1
|
Lyu Z, Gong Z, Huang M, Xin S, Zou M, Ding Y. Benefits of exercise on cognitive impairment in alcohol use disorder following alcohol withdrawal. FEBS Open Bio 2024; 14:1540-1558. [PMID: 39054261 PMCID: PMC11492329 DOI: 10.1002/2211-5463.13865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/21/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
Although most cognitive impairments induced by prolonged alcohol consumption tend to improve within the initial months of abstinence, there is evidence suggesting certain cognitive deficits may persist. This study aimed to investigate the impact of aerobic exercise on learning and memory in alcohol use disorder (AUD) mice following a period of abstinence from alcohol. We also sought to assess the levels of monoamine neurotransmitters in the hippocampus. To this end, we established an AUD mouse model through a two-bottle choice (sucrose fading mode and normal mode) and chronic intermittent alcohol vapor (combined with intraperitoneal injection) and randomly allocated mice into exercise groups to undergo treadmill training. Learning and memory abilities were assessed through the Morris water maze test and spontaneous activity was evaluated using the open field test. The levels of dopamine, norepinephrine, serotonin, and brain-derived neurotrophic factor in the hippocampus were quantified using enzyme-linked immunoassay (ELISA) kits. The findings reveal that after cessation of alcohol consumption, learning and memory abilities in AUD mice did not completely return to normal levels. The observed enhancement of cognitive functions in AUD mice through aerobic exercise may be attributed to restoring levels of monoamine neurotransmitters in the hippocampus, boosting brain-derived neurotrophic factor (BDNF) concentrations, and facilitating an increase in hippocampal mass. These results offer empirical evidence to support aerobic exercise as a viable therapeutic strategy to alleviate cognitive deficits associated with AUD.
Collapse
Affiliation(s)
- Zhen Lyu
- Key Lab of Aquatic Sports Training Monitoring and Intervention of General Administration of Sport of China, Faculty of Physical EducationJiangxi Normal UniversityNanchangChina
- School of PsychologyShanghai University of SportChina
| | - Zhi‐Gang Gong
- Key Lab of Aquatic Sports Training Monitoring and Intervention of General Administration of Sport of China, Faculty of Physical EducationJiangxi Normal UniversityNanchangChina
| | - Min‐Xia Huang
- Science and Technology College of Nanchang Hangkong UniversityJiujiangChina
| | - Si‐Ping Xin
- Key Lab of Aquatic Sports Training Monitoring and Intervention of General Administration of Sport of China, Faculty of Physical EducationJiangxi Normal UniversityNanchangChina
| | - Mao‐Zhong Zou
- Key Lab of Aquatic Sports Training Monitoring and Intervention of General Administration of Sport of China, Faculty of Physical EducationJiangxi Normal UniversityNanchangChina
| | - Yu‐Quan Ding
- Key Lab of Aquatic Sports Training Monitoring and Intervention of General Administration of Sport of China, Faculty of Physical EducationJiangxi Normal UniversityNanchangChina
| |
Collapse
|
2
|
Blum K, Ashford JW, Kateb B, Sipple D, Braverman E, Dennen CA, Baron D, Badgaiyan R, Elman I, Cadet JL, Thanos PK, Hanna C, Bowirrat A, Modestino EJ, Yamamoto V, Gupta A, McLaughlin T, Makale M, Gold MS. Dopaminergic dysfunction: Role for genetic & epigenetic testing in the new psychiatry. J Neurol Sci 2023; 453:120809. [PMID: 37774561 DOI: 10.1016/j.jns.2023.120809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/02/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023]
Abstract
Reward Deficiency Syndrome (RDS), particularly linked to addictive disorders, costs billions of dollars globally and has resulted in over one million deaths in the United States (US). Illicit substance use has been steadily rising and in 2021 approximately 21.9% (61.2 million) of individuals living in the US aged 12 or older had used illicit drugs in the past year. However, only 1.5% (4.1 million) of these individuals had received any substance use treatment. This increase in use and failure to adequately treat or provide treatment to these individuals resulted in 106,699 overdose deaths in 2021 and increased in 2022. This article presents an alternative non-pharmaceutical treatment approach tied to gene-guided therapy, the subject of many decades of research. The cornerstone of this paradigm shift is the brain reward circuitry, brain stem physiology, and neurotransmitter deficits due to the effects of genetic and epigenetic insults on the interrelated cascade of neurotransmission and the net release of dopamine at the Ventral Tegmental Area -Nucleus Accumbens (VTA-NAc) reward site. The Genetic Addiction Risk Severity (GARS) test and pro-dopamine regulator nutraceutical KB220 were combined to induce "dopamine homeostasis" across the brain reward circuitry. This article aims to encourage four future actionable items: 1) the neurophysiologically accurate designation of, for example, "Hyperdopameism /Hyperdopameism" to replace the blaming nomenclature like alcoholism; 2) encouraging continued research into the nature of dysfunctional brainstem neurotransmitters across the brain reward circuitry; 3) early identification of people at risk for all RDS behaviors as a brain check (cognitive testing); 4) induction of dopamine homeostasis using "precision behavioral management" along with the coupling of GARS and precision Kb220 variants; 5) utilization of promising potential treatments include neuromodulating modalities such as Transmagnetic stimulation (TMS) and Deep Brain Stimulation(DBS), which target different areas of the neural circuitry involved in addiction and even neuroimmune agents like N-acetyl-cysteine.
Collapse
Affiliation(s)
- Kenneth Blum
- Division of Addiction Research & Education, Center for Exercise, Sports and Mental Health, Western University Health Sciences, Pomona, CA, USA; The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX, USA; Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel.
| | - J Wesson Ashford
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA; War Related Illness & Injury Study Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Babak Kateb
- Brain Mapping Foundation, Los Angeles, CA, USA; National Center for Nanobioelectronic, Los Angeles, CA, USA; Brain Technology and Innovation Park, Los Angeles, CA, USA
| | | | - Eric Braverman
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX, USA
| | - Catherine A Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA, USA
| | - David Baron
- Division of Addiction Research & Education, Center for Exercise, Sports and Mental Health, Western University Health Sciences, Pomona, CA, USA
| | - Rajendra Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, San Antonio, TX, USA; Long School of Medicine, University of Texas Medical Center, San Antonio, TX, USA
| | - Igor Elman
- Center for Pain and the Brain (PAIN Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Waltham, MA, USA; Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH National Institute on Drug Abuse, Bethesda, MD, USA
| | - Panayotis K Thanos
- Department of Psychology & Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Colin Hanna
- Department of Psychology & Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | | | - Vicky Yamamoto
- Brain Mapping Foundation, Los Angeles, CA, USA; National Center for Nanobioelectronic, Los Angeles, CA, USA; Brain Technology and Innovation Park, Los Angeles, CA, USA; Society for Brain Mapping and Therapeutics, Los Angeles, CA, USA; USC-Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | | | - Thomas McLaughlin
- Division of Reward Deficiency Research, Reward Deficiency Syndrome Clinics of America, Austin, TX, USA
| | - Mlan Makale
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Mark S Gold
- Department of Psychiatry, Washington College of Medicine, St. Louis, MO, USA
| |
Collapse
|
3
|
Garcia Guerra S, Spadoni A, Mitchell J, Strigo IA. Pain-related opioidergic and dopaminergic neurotransmission: Dual meta-Analyses of PET radioligand studies. Brain Res 2023; 1805:148268. [PMID: 36754138 PMCID: PMC11018310 DOI: 10.1016/j.brainres.2023.148268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 01/13/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023]
Abstract
Molecular mechanisms of the interaction between opioidergic and dopaminergic processing during pain-related experiences in the human brain are still incompletely understood. This is partially due to the invasive nature of the available techniques to visualize and measure metabolic activity. Positron Emission Tomography (PET) radioligand studies using radioactive substances are still the only available modality to date that allows for the investigation of the molecular mechanisms in the human brain. The most commonly studied PET radiotracers are [11C]-carfentanil (CFN) and [11C]- or [18F]-diprenorphine (DPN), which bind to opioid receptors, and [11C]-raclopride (RAC) and [18F]-fallypride (FAL) tracers, which bind to dopamine receptors. The current meta-analysis examines pain-related studies that used aforementioned opioid and dopamine radioligands in an effort to consolidate the available data into the most likely activated regions. Our primary goal was to identify regions of shared opioid/dopamine neurotransmission during pain-related experiences using within-subject approach. Seed-based d Mapping (SDM) analysis of previously published voxel coordinate data showed that opioidergic activations were strongest in the bilateral caudate, thalamus, right putamen, cingulate gyrus, midbrain, inferior frontal gyrus, and left superior temporal gyrus. The dopaminergic studies showed that the bilateral caudate, thalamus, right putamen, cingulate gyrus, and left putamen had the highest activations. We were able to see a clear overlap between opioid and dopamine activations in a majority of the regions during pain-related experiences, though there were some unique areas of dopaminergic activation such as the left putamen. Regions unique to opioidergic activation included the midbrain, inferior frontal gyrus, and left superior temporal gyrus. Here we provide initial evidence for the functional overlap between opioidergic and dopaminergic processing during aversive states in humans.
Collapse
Affiliation(s)
- Sergio Garcia Guerra
- Research Service, San Francisco Veterans Affairs Health Care Center, 4150 Clement Street, San Francisco, CA 94121, USA; University of California San Francisco, 505 Parnassus Ave, San Francisco, CA 94143, USA
| | - Andrea Spadoni
- Research Service, San Diego Veterans Affairs Health Care Center, USA; University of California San Diego, La Jolla, CA 92093, USA
| | - Jennifer Mitchell
- Research Service, San Francisco Veterans Affairs Health Care Center, 4150 Clement Street, San Francisco, CA 94121, USA; University of California San Francisco, 505 Parnassus Ave, San Francisco, CA 94143, USA
| | - Irina A Strigo
- Research Service, San Francisco Veterans Affairs Health Care Center, 4150 Clement Street, San Francisco, CA 94121, USA; University of California San Francisco, 505 Parnassus Ave, San Francisco, CA 94143, USA.
| |
Collapse
|
4
|
Blum K, McLaughlin T, Bowirrat A, Modestino EJ, Baron D, Gomez LL, Ceccanti M, Braverman ER, Thanos PK, Cadet JL, Elman I, Badgaiyan RD, Jalali R, Green R, Simpatico TA, Gupta A, Gold MS. Reward Deficiency Syndrome (RDS) Surprisingly Is Evolutionary and Found Everywhere: Is It "Blowin' in the Wind"? J Pers Med 2022; 12:321. [PMID: 35207809 PMCID: PMC8875142 DOI: 10.3390/jpm12020321] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/04/2022] Open
Abstract
Reward Deficiency Syndrome (RDS) encompasses many mental health disorders, including a wide range of addictions and compulsive and impulsive behaviors. Described as an octopus of behavioral dysfunction, RDS refers to abnormal behavior caused by a breakdown of the cascade of reward in neurotransmission due to genetic and epigenetic influences. The resultant reward neurotransmission deficiencies interfere with the pleasure derived from satisfying powerful human physiological drives. Epigenetic repair may be possible with precision gene-guided therapy using formulations of KB220, a nutraceutical that has demonstrated pro-dopamine regulatory function in animal and human neuroimaging and clinical trials. Recently, large GWAS studies have revealed a significant dopaminergic gene risk polymorphic allele overlap between depressed and schizophrenic cohorts. A large volume of literature has also identified ADHD, PTSD, and spectrum disorders as having the known neurogenetic and psychological underpinnings of RDS. The hypothesis is that the true phenotype is RDS, and behavioral disorders are endophenotypes. Is it logical to wonder if RDS exists everywhere? Although complex, "the answer is blowin' in the wind," and rather than intangible, RDS may be foundational in species evolution and survival, with an array of many neurotransmitters and polymorphic loci influencing behavioral functionality.
