1
|
Sproule E, Connolly MJ, Dhillon A, Gutekunst CA, Gross RE, Devergnas A. Effects of temporal lobe seizures on visual recognition memory in a non-human primate model. Epilepsy Behav 2025; 168:110428. [PMID: 40252526 PMCID: PMC12077998 DOI: 10.1016/j.yebeh.2025.110428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/31/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
Patients with temporal lobe epilepsy frequently report memory impairment, which significantly impacts their quality of life. Several studies have demonstrated an association between temporal lobe epilepsy and memory dysfunction, though the underlying mechanisms remain unclear. This study investigates whether a penicillin-induced temporal lobe seizure model in non-human primates (NHPs) replicates the recognition deficits observed in epileptic patients. We recorded hippocampal activity in three NHPs during a visual paired comparison (VPC) task before and during seizures. The penicillin model induced multiple spontaneous, self-terminating temporal lobe seizures over 4-6 h. Seizures were induced after VPC training, and tasks were performed using an eye-tracking system while the animals were seated with head restraint. During the familiarization phase, novel objects were presented and later paired with a new object after a randomized delay (10 or 60 s). While task success rates did not differ between baseline and seizure conditions, we observed prolonged encoding durations. Further studies are needed to elucidate these findings, but this NHP model of temporal lobe epilepsy may provide critical insights into the relationship between epileptic activity and cognitive impairment.
Collapse
Affiliation(s)
- Ellen Sproule
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Mark J Connolly
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Arushi Dhillon
- Emory College of Arts & Sciences, Emory University, Atlanta, GA 30322, USA
| | - Claire-Anne Gutekunst
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Robert E Gross
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA; Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Annaelle Devergnas
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
2
|
Lupu DI, Cediel Ulloa A, Rüegg J. Endocrine-Disrupting Chemicals and Hippocampal Development: The Role of Estrogen and Androgen Signaling. Neuroendocrinology 2023; 113:1193-1214. [PMID: 37356425 DOI: 10.1159/000531669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 06/06/2023] [Indexed: 06/27/2023]
Abstract
Hormones are important regulators of key processes during fetal brain development. Thus, the developing brain is vulnerable to the action of chemicals that can interfere with endocrine signals. Epidemiological studies have pointed toward sexually dimorphic associations between neurodevelopmental outcomes, such as cognitive abilities, in children and prenatal exposure to endocrine-disrupting chemicals (EDCs). This points toward disruption of sex steroid signaling in the development of neural structures underlying cognitive functions, such as the hippocampus, an essential mediator of learning and memory processes. Indeed, during development, the hippocampus is subjected to the organizational effects of estrogens and androgens, which influence hippocampal cell proliferation, differentiation, dendritic growth, and synaptogenesis in the hippocampal fields of Cornu Ammonis and the dentate gyrus. These early organizational effects correlate with a sexual dimorphism in spatial cognition and are subject to exogenous chemical perturbations. This review summarizes the current knowledge about the organizational effects of estrogens and androgens on the developing hippocampus and the evidence for hippocampal-dependent learning and memory perturbations induced by developmental exposure to EDCs. We conclude that, while it is clear that sex hormone signaling plays a significant role during hippocampal development, a complete picture at the molecular and cellular levels would be needed to establish causative links between the endocrine modes of action exerted by EDCs and the adverse outcomes these chemicals can induce at the organism level.
Collapse
Affiliation(s)
- Diana-Ioana Lupu
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | | | - Joëlle Rüegg
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
EXPLORE: a novel deep learning-based analysis method for exploration behaviour in object recognition tests. Sci Rep 2023; 13:4249. [PMID: 36918658 PMCID: PMC10014875 DOI: 10.1038/s41598-023-31094-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Object recognition tests are widely used in neuroscience to assess memory function in rodents. Despite the experimental simplicity of the task, the interpretation of behavioural features that are counted as object exploration can be complicated. Thus, object exploration is often analysed by manual scoring, which is time-consuming and variable across researchers. Current software using tracking points often lacks precision in capturing complex ethological behaviour. Switching or losing tracking points can bias outcome measures. To overcome these limitations we developed "EXPLORE", a simple, ready-to use and open source pipeline. EXPLORE consists of a convolutional neural network trained in a supervised manner, that extracts features from images and classifies behaviour of rodents near a presented object. EXPLORE achieves human-level accuracy in identifying and scoring exploration behaviour and outperforms commercial software with higher precision, higher versatility and lower time investment, in particular in complex situations. By labeling the respective training data set, users decide by themselves, which types of animal interactions on objects are in- or excluded, ensuring a precise analysis of exploration behaviour. A set of graphical user interfaces (GUIs) provides a beginning-to-end analysis of object recognition tests, accelerating a fast and reproducible data analysis without the need of expertise in programming or deep learning.
Collapse
|
4
|
Rukundo P, Feng T, Pham V, Pieraut S. Moderate effect of early-life experience on dentate gyrus function. Mol Brain 2022; 15:92. [PMID: 36411441 PMCID: PMC9677655 DOI: 10.1186/s13041-022-00980-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/06/2022] [Indexed: 11/22/2022] Open
Abstract
The development, maturation, and plasticity of neural circuits are strongly influenced by experience and the interaction of an individual with their environment can have a long-lasting effect on cognitive function. Using an enriched environment (EE) paradigm, we have recently demonstrated that enhancing social, physical, and sensory activity during the pre-weaning time in mice led to an increase of inhibitory and excitatory synapses in the dentate gyrus (DG) of the hippocampus. The structural plasticity induced by experience may affect information processing in the circuit. The DG performs pattern separation, a computation that enables the encoding of very similar and overlapping inputs into dissimilar outputs. In the presented study, we have tested the hypothesis that an EE in juvenile mice will affect DG's functions that are relevant for pattern separation: the decorrelation of the inputs from the entorhinal cortex (EC) and the recruitment of the principal excitatory granule cell (GC) during behavior. First, using a novel slice electrophysiology protocol, we found that the transformation of the incoming signal from the EC afferents by individual GC is moderately affected by EE. We further show that EE does not affect behaviorally induced recruitment of principal excitatory GC. Lastly, using the novel object recognition task, a hippocampus-dependent memory test, we show that the ontogeny of this discrimination task was similar among the EE mice and the controls. Taken together, our work demonstrates that pre-weaning enrichment moderately affects DG function.
