 mice exhibit significant retinal pathology simultaneously with other more classical HD alterations, this doesn't lead to extensive cell loss. These findings suggest that in HD, cone photoreceptors are initially targeted, possibly via dysregulation of protein expression or trafficking and that this process is subsequently accompanied by increased retinal stress and neuronal remodelling also involving the rod pathway. As retinal structure and connectivity are well characterised, the retina may provide a useful model tissue in which to characterise the mechanisms important in the development of neuronal pathology in HD.
Collapse
Affiliation(s)
- Abrez Hussain Batcha
- Department of Anatomy and Cell Biology, The University of Melbourne, Parkville 3010, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Naia L, Ribeiro MJ, Rego AC. Mitochondrial and metabolic-based protective strategies in Huntington's disease: the case of creatine and coenzyme Q. Rev Neurosci 2011; 23:13-28. [PMID: 22150069 DOI: 10.1515/rns.2011.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 10/26/2011] [Indexed: 01/15/2023]
Abstract
Huntington's disease (HD) is a neurodegenerative genetic disorder caused by an expansion of CAG repeats in the HD gene encoding for huntingtin (Htt), resulting in progressive death of striatal neurons, with clinical symptoms of chorea, dementia and dramatic weight loss. Metabolic and mitochondrial dysfunction caused by the expanded polyglutamine sequence have been described along with other mechanisms of neurodegeneration previously described in human tissues and animal models of HD. In this review, we focus on mitochondrial and metabolic disturbances affecting both the central nervous system and peripheral cells, including mitochondrial DNA damage, mitochondrial complexes defects, loss of calcium homeostasis and transcriptional deregulation. Glucose abnormalities have also been described in peripheral tissues of HD patients and in HD animal and cellular models. Moreover, there are no effective neuroprotective treatments available in HD. Thus, we briefly discuss the role of creatine and coenzyme Q10 that target mitochondrial dysfunction and impaired bioenergetics and have been previously used in HD clinical trials.
Collapse
Affiliation(s)
- Luana Naia
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | | |
Collapse
|
36
|
Reddy PH, Shirendeb UP. Mutant huntingtin, abnormal mitochondrial dynamics, defective axonal transport of mitochondria, and selective synaptic degeneration in Huntington's disease. Biochim Biophys Acta Mol Basis Dis 2011; 1822:101-10. [PMID: 22080977 DOI: 10.1016/j.bbadis.2011.10.016] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 10/25/2011] [Accepted: 10/25/2011] [Indexed: 11/19/2022]
Abstract
Huntington's disease (HD) is a progressive, fatal neurodegenerative disease caused by expanded polyglutamine repeats in the HD gene. HD is characterized by chorea, seizures, involuntary movements, dystonia, cognitive decline, intellectual impairment and emotional disturbances. Research into mutant huntingtin (Htt) and mitochondria has found that mutant Htt interacts with the mitochondrial protein dynamin-related protein 1 (Drp1), enhances GTPase Drp1 enzymatic activity, and causes excessive mitochondrial fragmentation and abnormal distribution, leading to defective axonal transport of mitochondria and selective synaptic degeneration. This article summarizes latest developments in HD research and focuses on the role of abnormal mitochondrial dynamics and defective axonal transport in HD neurons. This article also discusses the therapeutic strategies that decrease mitochondrial fragmentation and neuronal damage in HD.