Collapse
Affiliation(s)
- Kenneth Blum
- Division of Addiction Research & Education, Center for Psychiatry, Medicine, & Primary Care (Office of the Provost), Graduate College, Western University of Health Sciences, Pomona, CA 91766, USA;
- Institute of Psychology, ELTE Eötvös Loránd University, 1075 Budapest, Hungary
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
- Department of Psychiatry, University of Vermont, Burlington, VT 05405, USA;
- Department of Psychiatry, Wright University Boonshoff School of Medicine, Dayton, OH 45324, USA
| | | | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | | | - David Baron
- Division of Addiction Research & Education, Center for Psychiatry, Medicine, & Primary Care (Office of the Provost), Graduate College, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Luis Llanos Gomez
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
| | - Mauro Ceccanti
- Alcohol Addiction Program, Latium Region Referral Center, Sapienza University of Rome, 00185 Roma, Italy;
| | - Eric R. Braverman
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY 14203, USA;
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA;
| | - Igor Elman
- Center for Pain and the Brain (PAIN Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA;
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA 02139, USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA;
- Department of Psychiatry, MT. Sinai School of Medicine, New York, NY 10003, USA
| | - Rehan Jalali
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
| | - Richard Green
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
| | | | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA;
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
5
|
Ahn S, Nesbit MO, Zou H, Vacca G, Axerio-Cilies P, Van Sung T, Phillips AG. Neural bases for attenuation of morphine withdrawal by Heantos-4: role of l-tetrahydropalmatine. Sci Rep 2020; 10:21275. [PMID: 33277581 PMCID: PMC7718916 DOI: 10.1038/s41598-020-78083-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/17/2020] [Indexed: 11/24/2022] Open
Abstract
Severe withdrawal symptoms triggered by cessation of long-term opioid use deter many individuals from seeking treatment. Opioid substitution and α2-adrenergic agonists are the current standard of pharmacotherapy for opioid use disorder in western medicine; however, each is associated with significant complications. Heantos-4 is a non-opioid botanical formulation used to facilitate opioid detoxification in Vietnam. While ongoing clinical use continues to validate its safety and effectiveness, a mechanism of action accounting for these promising effects remains to be specified. Here, we assess the effects of Heantos-4 in a rat model of morphine-dependence and present evidence that alleviation of naloxone-precipitated somatic withdrawal signs is related to an upregulation of mesolimbic dopamine activity and a consequent reversal of a hypodopaminergic state in the nucleus accumbens, a brain region implicated in opioid withdrawal. A central dopaminergic mechanism is further supported by the identification of l-tetrahydropalmatine as a key active ingredient in Heantos-4, which crosses the blood–brain barrier and shows a therapeutic efficacy comparable to its parent formulation in attenuating withdrawal signs. The anti-hypodopaminergic effects of l-tetrahydropalmatine may be related to antagonism of the dopamine autoreceptor, thus constituting a plausible mechanism contributing to the effectiveness of Heantos-4 in facilitating opioid detoxification.
Collapse
Affiliation(s)
- Soyon Ahn
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Maya O Nesbit
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Haiyan Zou
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Giada Vacca
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Peter Axerio-Cilies
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Tran Van Sung
- Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Anthony G Phillips
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada.
| |
Collapse
|
6
|
Yee M, Maal-Bared G, Ting-A-Kee R, Chwalek M, Mackay-Clackett I, Bergamini M, Grieder TE, van der Kooy D. Segregation of caffeine reward and aversion in the rat nucleus accumbens shell versus core. Eur J Neurosci 2020; 52:3074-3086. [PMID: 32150654 DOI: 10.1111/ejn.14718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/16/2020] [Accepted: 02/26/2020] [Indexed: 01/05/2023]
Abstract
Caffeine, the most commonly consumed psychoactive drug in the world, is readily available in dietary sources, including soft drinks, chocolate, tea and coffee. However, little is known about the neural substrates that underlie caffeine's rewarding and aversive properties and what ultimately leads us to seek or avoid caffeine consumption. Using male Wistar rats in a place conditioning procedure, we show that systemic caffeine at a low intraperitoneal dose of 2 mg/kg (or 100 µM injected directly into the rostral, but not caudal, portion of the ventral tegmental area) produced conditioned place preferences. By contrast, high doses of systemic caffeine at 10 and 30 mg/kg produced conditioned place aversions. These aversions were not recapitulated by a caffeine analog restricted to the periphery. Both caffeine reward and aversion were blocked by systemic D1-like receptor antagonism using SCH23390, while systemic D2-like receptor antagonism with eticlopride had smaller effects on caffeine motivation. Most important, we demonstrated that pharmacological blockade of dopamine receptors using α-flupenthixol injected into the nucleus accumbens shell, but not core, blocked caffeine-conditioned place preferences. Conversely, α-flupenthixol injected into the nucleus accumbens core, but not shell, blocked caffeine-conditioned place aversions. Thus, our findings reveal two dopamine-dependent and functionally dissociable mechanisms for processing caffeine motivation, which are segregated between nucleus accumbens subregions. These data provide novel evidence for the roles of the nucleus accumbens subregions in mediating approach and avoidance behaviours for caffeine.
Collapse
Affiliation(s)
- Mandy Yee
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Geith Maal-Bared
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Ryan Ting-A-Kee
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Michal Chwalek
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Michael Bergamini
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Taryn E Grieder
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Center for the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Derek van der Kooy
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Glial neuroimmune signaling in opioid reward. Brain Res Bull 2019; 155:102-111. [PMID: 31790721 DOI: 10.1016/j.brainresbull.2019.11.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Abstract
The opioid epidemic is a growing public concern affecting millions of people worldwide. Opioid-induced reward is the initial and key process leading to opioid abuse and addiction. Therefore, a better understanding of opioid reward may be helpful in developing a treatment for opioid addiction. Emerging evidence suggests that glial cells, particularly microglia and astrocytes, play an essential role in modulating opioid reward. Indeed, glial cells and their associated immune signaling actively regulate neural activity and plasticity, and directly modulate opioid-induced rewarding behaviors. In this review, we describe the neuroimmune mechanisms of how glial cells affect synaptic transmission and plasticity as well as how opioids can activate glial cells affecting the glial-neuronal interaction. Last, we summarize current attempts of applying glial modulators in treating opioid reward.
Collapse
|
8
|
Grenier P, Mailhiot MC, Cahill CM, Olmstead MC. Blockade of dopamine D1 receptors in male rats disrupts morphine reward in pain naïve but not in chronic pain states. J Neurosci Res 2019; 100:297-308. [PMID: 31721270 DOI: 10.1002/jnr.24553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/29/2022]
Abstract
The rewarding effect of opiates is mediated through dissociable neural systems in drug naïve and drug-dependent states. Neuroadaptations associated with chronic drug use are similar to those produced by chronic pain, suggesting that opiate reward could also involve distinct mechanisms in chronic pain and pain-naïve states. We tested this hypothesis by examining the effect of dopamine (DA) antagonism on morphine reward in a rat model of neuropathic pain.Neuropathic pain was induced in male Sprague-Dawley rats through chronic constriction (CCI) of the sciatic nerve; reward was assessed in the conditioned place preference (CPP) paradigm in separate groups at early (4-8 days post-surgery) and late (11-15 days post-surgery) phases of neuropathic pain. Minimal effective doses of morphine that produced a CPP in early and late phases of neuropathic pain were 6 mg/kg and 2 mg/kg respectively. The DA D1 receptor antagonist, SCH23390, blocked a morphine CPP in sham, but not CCI, rats at a higher dose (0.5 mg/kg), but had no effect at a lower dose (0.1 mg/kg). The DA D2 receptor antagonist, eticlopride (0.1 and 0.5 mg/kg), had no effect on a morphine CPP in sham or CCI rats, either in early or late phases of neuropathic pain. In the CPP paradigm, morphine reward involves DA D1 mechanisms in pain-naïve but not chronic pain states. This could reflect increased sensitivity to drug effects in pain versus no pain conditions and/or differential mediation of opiate reward in these two states.
Collapse
Affiliation(s)
- Patrick Grenier
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | | | - Catherine M Cahill
- Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Mary C Olmstead
- Department of Psychology, Queen's University, Kingston, ON, Canada.,Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| |
Collapse
|
9
|
Fitoussi A, Zunder J, Tan H, Laviolette SR. Delta-9-tetrahydrocannabinol potentiates fear memory salience through functional modulation of mesolimbic dopaminergic activity states. Eur J Neurosci 2019; 47:1385-1400. [PMID: 29776015 DOI: 10.1111/ejn.13951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/03/2018] [Accepted: 04/12/2018] [Indexed: 01/14/2023]
Abstract
Chronic or acute exposure to delta-9-tetrahydrocannabinol (THC), the main psychoactive compound in cannabis, has been associated with numerous neuropsychiatric side-effects, including dysregulation of emotional processing and associative memory formation. Clinical and preclinical evidence suggests that the effects of THC are due to the ability to modulate mesolimbic dopamine (DA) activity states in the nucleus accumbens (NAc) and ventral tegmental area (VTA). Nevertheless, the mechanisms by which THC modulates mesolimbic DA function and emotional processing are not well understood. Using an olfactory associative fear memory procedure combined with in vivo neuronal electrophysiology, we examined the effects of direct THC microinfusions targeting the shell region of the NAc (NASh) and examined how THC may modulate the processing of fear-related emotional memory and concomitant activity states of the mesolimbic DA system. We report that intra-NASh THC dose-dependently potentiates the emotional salience of normally subthreshold fear conditioning cues. These effects were dependent upon intra-VTA transmission through GABAergic receptor mechanisms and intra-NASh DAergic transmission. Furthermore, doses of intra-NASh THC that potentiated fear memory salience were found to modulate intra-VTA neuronal network activity by increasing the spontaneous firing and bursting frequency of DAergic neurones whilst decreasing the activity levels of a subpopulation of putative GABAergic VTA neurones. These findings demonstrate that THC can act directly in the NASh to modulate mesolimbic activity states and induce disturbances in emotional salience and memory formation through modulation of VTA DAergic transmission.