Collapse
Affiliation(s)
- Pacifique Rukundo
- grid.266818.30000 0004 1936 914XDepartment of Biology, University of Nevada, Reno, NV 89557 USA
| | - Ting Feng
- grid.266818.30000 0004 1936 914XDepartment of Biology, University of Nevada, Reno, NV 89557 USA
| | - Vincent Pham
- grid.266818.30000 0004 1936 914XDepartment of Biology, University of Nevada, Reno, NV 89557 USA
| | - Simon Pieraut
- grid.266818.30000 0004 1936 914XDepartment of Biology, University of Nevada, Reno, NV 89557 USA
| |
Collapse
|
5
|
Maurer JJ, Wimmer ME, Turner CA, Herman RJ, Zhang Y, Ragnini K, Ferrante J, Kimmey BA, Crist RC, Christopher Pierce R, Schmidt HD. Paternal nicotine taking elicits heritable sex-specific phenotypes that are mediated by hippocampal Satb2. Mol Psychiatry 2022; 27:3864-3874. [PMID: 35595980 PMCID: PMC9675874 DOI: 10.1038/s41380-022-01622-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 02/08/2023]
Abstract
Nicotine intake, whether through tobacco smoking or e-cigarettes, remains a global health concern. An emerging preclinical literature indicates that parental nicotine exposure produces behavioral, physiological, and molecular changes in subsequent generations. However, the heritable effects of voluntary parental nicotine taking are unknown. Here, we show increased acquisition of nicotine taking in male and female offspring of sires that self-administered nicotine. In contrast, self-administration of sucrose and cocaine were unaltered in male and female offspring suggesting that the intergenerational effects of paternal nicotine taking may be reinforcer specific. Further characterization revealed memory deficits and increased anxiety-like behaviors in drug-naive male, but not female, offspring of nicotine-experienced sires. Using an unbiased, genome-wide approach, we discovered that these phenotypes were associated with decreased expression of Satb2, a transcription factor known to play important roles in synaptic plasticity and memory formation, in the hippocampus of nicotine-sired male offspring. This effect was sex-specific as no changes in Satb2 expression were found in nicotine-sired female offspring. Finally, increasing Satb2 levels in the hippocampus prevented the escalation of nicotine intake and rescued the memory deficits associated with paternal nicotine taking in male offspring. Collectively, these findings indicate that paternal nicotine taking produces heritable sex-specific molecular changes that promote addiction-like phenotypes and memory impairments in male offspring.
Collapse
Affiliation(s)
- John J Maurer
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mathieu E Wimmer
- Department of Psychology, College of Liberal Arts, Temple University, Philadelphia, PA, 19122, USA
| | - Christopher A Turner
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rae J Herman
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yafang Zhang
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kael Ragnini
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julia Ferrante
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Blake A Kimmey
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Richard C Crist
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - R Christopher Pierce
- Brain Health Institute and Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Heath D Schmidt
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Osorio-Gómez D, Guzmán-Ramos K, Bermúdez-Rattoni F. Dopamine activity on the perceptual salience for recognition memory. Front Behav Neurosci 2022; 16:963739. [PMID: 36275849 PMCID: PMC9583835 DOI: 10.3389/fnbeh.2022.963739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
To survive, animals must recognize relevant stimuli and distinguish them from inconspicuous information. Usually, the properties of the stimuli, such as intensity, duration, frequency, and novelty, among others, determine the salience of the stimulus. However, previously learned experiences also facilitate the perception and processing of information to establish their salience. Here, we propose “perceptual salience” to define how memory mediates the integration of inconspicuous stimuli into a relevant memory trace without apparently altering the recognition of the physical attributes or valence, enabling the detection of stimuli changes in future encounters. The sense of familiarity is essential for successful recognition memory; in general, familiarization allows the transition of labeling a stimulus from the novel (salient) to the familiar (non-salient). The novel object recognition (NOR) and object location recognition (OLRM) memory paradigms represent experimental models of recognition memory that allow us to study the neurobiological mechanisms involved in episodic memory. The catecholaminergic system has been of vital interest due to its role in several aspects of recognition memory. This review will discuss the evidence that indicates changes in dopaminergic activity during exposure to novel objects or places, promoting the consolidation and persistence of memory. We will discuss the relationship between dopaminergic activity and perceptual salience of stimuli enabling learning and consolidation processes necessary for the novel-familiar transition. Finally, we will describe the effect of dopaminergic deregulation observed in some pathologies and its impact on recognition memory.
Collapse
Affiliation(s)
- Daniel Osorio-Gómez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico, Mexico
| | - Kioko Guzmán-Ramos
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Estado de México, Mexico
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico, Mexico
- *Correspondence: Federico Bermúdez-Rattoni
| |
Collapse
|
7
|
Hippocampus-Prefrontal Coupling Regulates Recognition Memory for Novelty Discrimination. J Neurosci 2021; 41:9617-9632. [PMID: 34642213 DOI: 10.1523/jneurosci.1202-21.2021] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/05/2021] [Accepted: 09/27/2021] [Indexed: 11/21/2022] Open
Abstract
Recognition memory provides the ability to distinguish familiar from novel objects and places, and is important for recording and updating events to guide appropriate behavior. The hippocampus (HPC) and medial prefrontal cortex (mPFC) have both been implicated in recognition memory, but the nature of HPC-mPFC interactions, and its impact on local circuits in mediating this process is not known. Here we show that novelty discrimination is accompanied with higher theta activity (4-10 Hz) and increased c-Fos expression in both these regions. Moreover, theta oscillations were highly coupled between the HPC and mPFC during recognition memory retrieval for novelty discrimination, with the HPC leading the mPFC, but not during initial learning. Principal neurons and interneurons in the mPFC responded more strongly during recognition memory retrieval compared with learning. Optogenetic silencing of HPC input to the mPFC disrupted coupled theta activity between these two structures, as well as the animals' (male Sprague Dawley rats) ability to differentiate novel from familiar objects. These results reveal a key role of monosynaptic connections between the HPC and mPFC in novelty discrimination via theta coupling and identify neural populations that underlie this recognition memory-guided behavior.SIGNIFICANCE STATEMENT Many memory processes are highly dependent on the interregional communication between the HPC and mPFC via neural oscillations. However, how these two brain regions coordinate their oscillatory activity to engage local neural populations to mediate recognition memory for novelty discrimination is poorly understood. This study revealed that the HPC and mPFC theta oscillations and their temporal coupling is correlated with recognition memory-guided behavior. During novel object recognition, the HPC drives mPFC interneurons to effectively reduce the activity of principal neurons. This study provides the first evidence for the requirement of the HPC-mPFC pathway to mediate recognition memory for novelty discrimination and describes a mechanism for how this memory is regulated.
Collapse
|
8
|
Vezzoli E, Calì C, De Roo M, Ponzoni L, Sogne E, Gagnon N, Francolini M, Braida D, Sala M, Muller D, Falqui A, Magistretti PJ. Ultrastructural Evidence for a Role of Astrocytes and Glycogen-Derived Lactate in Learning-Dependent Synaptic Stabilization. Cereb Cortex 2021; 30:2114-2127. [PMID: 31807747 PMCID: PMC7174989 DOI: 10.1093/cercor/bhz226] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/17/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Long-term memory formation (LTM) is a process accompanied by energy-demanding structural changes at synapses and increased spine density. Concomitant increases in both spine volume and postsynaptic density (PSD) surface area have been suggested but never quantified in vivo by clear-cut experimental evidence. Using novel object recognition in mice as a learning task followed by 3D electron microscopy analysis, we demonstrate that LTM induced all aforementioned synaptic changes, together with an increase in the size of astrocytic glycogen granules, which are a source of lactate for neurons. The selective inhibition of glycogen metabolism in astrocytes impaired learning, affecting all the related synaptic changes. Intrahippocampal administration of l-lactate rescued the behavioral phenotype, along with spine density within 24 hours. Spine dynamics in hippocampal organotypic slices undergoing theta burst-induced long-term potentiation was similarly affected by inhibition of glycogen metabolism and rescued by l-lactate. These results suggest that learning primes astrocytic energy stores and signaling to sustain synaptic plasticity via l-lactate.