Collapse
Affiliation(s)
- P Hemachandra Reddy
- Neurogenetics Laboratory, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| | | |
Collapse
|
37
|
Chiang MC, Chern Y, Juo CG. The dysfunction of hepatic transcriptional factors in mice with Huntington's Disease. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1111-20. [DOI: 10.1016/j.bbadis.2011.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Revised: 04/17/2011] [Accepted: 05/23/2011] [Indexed: 10/18/2022]
|
38
|
“Brain training” improves cognitive performance and survival in a transgenic mouse model of Huntington's disease. Neurobiol Dis 2011; 42:427-37. [DOI: 10.1016/j.nbd.2011.02.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/04/2011] [Accepted: 02/08/2011] [Indexed: 01/17/2023] Open
|
39
|
Reddy PH, Reddy TP. Mitochondria as a therapeutic target for aging and neurodegenerative diseases. Curr Alzheimer Res 2011; 8:393-409. [PMID: 21470101 PMCID: PMC3295247 DOI: 10.2174/156720511795745401] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Accepted: 11/11/2010] [Indexed: 01/14/2023]
Abstract
Mitochondria are cytoplasmic organelles responsible for life and death. Extensive evidence from animal models, postmortem brain studies of and clinical studies of aging and neurodegenerative diseases suggests that mitochondrial function is defective in aging and neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Several lines of research suggest that mitochondrial abnormalities, including defects in oxidative phosphorylation, increased accumulation of mitochondrial DNA defects, impaired calcium influx, accumulation of mutant proteins in mitochondria, and mitochondrial membrane potential dissipation are important cellular changes in both early and late-onset neurodegenerative diseases. Further, emerging evidence suggests that structural changes in mitochondria, including increased mitochondrial fragmentation and decreased mitochondrial fusion, are critical factors associated with mitochondrial dysfunction and cell death in aging and neurodegenerative diseases. This paper discusses research that elucidates features of mitochondria that are associated with cellular dysfunction in aging and neurodegenerative diseases and discusses mitochondrial structural and functional changes, and abnormal mitochondrial dynamics in neurodegenerative diseases. It also outlines mitochondria-targeted therapeutics in neurodegenerative diseases.
Collapse
Affiliation(s)
- P H Reddy
- Neurogenetics Laboratory, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.
| | | |
Collapse
|
40
|
Shirendeb U, Reddy AP, Manczak M, Calkins MJ, Mao P, Tagle DA, Reddy PH. Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease: implications for selective neuronal damage. Hum Mol Genet 2011; 20:1438-55. [PMID: 21257639 DOI: 10.1093/hmg/ddr024] [Citation(s) in RCA: 298] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The purpose of our study was to determine the relationship between mutant huntingtin (Htt) and mitochondrial dynamics in the progression of Huntington's disease (HD). We measured the mRNA levels of electron transport chain genes, and mitochondrial structural genes, Drp1 (dynamin-related protein 1), Fis1 (fission 1), Mfn1 (mitofusin 1), Mfn2 (mitofusin 2), Opa1 (optric atrophy 1), Tomm40 (translocase of outermembrane 40) and CypD (cyclophilin D) in grade III and grade IV HD patients and controls. The mutant Htt oligomers and the mitochondrial structural proteins were quantified in the striatum and frontal cortex of HD patients. Changes in expressions of the electron transport chain genes were found in HD patients and may represent a compensatory response to mitochondrial damage caused by mutant Htt. Increased expression of Drp1 and Fis1 and decreased expression of Mfn1, Mfn2, Opa1 and Tomm40 were found in HD patients relative to the controls. CypD was upregulated in HD patients, and this upregulation increased as HD progressed. Significantly increased immunoreactivity of 8-hydroxy-guanosine was found in the cortical specimens from stage III and IV HD patients relative to controls, suggesting increased oxidative DNA damage in HD patients. In contrast, significantly decreased immunoreactivities of cytochrome oxidase 1 and cytochrome b were found in HD patients relative to controls, indicating a loss of mitochondrial function in HD patients. Immunoblotting analysis revealed 15, 25 and 50 kDa mutant Htt oligomers in the brain specimens of HD patients. All oligomeric forms of mutant Htt were significantly increased in the cortical tissues of HD patients, and mutant Htt oligomers were found in the nucleus and in mitochondria. The increase in Drp1, Fis1 and CypD and the decrease in Mfn1 and Mfn2 may be responsible for abnormal mitochondrial dynamics that we found in the cortex of HD patients, and may contribute to neuronal damage in HD patients. The presence of mutant Htt oligomers in the nucleus of HD neurons and in mitochondria may disrupt neuronal functions. Based on these findings, we propose that mutant Htt in association with mitochondria imbalance and mitochondrial dynamics impairs axonal transport of mitochondria, decreases mitochondrial function and damages neurons in affected brain regions of HD patients.