Collapse
Affiliation(s)
- Aurelie Fitoussi
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Jordan Zunder
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Huibing Tan
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Steven R Laviolette
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
10
|
Stice E, Burger K. Neural vulnerability factors for obesity. Clin Psychol Rev 2019; 68:38-53. [PMID: 30587407 PMCID: PMC6397091 DOI: 10.1016/j.cpr.2018.12.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/05/2018] [Accepted: 12/17/2018] [Indexed: 01/09/2023]
Abstract
Multiple theories identify neural vulnerability factors that may increase risk for overeating and weight gain. Early cross-sectional neuroimaging studies were unable to determine whether aberrant neural responsivity was a risk factor for or a consequence of overeating. More recent obesity risk, prospective, repeated-measures, and experimental neuroimaging studies with humans have advanced knowledge of etiologic processes and neural plasticity resulting from overeating. Herein, we review evidence from these more rigorous human neuroimaging studies, in conjunction with behavioral measures reflecting neural function, as well as experiments with animals that investigated neural vulnerability theories for overeating. Findings provide support for the reward surfeit theory that posits that individuals at risk for obesity initially show hyper-responsivity of reward circuitry to high-calorie food tastes, which theoretically drives elevated intake of such foods. However, findings provide little support for the reward deficit theory that postulates that individuals at risk for obesity show an initial hypo-responsivity of reward circuitry that motives overeating. Further, results provide support for the incentive sensitization and dynamic vulnerability theories that propose that overconsumption of high-calorie foods results in increased reward and attention region responsivity to cues that are associated with hedonic reward from intake of these high-calorie foods via conditioning, as well as a simultaneous decrease in reward region responsivity to high-calorie food tastes. However, there is little evidence that this induced reduction in reward region response to high-calorie food tastes drives an escalation in overeating. Finally, results provide support for the theory that an initial deficit in inhibitory control and a bias for immediate reward contribute to overconsumption of high-calorie foods. Findings imply that interventions that reduce reward and attention region responsivity to food cues and increase inhibitory control should reduce overeating and excessive weight gain, an intervention theory that is receiving support in randomized trials.
Collapse
Affiliation(s)
- Eric Stice
- Oregon Research Institute, Eugene, OR, USA.
| | - Kyle Burger
- University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
11
|
Wenzel JM, Cheer JF. Endocannabinoid Regulation of Reward and Reinforcement through Interaction with Dopamine and Endogenous Opioid Signaling. Neuropsychopharmacology 2018; 43:103-115. [PMID: 28653666 PMCID: PMC5719091 DOI: 10.1038/npp.2017.126] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/01/2017] [Accepted: 06/08/2017] [Indexed: 12/11/2022]
Abstract
The endocannabinoid system (eCB) is implicated in the mediation of both reward and reinforcement. This is evidenced by the ability of exogenous cannabinoid drugs to produce hedonia and maintain self-administration in both human and animal subjects. eCBs similarly facilitate behaviors motivated by reward through interaction with the mesolimbic dopamine (DA) and endogenous opioid systems. Indeed, eCB signaling in the ventral tegmental area stimulates activation of midbrain DA cells and promotes DA release in terminal regions such as the nucleus accumbens (NAc). DA transmission mediates several aspects of reinforced behavior, such as motivation, incentive salience, and cost-benefit calculations. However, much research suggests that endogenous opioid signaling underlies the hedonic aspects of reward. eCBs and their receptors functionally interact with opioid systems within the NAc to support reward, most likely through augmenting DA release. This review explores the interaction of these systems as it relates to reward and reinforcement and examines current literature regarding their role in food reward.
Collapse
Affiliation(s)
- J M Wenzel
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - J F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Anatomy and Neurobiology, Department of Psychiatry, Graduate Program in Neuroscience, University of Maryland School of Medicine, HSF I, Room 280J, 20 Penn Street, Baltimore, MD 21201, USA, Tel: +1 410 7060112, Fax: +1 410 7062512, E-mail:
| |
Collapse
|
12
|
Opiate exposure state controls dopamine D3 receptor and cdk5/calcineurin signaling in the basolateral amygdala during reward and withdrawal aversion memory formation. Prog Neuropsychopharmacol Biol Psychiatry 2017. [PMID: 28627448 DOI: 10.1016/j.pnpbp.2017.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The dopamine (DA) D3 receptor (D3R) is highly expressed in the basolateral nucleus of the amygdala (BLA), a neural region critical for processing opiate-related reward and withdrawal aversion-related memories. Functionally, D3R transmission is linked to downstream Cdk5 and calcineurin signaling, both of which regulate D3R activity states and play critical roles in memory-related synaptic plasticity. Previous evidence links D3R transmission to opiate-related memory processing, however little is known regarding how chronic opiate exposure may alter D3R-dependent memory mechanisms. Using conditioned place preference (CPP) and withdrawal aversion (conditioned place aversion; CPA) procedures in rats, combined with molecular analyses of BLA protein expression, we examined the effects of chronic opiate exposure on the functional role of intra-BLA D3R transmission during the acquisition of opiate reward or withdrawal aversion memories. Remarkably, we report that the state of opiate exposure during behavioural conditioning (opiate-naïve/non-dependent vs. chronically exposed and in withdrawal) controlled the functional role of intra-BLA D3R transmission during the acquisition of both opiate reward memories and withdrawal-aversion associative memories. Thus, whereas intra-BLA D3R blockade had no effect on opiate reward memory formation in the non-dependent state, blockade of intra-BLA D3R transmission prevented the formation of opiate reward and withdrawal aversion memory in the chronically exposed state. This switch in the functional role of D3R transmission corresponded to significant increases in Cdk5 phosphorylation and total expression levels of calcineurin, and a corresponding decrease in intra-BLA D3R expression. Inhibition of either intra-BLA Cdk5 or calcineurin reversed these effects, switching intra-BLA associative memory formation back to a D3R-independent mechanism.
Collapse
|
13
|
Hurtado MM, García R, Puerto A. Tiapride prevents the aversive but not the rewarding effect induced by parabrachial electrical stimulation in a place preference task. Acta Neurobiol Exp (Wars) 2017. [DOI: 10.21307/ane-2017-057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Cahill CM, Walwyn W, Taylor AMW, Pradhan AAA, Evans CJ. Allostatic Mechanisms of Opioid Tolerance Beyond Desensitization and Downregulation. Trends Pharmacol Sci 2016; 37:963-976. [PMID: 27670390 DOI: 10.1016/j.tips.2016.08.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022]
Abstract
Mechanisms of opioid tolerance have focused on adaptive modifications within cells containing opioid receptors, defined here as cellular allostasis, emphasizing regulation of the opioid receptor signalosome. We review additional regulatory and opponent processes involved in behavioral tolerance, and include mechanistic differences both between agonists (agonist bias), and between μ- and δ-opioid receptors. In a process we will refer to as pass-forward allostasis, cells modified directly by opioid drugs impute allostatic changes to downstream circuitry. Because of the broad distribution of opioid systems, every brain cell may be touched by pass-forward allostasis in the opioid-dependent/tolerant state. We will implicate neurons and microglia as interactive contributors to the cumulative allostatic processes creating analgesic and hedonic tolerance to opioid drugs.
Collapse
Affiliation(s)
- Catherine M Cahill
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, 837 Health Sciences Road, Irvine, CA 92697, USA
| | - Wendy Walwyn
- Hatos Center for Neuropharmacology, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 675 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - Anna M W Taylor
- Hatos Center for Neuropharmacology, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 675 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - Amynah A A Pradhan
- Department of Psychiatry, University of Illinois at Chicago, 1601 West Taylor Street, Chicago, IL 60612, USA
| | - Christopher J Evans
- Hatos Center for Neuropharmacology, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 675 Charles E. Young Drive South, Los Angeles, CA 90095, USA.
| |
Collapse
|
15
|
Abstract
Addiction is a disease of altered behavior. Addicts use drugs compulsively and will continue to do so despite negative consequences. Even after prolonged periods of abstinence, addicts are at risk of relapse, particularly when cues evoke memories that are associated with drug use. Rodent models mimic many of the core components of addiction, from the initial drug reinforcement to cue-associated relapse and continued drug intake despite negative consequences. Rodent models have also enabled unprecedented mechanistic insight into addiction, revealing plasticity of glutamatergic synaptic transmission evoked by the strong activation of mesolimbic dopamine-a defining feature of all addictive drugs-as a neural substrate for these drug-adaptive behaviors. Cell type-specific optogenetic manipulations have allowed both identification of the relevant circuits and design of protocols to reverse drug-evoked plasticity and to establish links of causality with drug-adaptive behaviors. The emergence of a circuit model for addiction will open the door for novel therapies, such as deep brain stimulation.
Collapse
Affiliation(s)
- Christian Lüscher
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; .,Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, CH-1211 Geneva, Switzerland
| |
Collapse
|
16
|
Abstract
Theorists have proposed several neural vulnerability factors that may increase overeating and consequent weight gain. Early cross-sectional imaging studies could not determine whether aberrant neural responsivity was a precursor or consequence of overeating. However, recent prospective imaging studies examining predictors of future weight gain and response to obesity treatment, and repeated-measures imaging studies before and after weight gain and loss have advanced knowledge of etiologic processes and neural plasticity resulting from weight change. The present article reviews evidence from prospective studies using imaging and behavioral measures reflecting neural function, as well as randomized experiments with humans and animals that are consistent or inconsistent with 5 neural vulnerability theories for excessive weight gain. Extant data provide strong support for the incentive sensitization theory of obesity and moderate support for the reward surfeit theory, inhibitory control deficit theory, and dynamic vulnerability model of obesity, which attempted to synthesize the former theories into a single etiologic model. However, existing data provide only minimal support for the reward deficit theory. Findings are synthesized into a new working etiologic model that is based on current scientific knowledge. Important directions for future studies, which have the potential to support or refute this working etiologic model, are delineated. (PsycINFO Database Record
Collapse
|
17
|
Abstract
UNLABELLED Treating pain is one of the most difficult challenges in medicine and a key facet of disease management. The isolation of morphine by Friedrich Sertürner in 1804 added an essential pharmacological tool in the treatment of pain and spawned the discovery of a new class of drugs known collectively as opioid analgesics. Revered for their potent pain-relieving effects, even Morpheus the god of dreams could not have dreamt that his opium tincture would be both a gift and a burden to humankind. To date, morphine and other opioids remain essential analgesics for alleviating pain. However, their use is plagued by major side effects, such as analgesic tolerance (diminished pain-relieving effects), hyperalgesia (increased pain sensitivity), and drug dependence. This review highlights recent advances in understanding the key causes of these adverse effects and explores the effect of chronic pain on opioid reward. SIGNIFICANCE STATEMENT Chronic pain is pervasive and afflicts >100 million Americans. Treating pain in these individuals is notoriously difficult and often requires opioids, one of the most powerful and effective classes of drugs used for controlling pain. However, their use is plagued by major side effects, such as a loss of pain-relieving effects (analgesic tolerance), paradoxical pain (hyperalgesia), and addiction. Despite the potential side effects, opioids remain the pharmacological cornerstone of modern pain therapy. This review highlights recent breakthroughs in understanding the key causes of these adverse effects and explores the cellular control of opioid systems in reward and aversion. The findings will challenge traditional views of the good, the bad, and the ugly of opioids.