Collapse
Affiliation(s)
- E Vezzoli
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia.,Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy.,Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, 20133 Milano, Italy
| | - C Calì
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - M De Roo
- Department of Basic Neuroscience, University of Geneva Medical School, 1206 Geneva, Switzerland
| | - L Ponzoni
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, 20133 Milano, Italy
| | - E Sogne
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - N Gagnon
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - M Francolini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, 20133 Milano, Italy
| | - D Braida
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, 20133 Milano, Italy
| | - M Sala
- CNR, Institute of Neuroscience, 20129 Milano, Italy
| | - D Muller
- Department of Basic Neuroscience, University of Geneva Medical School, 1206 Geneva, Switzerland
| | - A Falqui
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - P J Magistretti
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| |
Collapse
|
9
|
Intellectual Disability and Brain Creatine Deficit: Phenotyping of the Genetic Mouse Model for GAMT Deficiency. Genes (Basel) 2021; 12:genes12081201. [PMID: 34440375 PMCID: PMC8391262 DOI: 10.3390/genes12081201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/17/2022] Open
Abstract
Guanidinoacetate methyltransferase deficiency (GAMT-D) is one of three cerebral creatine (Cr) deficiency syndromes due to pathogenic variants in the GAMT gene (19p13.3). GAMT-D is characterized by the accumulation of guanidinoacetic acid (GAA) and the depletion of Cr, which result in severe global developmental delay (and intellectual disability), movement disorder, and epilepsy. The GAMT knockout (KO) mouse model presents biochemical alterations in bodily fluids, the brain, and muscles, including increased GAA and decreased Cr and creatinine (Crn) levels, which are similar to those observed in humans. At the behavioral level, only limited and mild alterations have been reported, with a large part of analyzed behaviors being unaffected in GAMT KO as compared with wild-type mice. At the cerebral level, decreased Cr and Crn and increased GAA and other guanidine compound levels have been observed. Nevertheless, the effects of Cr deficiency and GAA accumulation on many neurochemical, morphological, and molecular processes have not yet been explored. In this review, we summarize data regarding behavioral and cerebral GAMT KO phenotypes, and focus on uncharted behavioral alterations that are comparable with the clinical symptoms reported in GAMT-D patients, including intellectual disability, poor speech, and autistic-like behaviors, as well as unexplored Cr-induced cerebral alterations.
Collapse
|
10
|
|
11
|
Miranda M, Morici JF, Gallo F, Piromalli Girado D, Weisstaub NV, Bekinschtein P. Molecular mechanisms within the dentate gyrus and the perirhinal cortex interact during discrimination of similar nonspatial memories. Hippocampus 2020; 31:140-155. [PMID: 33064924 DOI: 10.1002/hipo.23269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/29/2020] [Accepted: 09/13/2020] [Indexed: 12/27/2022]
Abstract
Differentiating between similar memories is a crucial cognitive function that enables correct episodic memory formation. The ability to separate the components of memories into distinct representations is thought to rely on a computational process known as pattern separation, by which differences are amplified to disambiguate similar events. Although pattern separation has been localized to the dentate gyrus (DG) of the hippocampus and shown to occur in a spatial domain, this cognitive function takes place also during processing of other types of information. In particular, there is some debate on whether the DG participates in pattern separation of nonspatial representations. Considering the classic role of the Prh in the acquisition and storage of object memories in general and tasks with similar features in particular, this cognitive function could rely more heavily on perirhinal regions when object-related information is processed. Here we show that two plasticity-related proteins, BDNF, and Arc, are required in the DG for nonspatial mnemonic differentiation. Moreover, we found that the crucial role of the DG is transient since activity of AMPAR is only required in the Prh but not the DG during differentiated object memory retrieval. Additionally, this memory is not modifiable by postacquisition rhBDNF infusions in the DG that are known to improve memory when given in the Prh. This highlights a differential role of Prh and DG during differentiated object memory consolidation. Additionally, we found that these molecular mechanisms actively interact in the DG and Prh for the formation of distinguishable memories, with infusions of rhBDNF in the Prh being able to rescue mnemonic deficits caused by reduced Arc expression in the DG. These results reveal a complex interaction between plasticity mechanisms in the Prh and DG for nonspatial pattern separation and posit the Prh as the key structure where unique object representations are stored.
Collapse
Affiliation(s)
- Magdalena Miranda
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, CONICET-Fundación INECO-Universidad Favaloro, Solís 453, Buenos Aires, 1071, Argentina
| | - Juan Facundo Morici
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, CONICET-Fundación INECO-Universidad Favaloro, Solís 453, Buenos Aires, 1071, Argentina
| | - Francisco Gallo
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, CONICET-Fundación INECO-Universidad Favaloro, Solís 453, Buenos Aires, 1071, Argentina
| | - Dinka Piromalli Girado
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, CONICET-Fundación INECO-Universidad Favaloro, Solís 453, Buenos Aires, 1071, Argentina
| | - Noelia V Weisstaub
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, CONICET-Fundación INECO-Universidad Favaloro, Solís 453, Buenos Aires, 1071, Argentina
| | - Pedro Bekinschtein
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, CONICET-Fundación INECO-Universidad Favaloro, Solís 453, Buenos Aires, 1071, Argentina
| |
Collapse
|
12
|
Sasaki-Hamada S, Hojyo Y, Mizumoto R, Koyama H, Yanagisawa S, Oka JI. Cognitive and hippocampal synaptic profiles in monosodium glutamate-induced obese mice. Neurosci Res 2020; 170:201-207. [PMID: 32949668 DOI: 10.1016/j.neures.2020.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/06/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
Abstract
Obesity is a growing worldwide public health issue and is associated with a range of comorbidities, including cognitive deficits. The present study investigated synaptic changes in the hippocampus during the development of obesity. The treatment of newborn mice with monosodium-L-glutamate (MSG, 2 mg/g) induced obesity and recognition memory deficits in the novel object recognition (NOR) test at 16-17 weeks, but not at 8-9 weeks. Hippocampal synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD), and excitatory synaptic transmission at Schaffer collateral-CA1 (SC-CA1) synapses were compared between MSG-treated mice and age-matched control mice. LTP and fiber volley amplitudes were enhanced in MSG-treated mice at 16-17 weeks, but not at 8-9 weeks. Furthermore, the strength of paired-pulse facilitation (PPF) changed in MSG-treated mice at 16-17 weeks, but not at 8-9 weeks. These results suggest that enhanced LTP in the SC-CA1 synapses of MSG-induced obese mice involves presynaptic rather than postsynaptic mechanisms.