Collapse
Affiliation(s)
- Ulziibat Shirendeb
- Neurogenetics Laboratory, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Chiang MC, Chen CM, Lee MR, Chen HW, Chen HM, Wu YS, Hung CH, Kang JJ, Chang CP, Chang C, Wu YR, Tsai YS, Chern Y. Modulation of energy deficiency in Huntington's disease via activation of the peroxisome proliferator-activated receptor gamma. Hum Mol Genet 2010; 19:4043-58. [PMID: 20668093 DOI: 10.1093/hmg/ddq322] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease caused by the expansion of a CAG trinucleotide repeat in exon 1 of the huntingtin (HTT) gene. Here, we report that the transcript of the peroxisome proliferator-activated receptor-γ (PPARγ), a transcription factor that is critical for energy homeostasis, was markedly downregulated in multiple tissues of a mouse model (R6/2) of HD and in lymphocytes of HD patients. Therefore, downregulation of PPARγ seems to be a pathomechanism of HD. Chronic treatment of R6/2 mice with an agonist of PPARγ (thiazolidinedione, TZD) rescued progressive weight loss, motor deterioration, formation of mutant Htt aggregates, jeopardized global ubiquitination profiles, reduced expression of two neuroprotective proteins (brain-derived neurotrophic factor and Bcl-2) and shortened life span exhibited by these mice. By reducing HTT aggregates and, thus, ameliorating the recruitment of PPARγ into HTT aggregates, chronic TZD treatment also elevated the availability of the PPARγ protein and subsequently normalized the expression of two of its downstream genes (the glucose transporter type 4 and PPARγ coactivator-1 alpha genes). The protective effects described above appear to have been exerted, at least partially, via direct activation of PPARγ in the brain, as TZD was detected in the brains of mice treated with TZD and because a PPARγ agonist (rosiglitazone) protected striatal cells from mHTT-evoked energy deficiency and toxicity. We demonstrated that the systematic downregulation of PPARγ seems to play a critical role in the dysregulation of energy homeostasis observed in HD, and that PPARγ is a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kumar P, Kalonia H, Kumar A. Huntington's disease: pathogenesis to animal models. Pharmacol Rep 2010; 62:1-14. [PMID: 20360611 DOI: 10.1016/s1734-1140(10)70238-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 02/02/2010] [Indexed: 01/17/2023]
Abstract
Huntington's disease (HD) is an inherited genetic disorder, characterized by cognitive dysfunction and abnormal body movements called chorea. George Huntington, an Ohio physician, described the disease precisely in 1872. HD is a dominantly inherited disorder, characterized by progressive neurodegeneration of the striatum but also involves other regions, primarily the cerebral cortex. The mutation responsible for this fatal disease is an abnormally expanded and unstable CAG repeat within the coding region of the gene encoding the huntingtin protein. Various hypotheses have been put forward to explain the pathogenic mechanisms of mutant huntingtin-induced neuronal dysfunction and cell death. None of these hypotheses, however, offers a clear explanation; thus, it remains a topic of research interest. HD is considered to be an important disease, embodying many of the major themes in modern neuroscience, including molecular genetics, selective neuronal vulnerability, excitotoxicity, mitochondrial dysfunction, apoptosis and transcriptional dysregulation. A number of recent reports have concluded that oxidative stress plays a key role in HD pathogenesis. Although there is no specific treatment available to block disease progression, treatments are available to help in controlling the chorea symptoms. As animal models are the best tools to evaluate any therapeutic agent, there are also different animal models available, mimicking a few or a larger number of symptoms. Each model has its own advantages and limitations. The present review deals with the pathophysiology and various cascades contributing to HD pathogenesis and progression as well as drug targets, such as dopaminergic, gamma-amino butyric acid (GABA)ergic, glutamate adenosine receptor, peptidergic pathways, cannabinoid receptor, and adjuvant therapeutic drug targets such as oxidative stress and mitochondrial dysfunction that can be targeted for future experimental study. The present review also focuses on the animal models (behavioral and genetic) used to unravel pathogenetic mechanisms and the identification of novel drug targets.