Collapse
|
18
|
Rosen LG, Sun N, Rushlow W, Laviolette SR. Molecular and neuronal plasticity mechanisms in the amygdala-prefrontal cortical circuit: implications for opiate addiction memory formation. Front Neurosci 2015; 9:399. [PMID: 26594137 PMCID: PMC4633496 DOI: 10.3389/fnins.2015.00399] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/09/2015] [Indexed: 01/23/2023] Open
Abstract
The persistence of associative memories linked to the rewarding properties of drugs of abuse is a core underlying feature of the addiction process. Opiate class drugs in particular, possess potent euphorigenic effects which, when linked to environmental cues, can produce drug-related "trigger" memories that may persist for lengthy periods of time, even during abstinence, in both humans, and other animals. Furthermore, the transitional switch from the drug-naïve, non-dependent state to states of dependence and withdrawal, represents a critical boundary between distinct neuronal and molecular substrates associated with opiate-reward memory formation. Identifying the functional molecular and neuronal mechanisms related to the acquisition, consolidation, recall, and extinction phases of opiate-related reward memories is critical for understanding, and potentially reversing, addiction-related memory plasticity characteristic of compulsive drug-seeking behaviors. The mammalian prefrontal cortex (PFC) and basolateral nucleus of the amygdala (BLA) share important functional and anatomical connections that are involved importantly in the processing of associative memories linked to drug reward. In addition, both regions share interconnections with the mesolimbic pathway's ventral tegmental area (VTA) and nucleus accumbens (NAc) and can modulate dopamine (DA) transmission and neuronal activity associated with drug-related DAergic signaling dynamics. In this review, we will summarize research from both human and animal modeling studies highlighting the importance of neuronal and molecular plasticity mechanisms within this circuitry during critical phases of opiate addiction-related learning and memory processing. Specifically, we will focus on two molecular signaling pathways known to be involved in both drug-related neuroadaptations and in memory-related plasticity mechanisms; the extracellular-signal-regulated kinase system (ERK) and the Ca(2+)/calmodulin-dependent protein kinases (CaMK). Evidence will be reviewed that points to the importance of critical molecular memory switches within the mammalian brain that might mediate the neuropathological adaptations resulting from chronic opiate exposure, dependence, and withdrawal.
Collapse
Affiliation(s)
- Laura G Rosen
- Addiction Research Group, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada ; Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada
| | - Ninglei Sun
- Addiction Research Group, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada ; Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada
| | - Walter Rushlow
- Addiction Research Group, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada ; Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada ; Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada
| | - Steven R Laviolette
- Addiction Research Group, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada ; Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada ; Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada
| |
Collapse
|
19
|
Individual differences in anticipatory activity to food rewards predict cue-induced appetitive 50-kHz calls in rats. Physiol Behav 2015; 149:107-18. [DOI: 10.1016/j.physbeh.2015.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 05/13/2015] [Accepted: 05/15/2015] [Indexed: 12/21/2022]
|
20
|
Tuominen L, Tuulari J, Karlsson H, Hirvonen J, Helin S, Salminen P, Parkkola R, Hietala J, Nuutila P, Nummenmaa L. Aberrant mesolimbic dopamine-opiate interaction in obesity. Neuroimage 2015; 122:80-6. [PMID: 26260431 DOI: 10.1016/j.neuroimage.2015.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/30/2015] [Accepted: 08/02/2015] [Indexed: 01/28/2023] Open
Abstract
Dopamine and opioid neurotransmitter systems share many functions such as regulation of reward and pleasure. μ-Opioid receptors (MOR) modulate the mesolimbic dopamine system in ventral tegmental area and striatum, key areas implicated in reward. We hypothesized that dopamine and opioid receptor availabilities correlate in vivo and that this correlation is altered in obesity, a disease with altered reward processing. Twenty lean females (mean BMI 22) and 25 non-binge eating morbidly obese females (mean BMI 41) underwent two positron emission tomography scans with [(11)C]carfentanil and [(11)C]raclopride to measure the MOR and dopamine D2 receptor (DRD2) availability, respectively. In lean subjects, the MOR and DRD2 availabilities were positively associated in the ventral striatum (r=0.62, p=0.003) and dorsal caudate nucleus (r=0.62, p=0.004). Moreover, DRD2 availability in the ventral striatum was associated with MOR availability in other regions of the reward circuitry, particularly in the ventral tegmental area. In morbidly obese subjects, this receptor interaction was significantly weaker in ventral striatum but unaltered in the caudate nucleus. Finally, the association between DRD2 availability in the ventral striatum and MOR availability in the ventral tegmental area was abolished in the morbidly obese. The study demonstrates a link between DRD2 and MOR availabilities in living human brain. This interaction is selectively disrupted in mesolimbic dopamine system in morbid obesity. We propose that interaction between the dopamine and opioid systems is a prerequisite for normal reward processing and that disrupted cross-talk may underlie altered reward processing in obesity.
Collapse
Affiliation(s)
- Lauri Tuominen
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland; Department of Psychiatry, University of Turku, Kunnallissairaalantie 20, 20700 Turku, Finland.
| | - Jetro Tuulari
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland
| | - Henry Karlsson
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland
| | - Jussi Hirvonen
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland
| | - Semi Helin
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland
| | - Paulina Salminen
- Department of Surgery, Turku University Hospital, 20520 Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, Turku University Hospital and Turku University, Finland
| | - Jarmo Hietala
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland; Department of Psychiatry, University of Turku, Kunnallissairaalantie 20, 20700 Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland
| | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland; Mind Brain Laboratory, Department of Biomedical Engineering and Computational Science (BECS), Aalto University School of Science, 00076 Aalto, Finland; Brain Research Unit (BRU), Low Temperature Laboratory, Aalto University School of Science, 00076 Aalto, Finland
| |
Collapse
|
21
|
Liu C, Fang X, Wu Q, Jin G, Zhen X. Prefrontal cortex gates acute morphine action on dopamine neurons in the ventral tegmental area. Neuropharmacology 2015; 95:299-308. [DOI: 10.1016/j.neuropharm.2015.03.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/28/2015] [Accepted: 03/31/2015] [Indexed: 01/02/2023]
|
22
|
Understanding opioid reward. Trends Neurosci 2015; 38:217-25. [PMID: 25637939 DOI: 10.1016/j.tins.2015.01.002] [Citation(s) in RCA: 262] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/22/2014] [Accepted: 01/01/2015] [Indexed: 11/21/2022]
Abstract
Opioids are the most potent analgesics in clinical use; however, their powerful rewarding properties can lead to addiction. The scientific challenge is to retain analgesic potency while limiting the development of tolerance, dependence, and addiction. Both rewarding and analgesic actions of opioids depend upon actions at the mu opioid (MOP) receptor. Systemic opioid reward requires MOP receptor function in the midbrain ventral tegmental area (VTA) which contains dopaminergic neurons. VTA dopaminergic neurons are implicated in various aspects of reward including reward prediction error, working memory, and incentive salience. It is now clear that subsets of VTA neurons have different pharmacological properties and participate in separate circuits. The degree to which MOP receptor agonists act on different VTA circuits depends upon the behavioral state of the animal, which can be altered by manipulations such as food deprivation or prior exposure to MOP receptor agonists.
Collapse
|
23
|
Abstract
The ventral tegmental area (VTA) is required for the rewarding and motivational actions of opioids and activation of dopamine neurons has been implicated in these effects. The canonical model posits that opioid activation of VTA dopamine neurons is indirect, through inhibition of GABAergic inputs. However, VTA dopamine neurons also express postsynaptic μ-opioid peptide (MOP) receptors. We report here that in Sprague Dawley rat, the MOP receptor-selective agonist DAMGO (0.5-3 μM) depolarized or increased the firing rate of 87 of 451 VTA neurons (including 22 of 110 dopamine neurons). This DAMGO excitation occurs in the presence of GABAA receptor blockade and its EC50 value is two orders of magnitude lower than for presynaptic inhibition of GABA release on to VTA neurons. Consistent with a postsynaptic channel opening, excitations were accompanied by a decrease in input resistance. Excitations were blocked by CdCl2 (100 μM, n = 5) and ω-agatoxin-IVA (100 nM, n = 3), nonselective and Cav2.1 Ca(2+) channel blockers, respectively. DAMGO also produced a postsynaptic inhibition in 233 of 451 VTA neurons, including 45 of 110 dopamine neurons. The mean reversal potential of the inhibitory current was -78 ± 7 mV and inhibitions were blocked by the K(+) channel blocker BaCl2 (100 μM, n = 7). Blockade of either excitation or inhibition unmasked the opposite effect, suggesting that MOP receptors activate concurrent postsynaptic excitatory and inhibitory processes in most VTA neurons. These results provide a novel direct mechanism for MOP receptor control of VTA dopamine neurons.
Collapse
|
24
|
NMDA receptor blockade in the prelimbic cortex activates the mesolimbic system and dopamine-dependent opiate reward signaling. Psychopharmacology (Berl) 2014; 231:4669-79. [PMID: 24871699 DOI: 10.1007/s00213-014-3616-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
Abstract
RATIONALE N-Methyl-D-aspartate (NMDA) receptors in the medial prefrontal cortex (mPFC) are involved in opiate reward processing and modulate sub-cortical dopamine (DA) activity. NMDA receptor blockade in the prelimbic (PLC) division of the mPFC strongly potentiates the rewarding behavioural properties of normally sub-reward threshold doses of opiates. However, the possible functional interactions between cortical NMDA and sub-cortical DAergic motivational neural pathways underlying these effects are not understood. OBJECTIVE This study examines how NMDA receptor modulation in the PLC influences opiate reward processing via interactions with sub-cortical DAergic transmission. We further examined whether direct intra-PLC NMDA receptor modulation may activate DA-dependent opiate reward signaling via interactions with the ventral tegmental area (VTA). METHODS Using an unbiased place conditioning procedure (CPP) in rats, we performed bilateral intra-PLC microinfusions of the competitive NMDA receptor antagonist, (2R)-amino-5-phosphonovaleric acid (AP-5), prior to behavioural morphine place conditioning and challenged the rewarding effects of morphine with DA receptor blockade. We next examined the effects of intra-PLC NMDA receptor blockade on the spontaneous activity patterns of presumptive VTA DA or GABAergic neurons, using single-unit, extracellular in vivo neuronal recordings. RESULTS We show that intra-PLC NMDA receptor blockade strongly activates sub-cortical DA neurons within the VTA while inhibiting presumptive non-DA GABAergic neurons. Behaviourally, NMDA receptor blockade activates a DA-dependent opiate reward system, as pharmacological blockade of DA transmission blocked morphine reward only in the presence of intra-PLC NMDA receptor antagonism. CONCLUSIONS These findings demonstrate a cortical NMDA-mediated mechanism controlling mesolimbic DAergic modulation of opiate reward processing.