Collapse
Affiliation(s)
- Sachie Sasaki-Hamada
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara 252-0373, Japan
| | - Yuki Hojyo
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Ryo Mizumoto
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hajime Koyama
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shoko Yanagisawa
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Jun-Ichiro Oka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
13
|
Aggleton JP, Nelson AJD. Distributed interactive brain circuits for object-in-place memory: A place for time? Brain Neurosci Adv 2020; 4:2398212820933471. [PMID: 32954003 PMCID: PMC7479857 DOI: 10.1177/2398212820933471] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/15/2020] [Indexed: 12/23/2022] Open
Abstract
Rodents will spontaneously learn the location of an individual object, an
ability captured by the object-in-place test. This review considers
the network of structures supporting this behavioural test, as well as
some potential confounds that may affect interpretation. A
hierarchical approach is adopted, as we first consider those brain
regions necessary for two simpler, ‘precursor’ tests (object
recognition and object location). It is evident that performing the
object-in-place test requires an array of areas additional to those
required for object recognition or object location. These additional
areas include the rodent medial prefrontal cortex and two thalamic
nuclei (nucleus reuniens and the medial dorsal nucleus), both densely
interconnected with prefrontal areas. Consequently, despite the need
for object and location information to be integrated for the
object-in-place test, for example, via the hippocampus, other
contributions are necessary. These contributions stem from how
object-in-place is a test of associative recognition, as none of the
individual elements in the test phase are novel. Parallels between the
structures required for object-in-place and for recency
discriminations, along with a re-examination of the demands of the
object-in-place test, signal the integration of temporal information
within what is usually regarded as a spatial-object test.
Collapse
Affiliation(s)
- John P Aggleton
- School of Psychology, Cardiff University, Cardiff, Wales, UK
| | | |
Collapse
|
14
|
Developmental onset distinguishes three types of spontaneous recognition memory in mice. Sci Rep 2020; 10:10612. [PMID: 32606443 PMCID: PMC7326931 DOI: 10.1038/s41598-020-67619-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/09/2020] [Indexed: 11/20/2022] Open
Abstract
Spontaneous recognition memory tasks build on an animal’s natural preference for novelty to assess the what, where and when components of episodic memory. Their simplicity, ethological relevance and cross-species adaptability make them extremely useful to study the physiology and pathology of memory. Recognition memory deficits are common in rodent models of neurodevelopmental disorders, and yet very little is known about the expression of spontaneous recognition memory in young rodents. This is exacerbated by the paucity of data on the developmental onset of recognition memory in mice, a major animal model of disease. To address this, we characterized the ontogeny of three types of spontaneous recognition memory in mice: object location, novel object recognition and temporal order recognition. We found that object location is the first to emerge, at postnatal day (P)21. This was followed by novel object recognition (24 h delay), at P25. Temporal order recognition was the last to emerge, at P28. Elucidating the developmental expression of recognition memory in mice is critical to improving our understanding of the ontogeny of episodic memory, and establishes a necessary blueprint to apply these tasks to probe cognitive deficits at clinically relevant time points in animal models of developmental disorders.
Collapse
|
15
|
Welbat JU, Naewla S, Pannangrong W, Sirichoat A, Aranarochana A, Wigmore P. Neuroprotective effects of hesperidin against methotrexate-induced changes in neurogenesis and oxidative stress in the adult rat. Biochem Pharmacol 2020; 178:114083. [PMID: 32522593 DOI: 10.1016/j.bcp.2020.114083] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023]
Abstract
Methotrexate (MTX) induces the formation of reactive oxygen species (ROS) and leads to neurotoxicity. The drug also negatively impacts neurogenesis and memory. Hesperidin (Hsd) is a major flavanoid with multiple beneficial pharmacological effects such as anti-oxidation, anti-inflammation, and neuroprotective effects. The aim of our study was to investigate the neuroprotective effects of Hsd against MTX-induced alterations in oxidative stress and neurogenesis. Sprague Dawley rats were divided into four groups: 1) a vehicle group, which received saline and propylene glycol, 2) an Hsd group, which was orally administered with Hsd (100 mg/kg) for 21 days, 3) an MTX group, which received MTX (75 mg/kg) by intravenous injection on days 8 and 15, and 4) an MTX + Hsd group, which received both MTX and Hsd. After treatment with MTX, p21-positive cells had increased significantly and doublecortin (DCX) expression in the hippocampus had decreased significantly. Treatment with MTX also increased malondialdehyde (MDA) in both the hippocampus and prefrontal cortex and decreased levels of brain-derived neurotropic factor (BDNF) and nuclear factor erythroid 2-related factor 2 (Nrf2) in the hippocampus and prefrontal cortex. Additionally, there were significant decreases in superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) in the hippocampus and prefrontal cortex in the MTX group. However, co-treatment with Hsd ameliorated the negative effects of MTX on neurogenesis, oxidative stress, and antioxidant enzymes. These findings suggest that Hsd may be able to prevent neurotoxic effects of MTX by reducing oxidative stress and enhancing hippocampal neurogenesis.
Collapse
Affiliation(s)
- Jariya Umka Welbat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neuroscience Research and Development Group, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Salinee Naewla
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wanassanan Pannangrong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Apiwat Sirichoat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anusara Aranarochana
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Peter Wigmore
- School of Life Sciences, Medical School, Queen's Medical Centre, Nottingham University, Nottingham, United Kingdom
| |
Collapse
|
16
|
Sun Q, Li X, Li A, Zhang J, Ding Z, Gong H, Luo Q. Ventral Hippocampal-Prefrontal Interaction Affects Social Behavior via Parvalbumin Positive Neurons in the Medial Prefrontal Cortex. iScience 2020; 23:100894. [PMID: 32092698 PMCID: PMC7038035 DOI: 10.1016/j.isci.2020.100894] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 09/23/2019] [Accepted: 02/04/2020] [Indexed: 11/24/2022] Open
Abstract
Ventral hippocampus (vHIP) and medial prefrontal cortex (mPFC) are both critical regions for social behaviors. However, how their interactions affect social behavior is not well understood. By viral tracing, optogenetics, chemogenetics, and fiber photometry, we demonstrated that inhibition of vHIP or direct projections from vHIP to mPFC impaired social memory expression. Via rabies retrograde tracing, we found that all three major GABAergic neurons in mPFC received direct inputs from vHIP. Activation of parvalbumin positive (PV+) neurons in mPFC but not somatostatin positive (SST+) neurons can rescue the social memory impairment caused by vHIP inhibition. Furthermore, fiber photometry results demonstrated that social behaviors preferentially recruited PV+ neurons and inhibition of hippocampal neurons disrupted the activity of PV+ neurons during social interactions. These results revealed a new mechanism of how vHIP and mPFC regulate social behavior in complementarity with the existing neural circuitry mechanism. Inhibition of vHIP or direct vHIP-mPFC pathway disrupts social memory expression Social behaviors preferentially recruit PV+ neurons in mPFC Activation of PV+ neurons in mPFC rescue the vHIP-related impairment of social memory Inhibition of VIP+ neurons in mPFC rescue the vHIP-related impairment of social memory
Collapse
Affiliation(s)
- Qingtao Sun
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiangning Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou 215125, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou 215125, China
| | - Jianping Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhangheng Ding
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou 215125, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou 215125, China.
| |
Collapse
|
17
|
Assessing object-recognition memory in rats: Pitfalls of the existent tasks and the advantages of a new test. Learn Behav 2020; 47:141-155. [PMID: 30132280 DOI: 10.3758/s13420-018-0347-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Studies of object-recognition memory in lab rats began in the late 1980s, using variants of the trial-unique delayed nonmatching-to-sample (DNMS) task. By the end of the 20th century, most investigators who wanted to study object-recognition in rodents had abandoned the DNMS task in favor of the novel-object-preference (NOP) test, mainly because the latter test is relatively easy to employ, whereas conventional DNMS tasks are not. Some concerns have been raised, however, about the internal validity of the NOP test as a method of measuring object-recognition abilities. We describe two experiments using a new DNMS procedure which requires considerably less training than the DNMS tasks of the 1980s and 1990s, and which cannot be subject to the same criticisms that have been leveled at the NOP test. In Experiment 1, rats were trained on the new modified-DNMS (mDNMS) task using short delays. Rats successfully learned the nonmatching rule in fewer than 25 trials, and they made accurate choices with retention intervals of up to 10 min. Experiment 2 examined a different group of rats' performance on the mDNMS task following long retention intervals (72 h, 3 weeks, and ~45 weeks). Rats made accurate choices on all retention intervals, even the longest retention interval of ~45 weeks. Overall, the findings demonstrate some benefits of an alternative approach to assess object-recognition memory in rats.