Collapse
Affiliation(s)
- Puneet Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh-160014, India
| | | | | |
Collapse
|
43
|
Targeting Glial Cells to Elucidate the Pathogenesis of Huntington’s Disease. Mol Neurobiol 2010; 41:248-55. [DOI: 10.1007/s12035-009-8097-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 12/27/2009] [Indexed: 10/19/2022]
|
44
|
Troubles psychiatriques et ganglions de la base : une validation expérimentale. ANNALES PHARMACEUTIQUES FRANÇAISES 2009; 67:320-34. [DOI: 10.1016/j.pharma.2009.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 06/16/2009] [Indexed: 11/21/2022]
|
45
|
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle which co-ordinates protein folding, lipid biosynthesis, calcium storage and release. Perturbations that disrupt ER homeostasis lead to ER stress and upregulation of a signaling pathway called the unfolded protein response (UPR). The UPR while robust in young animals appears to be compromised with aging; many of the components of the UPR have decreased expression and activity with age. There is also considerable evidence of oxidative damage. There are suggestions that an impaired UPR may contribute to the acceleration of neurodegenerative disorders.
Collapse
Affiliation(s)
- Nirinjini Naidoo
- University of Pennsylvania School of Medicine, Center for Sleep and Respiratory Neurobiology, Philadelphia, PA 19104, USA.
| |
Collapse
|
46
|
Reddy PH, Mao P, Manczak M. Mitochondrial structural and functional dynamics in Huntington's disease. BRAIN RESEARCH REVIEWS 2009; 61:33-48. [PMID: 19394359 PMCID: PMC2748129 DOI: 10.1016/j.brainresrev.2009.04.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 04/13/2009] [Accepted: 04/15/2009] [Indexed: 11/23/2022]
Abstract
Huntington's disease (HD) is an autosomal, dominantly inherited neurodegenerative disorder, characterized by chorea, involuntary movements, and cognitive impairments. Tremendous progress has been made since the discovery of HD gene in 1993, in terms of developing animal models to study the disease process, unraveling the expression and function of wild-type and mutant huntingtin (Htt) proteins in the central and peripheral nervous systems, and understanding expanded CAG repeat containing mutant Htt protein interactions with CNS proteins in the disease process. HD progression has been found to involve several pathomechanisms, including expanded CAG repeat protein interaction with other CNS proteins, transcriptional dysregulation, calcium dyshomeostasis, abnormal vesicle trafficking, and defective mitochondrial bioenergetics. Recent studies have found that mutant Htt is associated with mitochondria and causes mitochondrial structural changes, decreases mitochondrial trafficking, and impairs mitochondrial dynamics in the neurons affected by HD. This article discusses recent developments in HD research, with a particular focus on intracellular and intramitochondrial calcium influx, mitochondrial DNA defects, and mitochondrial structural and functional abnormalities in HD development and progression. Further, this article outlines the current status of mitochondrial therapeutics with a special reference to Dimebon.
Collapse
Affiliation(s)
- P Hemachandra Reddy
- Neurogenetics Laboratory, Neuroscience Division, Oregon National Primate Research Center, West Campus, Oregon Health and Science University, Beaverton, OR 97006, USA.