Collapse
|
25
|
Sun N, Laviolette SR, Addiction Research Group. Dopamine receptor blockade modulates the rewarding and aversive properties of nicotine via dissociable neuronal activity patterns in the nucleus accumbens. Neuropsychopharmacology 2014; 39:2799-815. [PMID: 24896614 PMCID: PMC4200490 DOI: 10.1038/npp.2014.130] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 11/09/2022]
Abstract
The mesolimbic pathway comprising the ventral tegmental area (VTA) and projection terminals in the nucleus accumbens (NAc) has been identified as a critical neural system involved in processing both the rewarding and aversive behavioral effects of nicotine. Transmission through dopamine (DA) receptors functionally modulates these effects directly within the NAc. Nevertheless, the neuronal mechanisms within the NAc responsible for these bivalent behavioral effects are presently not known. Using an unbiased conditioned place preference procedure combined with in vivo neuronal recordings, we examined the effects of nicotine reward and aversion conditioning on intra-NAc neuronal sub-population activity patterns. We report that intra-VTA doses of nicotine that differentially produce rewarding or aversive behavioral effects produce opposite effects on sub-populations of fast-spiking interneurons (FSIs) or medium spiny neurons (MSNs) within the shell region of the NAc (NAshell). Thus, while the rewarding effects of intra-VTA nicotine were associated with inhibition of FSI and activation of MSNs, the aversive effects of nicotine produced the opposite pattern of NAshell neuronal population activity. Blockade of DA transmission with a broad-spectrum DA receptor antagonist, α-flupenthixol, strongly inhibited the spontaneous activity of NAshell FSIs, and reversed the conditioning properties of intra-VTA nicotine, switching nicotine-conditioned responses from aversive to rewarding. Remarkably, DA receptor blockade switched intra-NAshell neuronal population activity from an aversion to a reward pattern, concomitant with the observed switch in behavioral conditioning effects.
Collapse
Affiliation(s)
- Ninglei Sun
- Department of Anatomy and Cell Biology, The Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Steven R Laviolette
- Department of Anatomy and Cell Biology, The Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada,Department of Psychiatry, The Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada,Department of Psychology, The Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada,Department of Anatomy and Cell Biology, The Schulich School of Medicine and Dentistry, University of Western Ontario, 468 Medical Science Building, London, ON, Canada N6A 5C1, Tel: +1 519 661 2111 ext. 80302, Fax: +1 519 661 3936, E-mail:
| | | |
Collapse
|
26
|
Nikulina EM, Johnston CE, Wang J, Hammer RP. Neurotrophins in the ventral tegmental area: Role in social stress, mood disorders and drug abuse. Neuroscience 2014; 282:122-38. [PMID: 24875178 DOI: 10.1016/j.neuroscience.2014.05.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/04/2014] [Accepted: 05/11/2014] [Indexed: 01/19/2023]
Abstract
This review discusses the impact of neurotrophins and other trophic factors, including fibroblast growth factor and glial cell line-derived neurotrophic factor, on mood disorders, weight regulation and drug abuse, with an emphasis on stress- and drug-induced changes in the ventral tegmental area (VTA). Neurotrophins, comprising nerve growth factor, brain-derived neurotrophic factor (BDNF), and neurotrophins 3 and 4/5 play important roles in neuronal plasticity and the development of different psychopathologies. In the VTA, most research has focused on the role of BDNF, because other neurotrophins are not found there in significant quantities. BDNF originating in the VTA provides trophic support to dopamine neurons. The diverse intracellular signaling pathways activated by BDNF may underlie precise physiological functions specific to the VTA. In general, VTA BDNF expression increases after psychostimulant exposures, and enhanced BDNF level in the VTA facilitates psychostimulant effects. The impact of VTA BDNF on the behavioral effects of psychostimulants relies primarily on its action within the mesocorticolimbic circuit. In the case of opiates, VTA BDNF expression and effects seem to be dependent on whether an animal is drug-naïve or has a history of drug use, only the latter of which is related to dopamine mechanisms. Social defeat stress that is continuous in mice or intermittent in rats increases VTA BDNF expression, and is associated with depressive and social avoidance behaviors. Intermittent social defeat stress induces persistent VTA BDNF expression that triggers psychostimulant cross-sensitization. Understanding the cellular and molecular substrates of neurotrophin effects may lead to novel therapeutic approaches for the prevention and treatment of substance use and mood disorders.
Collapse
Affiliation(s)
- E M Nikulina
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA.
| | - C E Johnston
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA; Interdisciplinary Neuroscience Program, Arizona State University, Tempe, AZ, USA
| | - J Wang
- Interdisciplinary Neuroscience Program, Arizona State University, Tempe, AZ, USA
| | - R P Hammer
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA; Interdisciplinary Neuroscience Program, Arizona State University, Tempe, AZ, USA; Department of Pharmacology and Department of Psychiatry, University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
27
|
De Felice M, Eyde N, Dodick D, Dussor GO, Ossipov MH, Fields HL, Porreca F. Capturing the aversive state of cephalic pain preclinically. Ann Neurol 2013; 74:257-65. [PMID: 23686557 DOI: 10.1002/ana.23922] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/10/2013] [Accepted: 04/19/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Preclinical evaluation of headache by behavioral assessment of reward from pain relief. METHODS Inflammatory mediators (IMs) or control solution were applied to the rat dura mater to elicit a presumed state of cephalic pain. Hind paw incision was used in separate groups of animals to model noncephalic postsurgical pain. Drugs were given systemically or microinjected within the rostral ventromedial medulla (RVM), nucleus accumbens (NAc), or rostral anterior cingulate cortex (rACC). Peripheral nerve block was produced at the level of the popliteal fossa, and behavior was assessed using evoked sensory stimuli or conditioned place preference (CPP). Immunohistochemistry and brain microdialysis measurements were performed. RESULTS Dural IMs produced long-lasting generalized cutaneous allodynia. RVM lidocaine produced CPP, increased NAc c-Fos, and dopamine release selectively in rats receiving dural IMs; CPP was blocked by intra-NAc α-flupenthixol, a dopaminergic antagonist. Intravenous α-calcitonin gene-related peptide (αCGRP)(8-37) produced CPP and elicited NAc dopamine release selectively in rats treated with dural IMs. Prior lesion of the rACC or treatment with systemic sumatriptan or αCGRP(8-37) abolished RVM lidocaine-induced CPP in IM-treated rats. Sumatriptan treatment blocked NAc dopamine release in IM-treated rats receiving RVM lidocaine. Systemic sumatriptan did not alter pain relief-induced CPP in rats with incisional injury. INTERPRETATION Cephalic pain was unmasked in rats by assessment of motivated behavior to seek relief. Relief of pain activates the dopaminergic reward pathway to elicit negative reinforcement of behavior. Medications clinically effective for migraine headache selectively elicit relief of ongoing cephalic, but not postsurgical, noncephalic pain. These studies provide a platform for exploring migraine pathophysiology and for the discovery of new headache therapies.
Collapse
Affiliation(s)
- Milena De Felice
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ
| | | | | | | | | | | | | |
Collapse
|
28
|
Mesoaccumbens dopamine signaling alteration underlies behavioral transition from tolerance to sensitization to morphine rewarding properties during morphine withdrawal. Brain Struct Funct 2013; 219:1755-71. [DOI: 10.1007/s00429-013-0599-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/07/2013] [Indexed: 10/26/2022]
|
29
|
Hutchinson MR, Watkins LR. Why is neuroimmunopharmacology crucial for the future of addiction research? Neuropharmacology 2013; 76 Pt B:218-27. [PMID: 23764149 DOI: 10.1016/j.neuropharm.2013.05.039] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/13/2013] [Accepted: 05/23/2013] [Indexed: 12/13/2022]
Abstract
A major development in drug addiction research in recent years has been the discovery that immune signaling within the central nervous system contributes significantly to mesolimbic dopamine reward signaling induced by drugs of abuse, and hence is involved in the presentation of reward behaviors. Additionally, in the case of opioids, these hypotheses have advanced through to the discovery of the novel site of opioid action at the innate immune pattern recognition receptor Toll-like receptor 4 as the necessary triggering event that engages this reward facilitating central immune signaling. Thus, the hypothesis of major proinflammatory contributions to drug abuse was born. This review will examine these key discoveries, but also address several key lingering questions of how central immune signaling is able to contribute in this fashion to the pharmacodynamics of drugs of abuse. It is hoped that by combining the collective wisdom of neuroscience, immunology and pharmacology, into Neuroimmunopharmacology, we may more fully understanding the neuronal and immune complexities of how drugs of abuse, such as opioids, create their rewarding and addiction states. Such discoveries will point us in the direction such that one day soon we might successfully intervene to successfully treat drug addiction. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Mark R Hutchinson
- Discipline of Physiology, School of Medical Sciences, University of Adelaide, Level 5, Medical School South, Frome Rd, Adelaide, South Australia 5005, Australia.
| | | |
Collapse
|
30
|
Radke AK, Holtz NA, Gewirtz JC, Carroll ME. Reduced emotional signs of opiate withdrawal in rats selectively bred for low (LoS) versus high (HiS) saccharin intake. Psychopharmacology (Berl) 2013; 227:117-26. [PMID: 23254375 PMCID: PMC3624049 DOI: 10.1007/s00213-012-2945-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 12/01/2012] [Indexed: 02/01/2023]
Abstract
RATIONALE Rats bred for high (HiS) and low (LoS) saccharin intake exhibit divergent behavioral responses to multiple drugs of abuse, with HiS rats displaying greater vulnerability to drug taking. Previous research indicates that this effect may be due to increased sensitivity to reward in HiS rats and to the aversive effects of acute drug administration in LoS rats. OBJECTIVE The current study investigated whether HiS and LoS rats also exhibit different behavioral signs of withdrawal following one or repeated opiate exposures. METHODS Emotional signs of opiate withdrawal were assessed with potentiation of the acoustic startle reflex and conditioned place aversion (CPA) in male and female HiS and LoS rats. Startle was measured before and 4 h after a 10-mg/kg injection of morphine on days 1, 2, and 7 of opiate exposure. CPA was induced with a 2-day, naloxone-precipitated conditioning paradigm. Somatic signs of withdrawal and weight loss were also measured. RESULTS Male and female LoS rats exhibited lower startle potentiation than HiS rats on the seventh day of morphine exposure. LoS male rats also failed to develop a CPA to morphine withdrawal. No differences in physical withdrawal signs were observed between HiS and LoS rats, but males of both lines had more physical signs of withdrawal than females. CONCLUSIONS These results suggest that LoS rats are less vulnerable to the negative emotional effects of morphine withdrawal than HiS rats. A less severe withdrawal syndrome may contribute to decreased levels of drug taking in the LoS line.