Collapse
|
18
|
Effects of perirhinal cortex and hippocampal lesions on rats' performance on two object-recognition tasks. Behav Brain Res 2019; 381:112450. [PMID: 31877339 DOI: 10.1016/j.bbr.2019.112450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 12/16/2022]
Abstract
The effects of hippocampal (HPC) damage on rats' novel object preference (NOP) performance have been rather consistent, in that HPC lesions do not disrupt novelty preferences on the test. Conversely, there have been inconsistent findings regarding the effects of perirhinal cortex (PRh) lesions on rats' novel-object preferences. Given the concerns that have been raised regarding the internal validity of the NOP test, viz. that the magnitude of the novel-object preference does not necessarily reflect the strength in memory for an object, it could explain the discrepant findings. The goal of the present experiment was to examine the effects of PRh and HPC lesions on rats' object-recognition memory using a new modified delayed nonmatching-to-sample (mDNMS) task, as it circumvents the interpretational problems associated with the NOP test. Rats received PRh, HPC, or Sham lesions and were trained on the mDNMS task using a short delay (∼30 s). Both PRh and HPC rats acquired the task at the same rate as Sham rats, and reached a similar level of accuracy, indicating intact object-recognition. Thereafter, rats were tested on the NOP test using a 180-s delay. Rats with HPC lesions exhibited significant novel-object preferences, however, both the PRh and Sham rats failed to show a novelty preference. The discrepancy in both the PRh and Sham rats' performance on the mDNMS task and NOP test raises concerns regarding the internal validity of the NOP test, in that the magnitude of a rat's novel-object preference does not accurately reflect the persistence or accuracy of a rat's memory for the sample object.
Collapse
|
19
|
Preconception maternal cocaine self-administration increases the reinforcing efficacy of cocaine in male offspring. Psychopharmacology (Berl) 2019; 236:3429-3437. [PMID: 31236644 PMCID: PMC6895412 DOI: 10.1007/s00213-019-05307-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/18/2019] [Indexed: 02/06/2023]
Abstract
RATIONALE Although the influence of gestational cocaine exposure on offspring has been the focus of a sustained research effort, the effect of preconception cocaine self-administration by dams on progeny has received far less attention. METHOD In the current study, adult female rats were allowed to self-administer cocaine 2 h a day for 60 days and then after a 10-day wash out period, bred to naïve males. Maternal behavior was measured in dams until weaning. When male and female progeny reached adulthood, anxiety-like behavior, memory, and cocaine self-administration were assessed in separate cohorts of rats. RESULTS Despite a total of at least 30 days of cocaine abstinence, the quality of maternal behaviors was negatively affected by previous cocaine exposure as reflected by less time spent with pups as well as an excess of other maladaptive maternal behaviors. Measures of anxiety-like behavior and memory were not affected by maternal cocaine intake in either male or female offspring. In contrast, male, but not female, the progeny of dams exposed to cocaine showed increased reinforcing efficacy of cocaine as measured by cocaine self-administration under a progressive ratio schedule. The fact that cocaine self-administration was influenced only in the male offspring of cocaine-exposed dams argues against this phenotype being linked to altered maternal behavior, although this possibility cannot be ruled out completely. CONCLUSIONS Collectively, these results indicate that preconception cocaine self-administration by dams results in the relatively selective enhancement of cocaine addiction-like behavior in male offspring.
Collapse
|
20
|
Kim EJ, Kim JJ. Amygdala, Medial Prefrontal Cortex and Glucocorticoid Interactions Produce Stress-Like Effects on Memory. Front Behav Neurosci 2019; 13:210. [PMID: 31619974 PMCID: PMC6759673 DOI: 10.3389/fnbeh.2019.00210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/29/2019] [Indexed: 11/17/2022] Open
Abstract
Adverse stress effects on the hippocampal memory system are generally thought to be due to the high level of circulating glucocorticoids directly modifying the properties of hippocampal neurons and, accordingly, the results should be reproducible with exogenous administration of cortisol in humans and corticosterone in rodents. However, glucocorticoid levels increased to other events, such as exercise and environment enrichment, do not impair but instead enhance hippocampal memory, indicating that cortisol/corticosterone are not invariant causal factors of stress. To better model the complex psychophysiological attributes of stress (i.e., aversiveness, lack of controllability, and glucose metabolism), we examined the functions of the amygdala, medial prefrontal cortex (mPFC), and corticosterone on a hippocampal-based one-trial novel object recognition (OR) memory task in rats. Specifically, animals were subjected to amygdala stimulation, mPFC inactivation, and corticosterone treatments separately or in combination during behavioral testing. Collective amygdala, mPFC, and corticosterone manipulations significantly impaired OR memory comparable to behavioral stress. By contrast, single and dual treatments failed to reliably decrease memory functioning. These results suggest that negative mnemonic impacts of uncontrollable stress involve the amalgamation of heightened amygdala and diminished mPFC activities, and elevated circulating corticosterone level.
Collapse
Affiliation(s)
- Eun Joo Kim
- Department of Psychology, University of Washington, Seattle, WA, United States
| | - Jeansok J Kim
- Department of Psychology, University of Washington, Seattle, WA, United States.,Program in Neuroscience, University of Washington, Seattle, WA, United States
| |
Collapse
|
21
|
Ishida K, Yamamoto M, Misawa K, Nishimura H, Misawa K, Ota N, Shimotoyodome A. Coffee polyphenols prevent cognitive dysfunction and suppress amyloid β plaques in APP/PS2 transgenic mouse. Neurosci Res 2019; 154:35-44. [PMID: 31121203 DOI: 10.1016/j.neures.2019.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/26/2019] [Accepted: 05/09/2019] [Indexed: 12/31/2022]
Abstract
Epidemiological studies have found that habitual coffee consumption may reduce the risk of Alzheimer's disease. Coffee contains numerous phenolic compounds (coffee polyphenols) such as chlorogenic acids. However, evidence demonstrating the contribution of chlorogenic acids to the prevention of cognitive dysfunction induced by Alzheimer's disease is limited. The present study investigated the effect of chlorogenic acids on the prevention of cognitive dysfunction in APP/PS2 transgenic mouse model of Alzheimer's disease. Five-week-old APP/PS2 mice were administered a diet supplemented with coffee polyphenols daily for 5 months. The memory and cognitive function of mice was determined using the novel object recognition test, Morris water maze test, and the step-through passive avoidance test. Immunohistochemical analysis revealed that chronic treatment with coffee polyphenols prevented cognitive dysfunction and significantly reduced the amount of amyloid β (Aβ) plaques in the hippocampus. Furthermore, we determined that 5-caffeoylquinic acid, one of the primary coffee polyphenols, did not inhibit Aβ fibrillation; however, degraded Aβ fibrils. In conclusion, our results demonstrate that coffee polyphenols prevent cognitive deficits and reduce Aβ plaque deposition via disaggregation of Aβ in the APP/PS2 mouse.