| | | | | |
Collapse
|
47
|
Geatrell JC, Mui (Iryn) Gan P, Mansergh FC, Kisiswa L, Jarrin M, Williams LA, Evans MJ, Boulton ME, Wride MA. Apoptosis gene profiling reveals spatio-temporal regulated expression of the p53/Mdm2 pathway during lens development. Exp Eye Res 2009; 88:1137-51. [PMID: 19450442 PMCID: PMC2706329 DOI: 10.1016/j.exer.2009.01.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 01/15/2009] [Accepted: 01/30/2009] [Indexed: 01/19/2023]
Abstract
Evidence is emerging for apoptosis gene expression in the lens during development. Therefore, here we used a filter array to assess expression of 243 apoptosis-related genes in the developing postnatal mouse lens using (33)P labelled cDNA synthesized from p7 and p14 mouse lenses. We demonstrated that 161 apoptosis-related genes were expressed at levels significantly above background and 20 genes were potentially significantly differentially expressed (P<0.05) by at least 2-fold between p7 and p14. We used RT-PCR to confirm expression of these genes in newborn, p7, p14 and 4 wk mouse lens cDNA samples. Expression of 19/20 of the genes examined was confirmed, while 5 genes (Huntingtin, Mdm2, Dffa, galectin-3 and Mcl-1) were confirmed as differentially regulated between p7 and p14. RT-PCR was also used to examine the expression of the chick homologues of the most-highly expressed and/or potentially differentially regulated genes in chick embryo lenses at E6-E16. The majority of genes expressed in the postnatal mouse lens were also expressed in the chick embryo lens. Western blotting confirmed developmentally regulated expression of Axl and Mcl-1 during mouse lens development and of Mdm2, Mdm4/X and p53 during mouse and chick lens development. Western blotting also revealed the presence of p53 and Mdm4/X splice variants and/or proteolytic cleavage products in the developing lens. Since Mdm2 is a regulator of the tumour suppressor gene p53, we chose to thoroughly investigate the spatio-temporal expression patterns of p53, Mdm2 and the functionally related Mdm4/X in mouse lens development at E12.5-E16.5 using immunocytochemistry. We also examined Mdm2 expression patterns during chick lens development at E6-E16 and Mdm4/X and p53 at E14. Expression of Mdm2, Mdm4/X and p53 was spatio-temporally regulated in various compartments of the developing lens in both mouse and chick, including lens epithelial and lens fibre cells, indicating potential roles for these factors in regulation of lens epithelial cell proliferation and/or lens fibre cell differentiation This study provides a thorough initial analysis of apoptosis gene expression in the postnatal mouse lens and provides a resource for further investigation of the roles in lens development of the apoptosis genes identified. Furthermore, building on the array studies, we present the first spatio-temporal analysis of expression of p53 pathway molecules (p53, Mdm2 and Mdm4/X) in both developing mouse and chick lenses, suggesting a potential role for the p53/Mdm2 pathway in lens development, which merits further functional analysis.
Collapse
Affiliation(s)
- Jenny C. Geatrell
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, Wales CF24 3LU, UK
| | - Peng Mui (Iryn) Gan
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, Wales CF24 3LU, UK
| | - Fiona C. Mansergh
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales CF10 3US, UK
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Lilian Kisiswa
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, Wales CF24 3LU, UK
| | - Miguel Jarrin
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, Wales CF24 3LU, UK
- Mason Eye Institute, One Hospital Drive, Columbia, Columbia University, MO 65212, USA
| | - Llinos A. Williams
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, Wales CF24 3LU, UK
| | - Martin J. Evans
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales CF10 3US, UK
| | - Mike E. Boulton
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, Wales CF24 3LU, UK
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida, USA
| | - Michael A. Wride
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, Wales CF24 3LU, UK
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
48
|
Naidoo N. Cellular stress/the unfolded protein response: relevance to sleep and sleep disorders. Sleep Med Rev 2009; 13:195-204. [PMID: 19329340 PMCID: PMC2964262 DOI: 10.1016/j.smrv.2009.01.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 01/29/2009] [Accepted: 01/30/2009] [Indexed: 10/21/2022]
Abstract
Recent transcript profiling and microarray studies are beginning to unveil some of the mysteries of sleep. One of the most important clues has been the identification of the endoplasmic reticulum (ER) resident chaperone, immunoglobulin binding protein (BiP), that increases with sleep deprivation in all species studied. BiP, an ER resident chaperone, is the key cellular marker and master regulator of a signaling pathway called the ER stress response or unfolded protein response. The ER stress response occurs in 3 phases. It is healthy, protective and adaptive when the ER stress is moderate. Failure of the adaptive response leads to the activation of an inflammatory response. When the ER stress burden is great and prolonged, executioner pathways are activated. Collectively this work provides new evidence that modest sleep deprivation induces cellular stress that activates an adaptive response. Aging tilts the response to sleep deprivation from one that is adaptive and protective to one that is maladaptive. Understanding the pathways activated by sleep loss and the mechanisms by which they occur will allow the development of therapies to protect the brain during prolonged wakefulness and specifically in sleep disorders including those associated with aging.