Collapse
Affiliation(s)
- Anna K. Radke
- Department of Psychiatry, University of Minnesota, Minneapolis, MN 55455, USA
,National Institute of Alcohol Abuse and Alcoholism National Institutes of Health 5625 Fishers Lane Rockville, MD 20852 Phone: 301-443-4052 Fax: 301-480-1952
| | - Nathan A. Holtz
- Department of Psychiatry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jonathan C. Gewirtz
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
,Department of Psychology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marilyn E. Carroll
- Department of Psychiatry, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
31
|
Navratilova E, Xie JY, King T, Porreca F. Evaluation of reward from pain relief. Ann N Y Acad Sci 2013; 1282:1-11. [PMID: 23496247 DOI: 10.1111/nyas.12095] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human experience of pain is multidimensional and comprises sensory, affective, and cognitive dimensions. Preclinical assessment of pain has been largely focused on the sensory features that contribute to nociception. The affective (aversive) qualities of pain are clinically significant but have received relatively less mechanistic investigation in preclinical models. Recently, operant behaviors such as conditioned place preference, avoidance, escape from noxious stimulus, and analgesic drug self-administration have been used in rodents to evaluate affective aspects of pain. An important advance of such operant behaviors is that these approaches may allow the detection and mechanistic investigation of spontaneous neuropathic or ongoing inflammatory/nociceptive (i.e., nonevoked) pain that is otherwise difficult to assess in nonverbal animals. Operant measures may allow the identification of mechanisms that contribute differentially to reflexive hypersensitivity or to pain affect and may inform the decision to progress novel mechanisms to clinical trials for pain therapy. Additionally, operant behaviors may allow investigation of the poorly understood mechanisms and neural circuits underlying motivational aspects of pain and the reward of pain relief.
Collapse
Affiliation(s)
- Edita Navratilova
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | |
Collapse
|
32
|
De Jaeger X, Bishop SF, Ahmad T, Lyons D, Ng GA, Laviolette SR. The effects of AMPA receptor blockade in the prelimbic cortex on systemic and ventral tegmental area opiate reward sensitivity. Psychopharmacology (Berl) 2013; 225:687-95. [PMID: 22972411 DOI: 10.1007/s00213-012-2852-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 08/19/2012] [Indexed: 11/25/2022]
Abstract
RATIONALE The medial prefrontal cortex (mPFC) is a key neural region involved in opiate-related reward memory processing. AMPA receptor transmission in the mPFC modulates opiate-related reward memory processing, and chronic opiate exposure is associated with alterations in intra-mPFC AMPA receptor function. OBJECTIVE The objectives of this study were to examine how pharmacological blockade of AMPA receptor transmission in the prelimbic (PLC) division of the mPFC may modulate opiate reward memory acquisition and whether opiate exposure state may modulate the functional role of intra-PLC AMPA receptor transmission during opiate reward learning. METHODS Using an unbiased conditioned place preference (CPP) procedure in rats, we performed discrete, bilateral intra-PLC microinfusions of the AMPA receptor antagonist, 6,7-dinitroquinoxaline-2,3-dione, prior to behavioral morphine CPP conditioning, using sub-reward threshold conditioning doses of either systemic (0.05 mg/kg; i.p.) or intra-ventral tegmental area (VTA) morphine (250 ng/0.5 μl). RESULTS We show that, in both opiate-naïve and opiate-dependent states, intra-PLC blockade of AMPA receptor transmission, but not the infralimbic cortex, increases the behavioral reward magnitude of systemic or intra-VTA morphine. This effect is dependent on dopamine (DA)ergic signaling because pre-administration of cis-(Z)-flupenthixol-dihydrochloride (α-flu), a broad-spectrum dopamine receptor antagonist, blocked the morphine-reward potentiating effects of AMPA receptor blockade. CONCLUSIONS These findings suggest a critical role for intra-PLC AMPA receptor transmission in the processing of opiate reward signaling. Furthermore, blockade of AMPA transmission specifically within the PLC is capable of switching opiate reward processing to a DA-dependent reward system, independently of previous opiate exposure history.
Collapse
Affiliation(s)
- Xavier De Jaeger
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
33
|
L-theanine inhibits nicotine-induced dependence via regulation of the nicotine acetylcholine receptor-dopamine reward pathway. SCIENCE CHINA-LIFE SCIENCES 2012; 55:1064-74. [DOI: 10.1007/s11427-012-4401-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
|
34
|
Pain relief produces negative reinforcement through activation of mesolimbic reward-valuation circuitry. Proc Natl Acad Sci U S A 2012. [PMID: 23184995 DOI: 10.1073/pnas.1214605109] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Relief of pain is rewarding. Using a model of experimental postsurgical pain we show that blockade of afferent input from the injury with local anesthetic elicits conditioned place preference, activates ventral tegmental dopaminergic cells, and increases dopamine release in the nucleus accumbens. Importantly, place preference is associated with increased activity in midbrain dopaminergic neurons and blocked by dopamine antagonists injected into the nucleus accumbens. The data directly support the hypothesis that relief of pain produces negative reinforcement through activation of the mesolimbic reward-valuation circuitry.
Collapse
|
35
|
Lauzon NM, Bechard M, Ahmad T, Laviolette SR. Supra-normal stimulation of dopamine D1 receptors in the prelimbic cortex blocks behavioral expression of both aversive and rewarding associative memories through a cyclic-AMP-dependent signaling pathway. Neuropharmacology 2012; 67:104-14. [PMID: 23164618 DOI: 10.1016/j.neuropharm.2012.10.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 09/11/2012] [Accepted: 10/06/2012] [Indexed: 11/28/2022]
Abstract
Dopamine (DA) receptor transmission through either D(1) or D(2)-like subtypes is involved critically in the processing of emotional information within the medial prefrontal cortex (mPFC). However the functional role of specific DA D(1)-like receptor transmission in the expression of emotionally salient associative memories (either aversive or rewarding) is not currently understood. Here we demonstrate that specific activation of DA D(1) receptors in the prelimbic (PLC) division of the mPFC causes a transient block in the behavioral expression of both aversive and rewarding associative memories. We report that intra-PLC microinfusions of a selective D(1) receptor agonist block the spontaneous expression of an associative olfactory fear memory, without altering the stability of the original memory trace. Furthermore, using an unbiased place conditioning procedure (CPP), intra-PLC D(1) receptor activation blocks the spontaneous expression of an associative morphine (5 mg/kg; i.p.) reward memory, while leaving morphine-primed memory expression intact. Interestingly, both intra-PLC D(1)-receptor mediated block of either fear-related or reward-related associative memories were dependent upon downstream cyclic-AMP (cAMP) signaling as both effects were rescued by co-administration of a cAMP signaling inhibitor. The blockade of both rewarding and aversive associative memories is mediated through a D(1)-specific signaling pathway, as neither forms of spontaneous memory expression were blocked by intra-PLC microinfusions of a D(2)-like receptor agonist. Our results demonstrate that the spontaneous expression of either rewarding or aversive emotionally salient memories shares a common, D(1)-receptor mediated substrate within the mPFC.
Collapse
Affiliation(s)
- Nicole M Lauzon
- Dept. of Anatomy & Cell Biology, Schulich School of Medicine, University of Western Ontario, London, Ontario, Canada N5Y 5T8
| | | | | | | |
Collapse
|
36
|
Radke AK, Gewirtz JC. Increased dopamine receptor activity in the nucleus accumbens shell ameliorates anxiety during drug withdrawal. Neuropsychopharmacology 2012; 37:2405-15. [PMID: 22692565 PMCID: PMC3442355 DOI: 10.1038/npp.2012.97] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A number of lines of evidence suggest that negative emotional symptoms of withdrawal involve reduced activity in the mesolimbic dopamine system. This study examined the contribution of dopaminergic signaling in structures downstream of the ventral tegmental area to withdrawal from acute morphine exposure, measured as potentiation of the acoustic startle reflex. Systemic administration of the general dopamine receptor agonist apomorphine or a cocktail of the D1-like receptor agonist SKF82958 and the D2-like receptor agonist quinpirole attenuated potentiated startle during morphine withdrawal. This effect was replicated by apomorphine infusion into the nucleus accumbens shell. Finally, apomorphine injection was shown to relieve startle potentiation during nicotine withdrawal and conditioned place aversion to morphine withdrawal. These results suggest that transient activation of the ventral tegmental area mesolimbic dopamine system triggers the expression of anxiety and aversion during withdrawal from multiple classes of abused drugs.
Collapse
Affiliation(s)
- Anna K Radke
- Graduate Program in Neuroscience, Minneapolis, MN, USA
| | - Jonathan C Gewirtz
- Graduate Program in Neuroscience, Minneapolis, MN, USA,Department of Neuroscience, Minneapolis, MN, USA,Department of Psychology, University of Minnesota, Minneapolis, MN, USA,Department of Psychology, University of Minnesota, N-218 Elliott Hall, 75 East River Road, Minneapolis, MN 55455, USA, Tel: +1 612 625 6653, Fax: +1 612 626 2079 E-mail:
| |
Collapse
|
37
|
Hutchinson MR, Northcutt AL, Hiranita T, Wang X, Lewis SS, Thomas J, van Steeg K, Kopajtic TA, Loram LC, Sfregola C, Galer E, Miles NE, Bland ST, Amat J, Rozeske RR, Maslanik T, Chapman TR, Strand KA, Fleshner M, Bachtell RK, Somogyi AA, Yin H, Katz JL, Rice KC, Maier SF, Watkins LR. Opioid activation of toll-like receptor 4 contributes to drug reinforcement. J Neurosci 2012; 32:11187-200. [PMID: 22895704 PMCID: PMC3454463 DOI: 10.1523/jneurosci.0684-12.2012] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 06/14/2012] [Accepted: 06/25/2012] [Indexed: 01/08/2023] Open
Abstract
Opioid action was thought to exert reinforcing effects solely via the initial agonism of opioid receptors. Here, we present evidence for an additional novel contributor to opioid reward: the innate immune pattern-recognition receptor, toll-like receptor 4 (TLR4), and its MyD88-dependent signaling. Blockade of TLR4/MD2 by administration of the nonopioid, unnatural isomer of naloxone, (+)-naloxone (rats), or two independent genetic knock-outs of MyD88-TLR4-dependent signaling (mice), suppressed opioid-induced conditioned place preference. (+)-Naloxone also reduced opioid (remifentanil) self-administration (rats), another commonly used behavioral measure of drug reward. Moreover, pharmacological blockade of morphine-TLR4/MD2 activity potently reduced morphine-induced elevations of extracellular dopamine in rat nucleus accumbens, a region critical for opioid reinforcement. Importantly, opioid-TLR4 actions are not a unidirectional influence on opioid pharmacodynamics, since TLR4(-/-) mice had reduced oxycodone-induced p38 and JNK phosphorylation, while displaying potentiated analgesia. Similar to our recent reports of morphine-TLR4/MD2 binding, here we provide a combination of in silico and biophysical data to support (+)-naloxone and remifentanil binding to TLR4/MD2. Collectively, these data indicate that the actions of opioids at classical opioid receptors, together with their newly identified TLR4/MD2 actions, affect the mesolimbic dopamine system that amplifies opioid-induced elevations in extracellular dopamine levels, therefore possibly explaining altered opioid reward behaviors. Thus, the discovery of TLR4/MD2 recognition of opioids as foreign xenobiotic substances adds to the existing hypothesized neuronal reinforcement mechanisms, identifies a new drug target in TLR4/MD2 for the treatment of addictions, and provides further evidence supporting a role for central proinflammatory immune signaling in drug reward.