Collapse
Affiliation(s)
- Keiko Ishida
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan.
| | - Masaki Yamamoto
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan.
| | - Kensuke Misawa
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan.
| | - Hitomi Nishimura
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan.
| | - Koichi Misawa
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan.
| | - Noriyasu Ota
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan.
| | - Akira Shimotoyodome
- Health Care Food Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida, Tokyo, 131-8501, Japan.
| |
Collapse
|
22
|
Van Zandt M, Weiss E, Almyasheva A, Lipior S, Maisel S, Naegele JR. Adeno-associated viral overexpression of neuroligin 2 in the mouse hippocampus enhances GABAergic synapses and impairs hippocampal-dependent behaviors. Behav Brain Res 2018; 362:7-20. [PMID: 30605713 DOI: 10.1016/j.bbr.2018.12.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/14/2018] [Accepted: 12/29/2018] [Indexed: 10/27/2022]
Abstract
The cell adhesion molecule neuroligin2 (NLGN2) regulates GABAergic synapse development, but its role in neural circuit function in the adult hippocampus is unclear. We investigated GABAergic synapses and hippocampus-dependent behaviors following viral-vector-mediated overexpression of NLGN2. Transducing hippocampal neurons with AAV-NLGN2 increased neuronal expression of NLGN2 and membrane localization of GABAergic postsynaptic proteins gephyrin and GABAARγ2, and presynaptic vesicular GABA transporter protein (VGAT) suggesting trans-synaptic enhancement of GABAergic synapses. In contrast, glutamatergic postsynaptic density protein-95 (PSD-95) and presynaptic vesicular glutamate transporter (VGLUT) protein were unaltered. Moreover, AAV-NLGN2 significantly increased parvalbumin immunoreactive (PV+) synaptic boutons co-localized with postsynaptic gephyrin+ puncta. Furthermore, these changes were demonstrated to lead to cognitive impairments as shown in a battery of hippocampal-dependent mnemonic tasks and social behaviors.
Collapse
Affiliation(s)
- M Van Zandt
- Wesleyan University, Department of Biology, Program in Neuroscience and Behavior, Middletown, CT, United States
| | - E Weiss
- Wesleyan University, Department of Biology, Program in Neuroscience and Behavior, Middletown, CT, United States
| | - A Almyasheva
- Wesleyan University, Department of Biology, Program in Neuroscience and Behavior, Middletown, CT, United States
| | - S Lipior
- Wesleyan University, Department of Biology, Program in Neuroscience and Behavior, Middletown, CT, United States
| | - S Maisel
- Wesleyan University, Department of Biology, Program in Neuroscience and Behavior, Middletown, CT, United States
| | - J R Naegele
- Wesleyan University, Department of Biology, Program in Neuroscience and Behavior, Middletown, CT, United States.
| |
Collapse
|
23
|
Das T, Hwang JJ, Poston KL. Episodic recognition memory and the hippocampus in Parkinson's disease: A review. Cortex 2018; 113:191-209. [PMID: 30660957 DOI: 10.1016/j.cortex.2018.11.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 10/02/2018] [Accepted: 11/15/2018] [Indexed: 01/09/2023]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder of aging. The hallmark pathophysiology includes the development of neuronal Lewy bodies in the substantia nigra of the midbrain with subsequent loss of dopaminergic neurons. These neuronal losses lead to the characteristic motor symptoms of bradykinesia, rigidity, and rest tremor. In addition to these cardinal motor symptoms patients with PD experience a wide range of non-motor symptoms, the most important being cognitive impairments that in many circumstances lead to dementia. People with PD experience a wide range of cognitive impairments; in this review we will focus on memory impairment in PD and specifically episodic memory, which are memories of day-to-day events of life. Importantly, these memory impairments severely impact the lives of patients and caregivers alike. Traditionally episodic memory is considered to be markedly dependent on the hippocampus; therefore, it is important to understand the exact nature of PD episodic memory deficits in relation to hippocampal function and dysfunction. In this review, we discuss an aspect of episodic memory called recognition memory and its subcomponents called recollection and familiarity. Recognition memory is believed to be impaired in PD; thus, we discuss what aspects of the hippocampus are expected to be deficient in function as they relate to these recognition memory impairments. In addition to the hippocampus as a whole, we will discuss the role of hippocampal subfields in recognition memory impairments.
Collapse
Affiliation(s)
- Tanusree Das
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| | - Jaclyn J Hwang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Department of Neuroscience, University of Pittsburgh, USA.
| | - Kathleen L Poston
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
24
|
Gimse K, Gorzek RC, Olin A, Osting S, Burger C. Hippocampal Homer1b/c is necessary for contextual fear conditioning and group I metabotropic glutamate receptor mediated long-term depression. Neurobiol Learn Mem 2018; 156:17-23. [PMID: 30336208 PMCID: PMC6226007 DOI: 10.1016/j.nlm.2018.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 01/24/2023]
Abstract
Coiled-coil forms of Homer1, including Homer1b and c (Homer1b/c) have been shown to play a role in hippocampal learning and memory and synaptic plasticity. We have previously found that overexpression of hippocampal Homer1c is sufficient to rescue learning and memory ability in aged learning impaired rats and in Homer1 knockout (KO) mice, and to rescue group I metabotropic glutamate receptor (mGluR1/5) mediated long-term potentiation in KO mice. Here, to determine if Homer1b/c is necessary for successful learning and memory we have utilized a rAAV5 vector expressing a Homer1b/c-targeting short hairpin RNA to knock down the expression of hippocampal Homer1b/c in adult 4-6-month old male Sprague Dawley rats. We have found that reduced hippocampal Homer1b/c expression elicits significant learning deficits in contextual fear conditioning, but not in the Morris water maze or novel object recognition tasks. Furthermore, we demonstrate that reduced hippocampal Homer1b/c is sufficient to completely block mGluR1/5 mediated long-term depression in the Schaffer collateral pathway. These results support a significant role for Homer1b/c in learning and synaptic plasticity; however, the exact role of each of these two protein isoforms in learning and memory remains elusive.