Collapse
Affiliation(s)
- Nirinjini Naidoo
- University of Pennsylvania School of Medicine, Center for Sleep and Respiratory Neurobiology, Division of Sleep Medicine, 125 South 31st Street, Suite 2100, Philadelphia, PA 19104, USA.
| |
Collapse
|
49
|
Chiang MC, Chen HM, Lai HL, Chen HW, Chou SY, Chen CM, Tsai FJ, Chern Y. The A2A adenosine receptor rescues the urea cycle deficiency of Huntington's disease by enhancing the activity of the ubiquitin-proteasome system. Hum Mol Genet 2009; 18:2929-42. [PMID: 19443488 DOI: 10.1093/hmg/ddp230] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a CAG trinucleotide expansion in the Huntingtin (Htt) gene. The resultant mutant Htt protein (mHtt) forms aggregates in the brain and several peripheral tissues (e.g. the liver) and causes devastating neuronal degeneration. Metabolic defects resulting from Htt aggregates in peripheral tissues also contribute to HD pathogenesis. Simultaneous improvement of defects in both the CNS and peripheral tissues is thus the most effective therapeutic strategy and is highly desirable. We earlier showed that an agonist of the A(2A) adenosine receptor (A(2A) receptor), CGS21680 (CGS), attenuates neuronal symptoms of HD. We found herein that the A(2A) receptor also exists in the liver, and that CGS ameliorated the urea cycle deficiency by reducing mHtt aggregates in the liver. By suppressing aggregate formation, CGS slowed the hijacking of a crucial transcription factor (HSF1) and two protein chaperons (Hsp27 and Hsp70) into hepatic Htt aggregates. Moreover, the abnormally high levels of high-molecular-mass ubiquitin conjugates in the liver of an HD mouse model (R6/2) were also ameliorated by CGS. The protective effect of CGS against mHtt-induced aggregate formation was reproduced in two cells lines and was prevented by an antagonist of the A(2A) receptor and a protein kinase A (PKA) inhibitor. Most importantly, the mHtt-induced suppression of proteasome activity was also normalized by CGS through PKA. Our findings reveal a novel therapeutic pathway of A(2A) receptors in HD and further strengthen the concept that the A(2A) receptor can be a drug target in treating HD.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Hatters DM. Protein misfolding inside cells: the case of huntingtin and Huntington's disease. IUBMB Life 2009; 60:724-8. [PMID: 18756529 DOI: 10.1002/iub.111] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Huntington's disease is one of the several neurodegenerative diseases caused by dominant mutations that expand the number of glutamine codons within an existing poly-glutamine (polyQ) repeat sequence of a gene. An expanded polyQ sequence in the huntingtin gene is known to cause the huntingtin protein to aggregate and form intracellular inclusions as disease progresses. However, the role that polyQ-induced aggregation plays in disease is yet to be fully determined. This review focuses on key questions remaining for how the expanded polyQ sequences affect the aggregation properties of the huntingtin protein and the corresponding effects on cellular machinery. The scope includes the technical challenges that remain for rigorously assessing the effects of aggregation on the cellular machinery.
Collapse
Affiliation(s)
- Danny M Hatters
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|