Collapse
MESH Headings
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/blood
- Analysis of Variance
- Animals
- Conditioning, Operant/drug effects
- Conditioning, Operant/physiology
- Dopamine/metabolism
- Dose-Response Relationship, Drug
- Drug Administration Routes
- Hyperalgesia/drug therapy
- Hyperalgesia/physiopathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Microdialysis
- Mitogen-Activated Protein Kinase 1/metabolism
- Models, Molecular
- Myeloid Differentiation Factor 88/deficiency
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- Pain Threshold/drug effects
- Pain Threshold/physiology
- Phosphorylation/drug effects
- Protein Binding/drug effects
- Protein Binding/genetics
- Rats
- Rats, Sprague-Dawley
- Reaction Time/drug effects
- Reinforcement, Psychology
- Self Administration
- Signal Transduction/drug effects
- Time Factors
- Toll-Like Receptor 4/agonists
- Toll-Like Receptor 4/deficiency
- Toll-Like Receptor 4/metabolism
Collapse
Affiliation(s)
- M R Hutchinson
- Department of Psychology and Neuroscience, University of Colorado-Boulder, Boulder, Colorado 80309, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Inactivation of the basolateral amygdala during opiate reward learning disinhibits prelimbic cortical neurons and modulates associative memory extinction. Psychopharmacology (Berl) 2012; 222:645-61. [PMID: 22430028 DOI: 10.1007/s00213-012-2665-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 02/07/2012] [Indexed: 11/27/2022]
Abstract
RATIONALE Neurons within the basolateral amygdala (BLA) and prelimbic cortex (PLC) are involved in associative learning during morphine reward memory recall and extinction. However, the nature by which the BLA regulates PLC neuronal encoding of associative opiate reward learning is not presently understood. OBJECTIVE The purpose of this study was to examine the functional effects of reversible inactivation of the BLA on behavioral and neuronal activity patterns in the PLC during either the acquisition or extinction phases of opiate reward memory processing. METHODS Using a combination of in vivo neuronal population recordings in the rat PLC and pharmacological inactivation of the BLA during a place conditioning procedure, we examined the functional impact of BLA inactivation during the acquisition, recall, and extinction of opiate reward memory. RESULTS Inactivation of the BLA caused an increase in the spontaneous firing and bursting activity of PLC neurons. Inactivation of the BLA during the acquisition phase of opiate reward conditioning caused a subsequent acceleration in the extinction of the previously learned opiate reward memory and behavioral aversions to morphine-paired environments. While BLA inactivation during extinction training led to a delay in extinction memory recall. CONCLUSIONS Our findings demonstrate a functional link between the BLA and neuronal populations in the PLC specifically during the acquisition and extinction phases of opiate reward memory and suggest that BLA input to the PLC modulates the processing of opiate-related extinction memory.
Collapse
|
39
|
Identification of rat ventral tegmental area GABAergic neurons. PLoS One 2012; 7:e42365. [PMID: 22860119 PMCID: PMC3409171 DOI: 10.1371/journal.pone.0042365] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 07/06/2012] [Indexed: 12/29/2022] Open
Abstract
The canonical two neuron model of opioid reward posits that mu opioid receptor (MOR) activation produces reward by disinhibiting midbrain ventral tegmental area (VTA) dopamine neurons through inhibition of local GABAergic interneurons. Although indirect evidence supports the neural circuit postulated by this model, its validity has been called into question by growing evidence for VTA neuronal heterogeneity and the recent demonstration that MOR agonists inhibit GABAergic terminals in the VTA arising from extrinsic neurons. In addition, VTA MOR reward can be dopamine-independent. To directly test the assumption that MOR activation directly inhibits local GABAergic neurons, we investigated the properties of rat VTA GABA neurons directly identified with either immunocytochemistry for GABA or GAD65/67, or in situ hybridization for GAD65/67 mRNA. Utilizing co-labeling with an antibody for the neural marker NeuN and in situ hybridization against GAD65/67, we found that 23±3% of VTA neurons are GAD65/67(+). In contrast to the assumptions of the two neuron model, VTA GABAergic neurons are heterogeneous, both physiologically and pharmacologically. Importantly, only 7/13 confirmed VTA GABA neurons were inhibited by the MOR selective agonist DAMGO. Interestingly, all confirmed VTA GABA neurons were insensitive to the GABAB receptor agonist baclofen (0/6 inhibited), while all confirmed dopamine neurons were inhibited (19/19). The heterogeneity of opioid responses we found in VTA GABAergic neurons, and the fact that GABA terminals arising from neurons outside the VTA are inhibited by MOR agonists, make further studies essential to determine the local circuit mechanisms underlying VTA MOR reward.
Collapse
|
40
|
Phasic D1 and tonic D2 dopamine receptor signaling double dissociate the motivational effects of acute nicotine and chronic nicotine withdrawal. Proc Natl Acad Sci U S A 2012; 109:3101-6. [PMID: 22308372 DOI: 10.1073/pnas.1114422109] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nicotine, the main psychoactive ingredient of tobacco smoke, induces negative motivational symptoms during withdrawal that contribute to relapse in dependent individuals. The neurobiological mechanisms underlying how the brain signals nicotine withdrawal remain poorly understood. Using electrophysiological, genetic, pharmacological, and behavioral methods, we demonstrate that tonic but not phasic activity is reduced during nicotine withdrawal in ventral tegmental area dopamine (DA) neurons, and that this pattern of signaling acts through DA D2 and adenosine A2A, but not DA D1, receptors. Selective blockade of phasic DA activity prevents the expression of conditioned place aversions to a single injection of nicotine in nondependent mice, but not to withdrawal from chronic nicotine in dependent mice, suggesting a shift from phasic to tonic dopaminergic mediation of the conditioned motivational response in nicotine dependent and withdrawn animals. Either increasing or decreasing activity at D2 or A2A receptors prevents the aversive motivational response to withdrawal from chronic nicotine, but not to acute nicotine. Modification of D1 receptor activity prevents the aversive response to acute nicotine, but not to nicotine withdrawal. This double dissociation demonstrates that the specific pattern of tonic DA activity at D2 receptors is a key mechanism in signaling the motivational effects experienced during nicotine withdrawal, and may represent a unique target for therapeutic treatments for nicotine addiction.
Collapse
|
41
|
Lintas A, Chi N, Lauzon NM, Bishop SF, Sun N, Tan H, Laviolette SR. Inputs from the basolateral amygdala to the nucleus accumbens shell control opiate reward magnitude via differential dopamine D1 or D2 receptor transmission. Eur J Neurosci 2012; 35:279-90. [PMID: 22236063 DOI: 10.1111/j.1460-9568.2011.07943.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The basolateral amygdala (BLA), ventral tegmental area and nucleus accumbens (NAc) form a functionally connected neural circuit involved in the processing of opiate-related reward and memory. Dopamine (DA) projections from the ventral tegmental area to the BLA modulate associative plasticity mechanisms within the BLA. However, the role of DA receptor signaling in the BLA and its functional outputs to the NAc during opiate reward processing is not currently understood. Using an unbiased place conditioning procedure, we measured the rewarding effects of morphine following intra-BLA microinfusions of specific DA D1 or D2 receptor agonists in either opiate-naive or opiate-dependent/withdrawn rats. Activation of intra-BLA D1 receptors strongly potentiated the behaviorally rewarding effects of opiates, only in the opiate-naive state. However, once opiate dependence and withdrawal occurred, the intra-BLA DA-mediated potentiation of opiate reward salience switched to a D2 receptor-dependent substrate. We next performed single-unit, in-vivo extracellular neuronal recordings in the NAc shell (NA shell), to determine if intra-BLA D1/D2 receptor activation may modulate the NA shell neuronal response patterns to morphine. Consistent with our behavioral results, intra-BLA D1 or D2 receptor activation potentiated NAc 'shell' (NA shell) neuronal responses to sub-reward threshold opiate administration, following the same functional boundary between the opiate-naive and opiate-dependent/withdrawn states. Finally, blockade of N-methyl-d-aspartate transmission within the NA shell blocked intra-BLA DA D1 or D2 receptor-mediated opiate reward potentiation. Our findings demonstrate a novel and functional DA D1/D2 receptor-mediated opiate reward memory switch within the BLA→NA shell circuit that controls opiate reward magnitude as a function of opiate exposure state.
Collapse
Affiliation(s)
- Alessandra Lintas
- Department of Anatomy & Cell Biology, 468 Medical Science Building, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
Sagara H, Araki H, Gomita Y. A New Method for Evaluation of Motivational Effects of Drugs. J Pharmacol Sci 2012; 120:1-5. [DOI: 10.1254/jphs.11r09cp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
43
|
Identification of a dopamine receptor-mediated opiate reward memory switch in the basolateral amygdala-nucleus accumbens circuit. J Neurosci 2011; 31:11172-83. [PMID: 21813678 DOI: 10.1523/jneurosci.1781-11.2011] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The basolateral amygdala (BLA), ventral tegmental area (VTA), and nucleus accumbens (NAc) play central roles in the processing of opiate-related associative reward learning and memory. The BLA receives innervation from dopaminergic fibers originating in the VTA, and both dopamine (DA) D1 and D2 receptors are expressed in this region. Using a combination of in vivo single-unit extracellular recording in the NAc combined with behavioral pharmacology studies, we have identified a double dissociation in the functional roles of DA D1 versus D2 receptor transmission in the BLA, which depends on opiate exposure state; thus, in previously opiate-naive rats, blockade of intra-BLA D1, but not D2, receptor transmission blocked the acquisition of associative opiate reward memory, measured in an unbiased conditioned place preference procedure. In direct contrast, in rats made opiate dependent and conditioned in a state of withdrawal, intra-BLA D2, but not D1, receptor blockade blocked opiate reward encoding. This functional switch was dependent on cAMP signaling as comodulation of intra-BLA cAMP levels reversed or replicated the functional effects of intra-BLA D1 or D2 transmission during opiate reward processing. Single-unit in vivo extracellular recordings performed in neurons of the NAc confirmed an opiate-state-dependent role for BLA D1/D2 transmission in NAc neuronal response patterns to morphine. Our results characterize and identify a novel opiate addiction switching mechanism directly in the BLA that can control the processing of opiate reward information as a direct function of opiate exposure state via D1 or D2 receptor signaling substrates.