Collapse
Affiliation(s)
- Kirstan Gimse
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Medical Sciences Center, 1300 University Ave, Room 73 Bardeen, Madison, WI 53706, USA
| | - Ryan C Gorzek
- College of Letters and Science, University of Wisconsin, Madison, WI, USA
| | - Andrew Olin
- Department of Neurology, University of Wisconsin, Madison, WI, USA
| | - Sue Osting
- Department of Neurology, University of Wisconsin, Madison, WI, USA
| | - Corinna Burger
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Medical Sciences Center, 1300 University Ave, Room 73 Bardeen, Madison, WI 53706, USA; Department of Neurology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
25
|
Chemogenetic inactivation of the dorsal hippocampus and medial prefrontal cortex, individually and concurrently, impairs object recognition and spatial memory consolidation in female mice. Neurobiol Learn Mem 2018; 156:103-116. [PMID: 30408525 PMCID: PMC7310386 DOI: 10.1016/j.nlm.2018.11.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/25/2018] [Accepted: 11/03/2018] [Indexed: 01/23/2023]
Abstract
The dorsal hippocampus (DH) and medial prefrontal cortex (mPFC) are brain regions essential for processing and storing episodic memory. In rodents, the DH has a well-established role in supporting the consolidation of episodic-like memory in tasks such as object recognition and object placement. However, the role of the mPFC in the consolidation of episodic-like memory tasks remains controversial. Therefore, the present study examined involvement of the DH and mPFC, alone and in combination, in object and spatial recognition memory consolidation in ovariectomized female mice. To this end, we utilized two types of inhibitory Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to inactivate the DH alone, the mPFC alone, or both brain regions concurrently immediately after object training to assess the role of each region in the consolidation of object recognition and spatial memories. Our results using single and multiplexed DREADDS suggest that excitatory activity in the DH and mPFC, alone or in combination, is required for the successful consolidation of object recognition and spatial memories. Together, these studies provide critical insight into how the DH and mPFC work in concert to facilitate memory consolidation in female mice.
Collapse
|
26
|
Hochmann JR, Carey S, Mehler J. Infants learn a rule predicated on the relation same but fail to simultaneously learn a rule predicated on the relation different. Cognition 2018; 177:49-57. [DOI: 10.1016/j.cognition.2018.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 11/25/2022]
|
27
|
Reagh ZM, Ranganath C. What does the functional organization of cortico-hippocampal networks tell us about the functional organization of memory? Neurosci Lett 2018; 680:69-76. [PMID: 29704572 PMCID: PMC6467646 DOI: 10.1016/j.neulet.2018.04.050] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/12/2022]
Abstract
Historically, research on the cognitive processes that support human memory proceeded, to a large extent, independently of research on the neural basis of memory. Accumulating evidence from neuroimaging, however, has enabled the field to develop a broader and more integrative perspective. Here, we briefly outline how advances in cognitive neuroscience can potentially shed light on concepts and controversies in human memory research. We argue that research on the functional properties of cortico-hippocampal networks informs us about how memories might be organized in the brain, which, in turn, helps to reconcile seemingly disparate perspectives in cognitive psychology. Finally, we discuss several open questions and directions for future research.
Collapse
Affiliation(s)
- Zachariah M Reagh
- Center for Neuroscience, United States; Department of Neurology, University of California, Davis, United States.
| | - Charan Ranganath
- Center for Neuroscience, United States; Memory and Plasticity (MAP) Program, United States; Department of Psychology, University of California, Davis, United States.
| |
Collapse
|
28
|
Polyphenol-rich extract from grape and blueberry attenuates cognitive decline and improves neuronal function in aged mice. J Nutr Sci 2018; 7:e19. [PMID: 29854398 PMCID: PMC5971226 DOI: 10.1017/jns.2018.10] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023] Open
Abstract
Ageing is characterised by memory deficits, associated with brain plasticity impairment. Polyphenols from berries, such as flavan-3-ols, anthocyanins, and resveratrol, have been suggested to modulate synaptic plasticity and cognitive processes. In the present study we assessed the preventive effect of a polyphenol-rich extract from grape and blueberry (PEGB), with high concentrations of flavonoids, on age-related cognitive decline in mice. Adult and aged (6 weeks and 16 months) mice were fed a PEGB-enriched diet for 14 weeks. Learning and memory were assessed using the novel object recognition and Morris water maze tasks. Brain polyphenol content was evaluated with ultra-high-performance LC-MS/MS. Hippocampal neurotrophin expression was measured using quantitative real-time PCR. Finally, the effect of PEGB on adult hippocampal neurogenesis was assessed by immunochemistry, counting the number of cells expressing doublecortin and the proportion of cells with dendritic prolongations. The combination of grape and blueberry polyphenols prevented age-induced learning and memory deficits. Moreover, it increased hippocampal nerve growth factor (Ngf) mRNA expression. Aged supplemented mice displayed a greater proportion of newly generated neurons with prolongations than control age-matched mice. Some of the polyphenols included in the extract were detected in the brain in the native form or as metabolites. Aged supplemented mice also displayed a better survival rate. These data suggest that PEGB may prevent age-induced cognitive decline. Possible mechanisms of action include a modulation of brain plasticity. Post-treatment detection of phenolic compounds in the brain suggests that polyphenols may act directly at the central level, while they can make an impact on mouse survival through a potential systemic effect.
Collapse
|
29
|
Khan S, Yuldasheva NY, Batten TFC, Pickles AR, Kellett KAB, Saha S. Tau pathology and neurochemical changes associated with memory dysfunction in an optimised murine model of global cerebral ischaemia - A potential model for vascular dementia? Neurochem Int 2018; 118:134-144. [PMID: 29649504 DOI: 10.1016/j.neuint.2018.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/15/2022]
Abstract
Cerebral ischemia is known to be a major cause of death and the later development of Alzheimer's disease and vascular dementia. However, ischemia induced cellular damage that initiates these diseases remain poorly understood. This is primarily due to lack of clinically relevant models that are highly reproducible. Here, we have optimised a murine model of global cerebral ischaemia with multiple markers to determine brain pathology, neurochemistry and correlated memory deficits in these animals. Cerebral ischaemia in mice was induced by bilateral common carotid artery occlusion. Following reperfusion, the mice were either fixed with 4% paraformaldehyde or decapitated under anaesthesia. Brains were processed for Western blotting or immunohistochemistry for glial (GLT1) and vesicular (VGLUT1, VGLUT2) glutamate transporters and paired helical filament (PHF1) tau. The PHF1 tau is the main component of neurofibrillary tangle, which is the pathological hallmark of Alzheimer's disease and vascular dementia. The novel object recognition behavioural assay was used to investigate the functional cognitive consequences in these mice. The results show consistent and selective neuronal and glial cell changes in the hippocampus and the cortex together with significant reductions in GLT1 (***P < 0.001), VGLUT1 (**P < 0.01) and VGLUT2 (***P < 0.001) expressions in the hippocampus in occluded mice as compared to sham-operated animals. These changes are associated with increased PHF1 (***P < 0.0001) protein and a significant impairment of performance (*p < 0.0006, N = 6/group) in the novel object recognition test. This model represents a useful tool for investigating cellular, biochemical and molecular mechanisms of global cerebral ischaemia and may be an ideal preclinical model for vascular dementia.