Collapse
|
44
|
Radke AK, Rothwell PE, Gewirtz JC. An anatomical basis for opponent process mechanisms of opiate withdrawal. J Neurosci 2011; 31:7533-9. [PMID: 21593338 PMCID: PMC3114886 DOI: 10.1523/jneurosci.0172-11.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 04/11/2011] [Accepted: 04/11/2011] [Indexed: 11/21/2022] Open
Abstract
Opponent process theory predicts that the first step in the induction of drug withdrawal is the activation of reward-related circuitry. Using the acoustic startle reflex as a model of anxiety-like behavior in rats, we show the emergence of a negative affective state during withdrawal after direct infusion of morphine into the ventral tegmental area (VTA), the origin of the mesolimbic dopamine system. Potentiation of startle during withdrawal from systemic morphine exposure requires a decrease in opiate receptor stimulation in the VTA and can be relieved by administration of the dopamine receptor agonist apomorphine. Together, our results suggest that the emergence of anxiety during withdrawal from acute opiate exposure begins with activation of VTA mesolimbic dopamine circuitry, providing a mechanism for the opponent process view of withdrawal.
Collapse
Affiliation(s)
| | | | - Jonathan C. Gewirtz
- Graduate Program in Neuroscience and
- the Departments of Neuroscience and
- Psychology, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
45
|
Sun N, Chi N, Lauzon N, Bishop S, Tan H, Laviolette SR. Acquisition, extinction, and recall of opiate reward memory are signaled by dynamic neuronal activity patterns in the prefrontal cortex. Cereb Cortex 2011; 21:2665-80. [PMID: 21531781 DOI: 10.1093/cercor/bhr031] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The medial prefrontal cortex (mPFC) comprises an important component in the neural circuitry underlying drug-related associative learning and memory processing. Neuronal activation within mPFC circuits is correlated with the recall of opiate-related drug-taking experiences in both humans and other animals. Using an unbiased associative place conditioning procedure, we recorded mPFC neuronal populations during the acquisition, recall, and extinction phases of morphine-related associative learning and memory. Our analyses revealed that mPFC neurons show increased activity both in terms of tonic and phasic activity patterns during the acquisition phase of opiate reward-related memory and demonstrate stimulus-locked associative activity changes in real time, during the recall of opiate reward memories. Interestingly, mPFC neuronal populations demonstrated divergent patterns of bursting activity during the acquisition versus recall phases of newly acquired opiate reward memory, versus the extinction of these memories, with strongly increased bursting during the recall of an extinction memory and no associative bursting during the recall of a newly acquired opiate reward memory. Our results demonstrate that neurons within the mPFC are involved in both the acquisition, recall, and extinction of opiate-related reward memories, showing unique patterns of tonic and phasic activity patterns during these separate components of the opiate-related reward learning and memory recall.
Collapse
Affiliation(s)
- Ninglei Sun
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | | | | | |
Collapse
|
46
|
The cessation and detoxification effect of tea filters on cigarette smoke. SCIENCE CHINA-LIFE SCIENCES 2010; 53:533-41. [DOI: 10.1007/s11427-010-0097-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 03/04/2010] [Indexed: 10/19/2022]
|
47
|
Bishop SF, Lauzon NM, Bechard M, Gholizadeh S, Laviolette SR. NMDA receptor hypofunction in the prelimbic cortex increases sensitivity to the rewarding properties of opiates via dopaminergic and amygdalar substrates. Cereb Cortex 2010; 21:68-80. [PMID: 20392811 DOI: 10.1093/cercor/bhq060] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The medial prefrontal cortex (mPFC) plays a significant role in associative learning and memory formation during the opiate addiction process. Various lines of evidence demonstrate that glutamatergic (GLUT) transmission through the N-methyl D-aspartate (NMDA) receptor can modulate neuronal network activity within the mPFC and influence dopaminergic signaling within the mesocorticolimbic pathway. However, little is known about how modulation of NMDA receptor signaling within the mPFC may regulate associative opiate reward learning and memory formation. Using a conditioned place preference (CPP) procedure, we examined the effects of selective NMDA receptor blockade directly within the prelimbic cortex (PLC) during the acquisition of associative opiate reward learning. NMDA receptor blockade specifically within the PLC caused a strong potentiation in the rewarding effects of either systemic or intra-ventral tegmental area (intra-VTA) morphine administration. This reward potentiation was dose dependently blocked by coadministration of dopamine D1 or D2 receptor antagonists and by blockade of presynaptic GLUT release. In addition, pharmacological inactivation of the basolateral amygdala (BLA) also prevented intra-PLC NMDA receptor blockade-induced potentiation of opiate reward signals, demonstrating a functional interaction between inputs from the VTA and BLA within the PLC, during the encoding and modulation of associative opiate reward information.
Collapse
Affiliation(s)
- Stephanie F Bishop
- Department of Anatomy and Cell Biology, Schulich School of Medicine, University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | |
Collapse
|
48
|
Enoch MA, Hodgkinson CA, Yuan Q, Shen PH, Goldman D, Roy A. The influence of GABRA2, childhood trauma, and their interaction on alcohol, heroin, and cocaine dependence. Biol Psychiatry 2010; 67:20-7. [PMID: 19833324 PMCID: PMC2964936 DOI: 10.1016/j.biopsych.2009.08.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 08/19/2009] [Accepted: 08/20/2009] [Indexed: 12/01/2022]
Abstract
BACKGROUND The GABRA2 gene has been implicated in addiction. Early life stress has been shown to alter GABRA2 expression in adult rodents. We hypothesized that childhood trauma, GABRA2 variation, and their interaction would influence addiction vulnerability. METHODS African-American men were recruited for this study: 577 patients with lifetime DSM-IV single and comorbid diagnoses of alcohol, cocaine, and heroin dependence, and 255 control subjects. The Childhood Trauma Questionnaire (CTQ) was administered. Ten GABRA2 haplotype-tagging single-nucleotide polymorphisms (SNPs) were genotyped. RESULTS We found that exposure to childhood trauma predicted substance dependence (p < .0001). Polysubstance dependence was associated with the highest CTQ scores (p < .0001). The African Americans had four common haplotypes (frequency: .11-.30) within the distal haplotype block: two that correspond to the Caucasian and Asian yin-yang haplotypes, and two not found in other ethnic groups. One of the unique haplotypes predicted heroin addiction, whereas the other haplotype was more common in control subjects and seemed to confer resilience to addiction after exposure to severe childhood trauma. The yin-yang haplotypes had no effects. Moreover, the intron 2 SNP rs11503014, not located in any haplotype block and potentially implicated in exon splicing, was independently associated with addiction, specifically heroin addiction (p < .005). Childhood trauma interacted with rs11503014 variation to influence addiction vulnerability, particularly to cocaine (p < .005). CONCLUSIONS Our results suggest that at least in African-American men, childhood trauma, GABRA2 variation, and their interaction play a role in risk-resilience for substance dependence.
Collapse
Affiliation(s)
- Mary-Anne Enoch
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland 20892-9412, USA.
| | - Colin A Hodgkinson
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Qiaoping Yuan
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Pei-Hong Shen
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Alec Roy
- Psychiatry Service, Department of Veterans Affairs, New Jersey VA Health Care System, East Orange, NJ, USA
| |
Collapse
|
49
|
Tan H, Bishop SF, Lauzon NM, Sun N, Laviolette SR. Chronic nicotine exposure switches the functional role of mesolimbic dopamine transmission in the processing of nicotine's rewarding and aversive effects. Neuropharmacology 2009; 56:741-51. [PMID: 19133278 DOI: 10.1016/j.neuropharm.2008.12.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 12/09/2008] [Accepted: 12/14/2008] [Indexed: 11/30/2022]
Abstract
The mammalian ventral tegmental area (VTA) and associated mesolimbic dopamine (DA) system are critical neural substrates for processing nicotine's motivational effects. Considerable evidence suggests that the role of DA transmission may be altered as a function of nicotine exposure. Using a combination of in vivo neuronal recording and behavioral conditioning, we report that chronic nicotine exposure induces a functional switch in the role of mesolimbic DA transmission. Thus, in nicotine-naive subjects, blockade of DA transmission potentiates the rewarding effects of sub-reward-threshold doses of nicotine and reverses the motivational valence of nicotine from aversive to rewarding. However, in animals treated chronically with nicotine, DA blockade switches previously sub-reward-threshold or rewarding doses of nicotine into aversion signals. Neuronal VTA recordings similarly revealed a functional switch in this DAergic neuronal circuit resulting in strongly increased sensitivity of the VTA DAergic system to nicotine administration and a tonic reduction in the baseline activity of VTA DAergic neurons. These results demonstrate a functional switch in the role of DAergic transmission during the acute versus chronic phases of nicotine exposure and suggest that mesolimbic DA transmission plays qualitatively distinct roles in the processing of nicotine's motivational effects as a function of drug exposure.
Collapse
Affiliation(s)
- Huibing Tan
- Dept. of Anatomy & Cell Biology, The Schulich School of Medicine, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | | | |
Collapse
|
50
|
Vargas-Perez H, Ting-A Kee R, Walton CH, Hansen DM, Razavi R, Clarke L, Bufalino MR, Allison DW, Steffensen SC, van der Kooy D. Ventral tegmental area BDNF induces an opiate-dependent-like reward state in naive rats. Science 2009; 324:1732-4. [PMID: 19478142 PMCID: PMC2913611 DOI: 10.1126/science.1168501] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The neural mechanisms underlying the transition from a drug-nondependent to a drug-dependent state remain elusive. Chronic exposure to drugs has been shown to increase brain-derived neurotrophic factor (BDNF) levels in ventral tegmental area (VTA) neurons. BDNF infusions into the VTA potentiate several behavioral effects of drugs, including psychomotor sensitization and cue-induced drug seeking. We found that a single infusion of BDNF into the VTA promotes a shift from a dopamine-independent to a dopamine-dependent opiate reward system, identical to that seen when an opiate-naïve rat becomes dependent and withdrawn. This shift involves a switch in the gamma-aminobutyric acid type A (GABAA) receptors of VTA GABAergic neurons, from inhibitory to excitatory signaling.
Collapse
Affiliation(s)
- Hector Vargas-Perez
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|