Collapse
Affiliation(s)
- Sabah Khan
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Nadira Y Yuldasheva
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Trevor F C Batten
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK; Leeds Trinity University, Brownberrie Lane, Horsforth, Leeds, LS18 5HD, UK
| | | | - Katherine A B Kellett
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Sikha Saha
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
30
|
Renard J, Rosen LG, Loureiro M, De Oliveira C, Schmid S, Rushlow WJ, Laviolette SR. Adolescent Cannabinoid Exposure Induces a Persistent Sub-Cortical Hyper-Dopaminergic State and Associated Molecular Adaptations in the Prefrontal Cortex. Cereb Cortex 2018; 27:1297-1310. [PMID: 26733534 DOI: 10.1093/cercor/bhv335] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Considerable evidence suggests that adolescent exposure to delta-9-tetrahydrocanabinol (THC), the psychoactive component in marijuana, increases the risk of developing schizophrenia-related symptoms in early adulthood. In the present study, we used a combination of behavioral and molecular analyses with in vivo neuronal electrophysiology to compare the long-term effects of adolescent versus adulthood THC exposure in rats. We report that adolescent, but not adult, THC exposure induces long-term neuropsychiatric-like phenotypes similar to those observed in clinical populations. Thus, adolescent THC exposure induced behavioral abnormalities resembling positive and negative schizophrenia-related endophenotypes and a state of neuronal hyperactivity in the mesocorticolimbic dopamine (DA) pathway. Furthermore, we observed profound alterations in several prefrontal cortical molecular pathways consistent with sub-cortical DAergic dysregulation. Our findings demonstrate a profound dissociation in relative risk profiles for adolescent versus adulthood exposure to THC in terms of neuronal, behavioral, and molecular markers resembling neuropsychiatric pathology.
Collapse
Affiliation(s)
- Justine Renard
- Addiction Research Group.,Department of Anatomy and Cell Biology
| | - Laura G Rosen
- Addiction Research Group.,Department of Anatomy and Cell Biology
| | - Michael Loureiro
- Addiction Research Group.,Department of Anatomy and Cell Biology
| | | | | | - Walter J Rushlow
- Addiction Research Group.,Department of Anatomy and Cell Biology.,Department of Psychiatry, The Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Steven R Laviolette
- Addiction Research Group.,Department of Anatomy and Cell Biology.,Department of Psychiatry, The Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| |
Collapse
|
31
|
Unfolding the cognitive map: The role of hippocampal and extra-hippocampal substrates based on a systems analysis of spatial processing. Neurobiol Learn Mem 2018; 147:90-119. [DOI: 10.1016/j.nlm.2017.11.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 01/03/2023]
|
32
|
Item-Place Encoding Through Hippocampal Long-Term Depression. HANDBOOK OF OBJECT NOVELTY RECOGNITION 2018. [DOI: 10.1016/b978-0-12-812012-5.00019-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Zhang M, Jadavji NM, Yoo HS, Smith PD. Recombinant growth differentiation factor 11 influences short-term memory and enhances Sox2 expression in middle-aged mice. Behav Brain Res 2017; 341:45-49. [PMID: 29253511 DOI: 10.1016/j.bbr.2017.12.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 01/17/2023]
Abstract
Previous evidence suggests that a significant decline in cognitive ability begins during middle-age and continues to deteriorate with increase in age. Recent work has demonstrated the potential rejuvenation impact of growth differentiation factor-11 (GDF-11) in aged mice. We carried out experiments to evaluate the impact of a single dose of recombinant (rGDF-11) on short-term visual and spatial memory in middle-aged male mice. On the novel object recognition task, we observed middle-aged mice treated rGDF-11 showed improved performance on the novel object recognition task. However, middle-aged mice did not show increased expression of phosphorylated-Smad2/3, a downstream effector of GDF-11. We noted however that the expression of the transcription factor, Sox2 was increased within the dentate gyrus. Our data suggest that a single injection of rGDF-11 contributes to improvements in cognitive function of middle-aged animals, which may be critical in the preservation of short-term memory capacity in old age.
Collapse
Affiliation(s)
- Min Zhang
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6 Canada.
| | - Nafisa M Jadavji
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6 Canada.
| | - Hyung-Suk Yoo
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6 Canada.
| | - Patrice D Smith
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6 Canada.
| |
Collapse
|
34
|
Hochmann JR, Tuerk AS, Sanborn S, Zhu R, Long R, Dempster M, Carey S. Children's representation of abstract relations in relational/array match-to-sample tasks. Cogn Psychol 2017; 99:17-43. [PMID: 29132016 DOI: 10.1016/j.cogpsych.2017.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 10/18/2022]
Abstract
Five experiments compared preschool children's performance to that of adults and of non-human animals on match to sample tasks involving 2-item or 16-item arrays that varied according to their composition of same or different items (Array Match-to-Sample, AMTS). They establish that, like non-human animals in most studies, 3- and 4-year-olds fail 2-item AMTS (the classic relational match to sample task introduced into the literature by Premack, 1983), and that robust success is not observed until age 6. They also establish that 3-year-olds, like non-human animal species, succeed only when they are able to encode stimuli in terms of entropy, a property of an array (namely its internal variability), rather than relations among the individuals in the array (same vs. different), whereas adults solve both 2-item and 16-item AMTS on the basis of the relations same and different. As in the case of non-human animals, the acuity of 3- and 4-year-olds' representation of entropy is insufficient to solve the 2-item same-different AMTS task. At age 4, behavior begins to contrast with that of non-human species. On 16-item AMTS, a subgroup of 4-year-olds induce a categorical rule matching all-same arrays to all-same arrays, while matching other arrays (mixed arrays of same and different items) to all-different arrays. These children tend to justify their choices using the words "same" and "different." By age 4 a number of our participants succeed at 2-item AMTS, also justifying their choices by explicit verbal appeals using words for same and different. Taken together these results suggest that the recruitment of the relational representations corresponding to the meaning of these words contributes to the better performance over the preschool years at solving array match-to-sample tasks.
Collapse
Affiliation(s)
- Jean-Rémy Hochmann
- CNRS, UMR 5304, Institut des Sciences Cognitives - Marc Jeannerod, 67 Bd Pinel, 69675 Bron, France; Université Claude Bernard Lyon 1, France.
| | - Arin S Tuerk
- Department of Psychology, Harvard University, William James Hall, 33 Kirkland Street, Cambridge, MA 02138, USA
| | - Sophia Sanborn
- Department of Psychology, UC Berkeley, Tolman Hall, Berkeley, CA 94720-1650, USA
| | - Rebecca Zhu
- Department of Psychology, Harvard University, William James Hall, 33 Kirkland Street, Cambridge, MA 02138, USA
| | - Robert Long
- Department of Philosophy, New York University, 5 Washington Place, New York, NY 10003, USA
| | - Meg Dempster
- Department of Psychology, University of Bath, Claverton Down, Bath, United Kingdom
| | - Susan Carey
- Department of Psychology, Harvard University, William James Hall, 33 Kirkland Street, Cambridge, MA 02138, USA
| |
Collapse
|
35
|
Wimmer ME, Briand LA, Fant B, Guercio LA, Arreola AC, Schmidt HD, Sidoli S, Han Y, Garcia BA, Pierce RC. Paternal cocaine taking elicits epigenetic remodeling and memory deficits in male progeny. Mol Psychiatry 2017; 22:1641-1650. [PMID: 28220045 PMCID: PMC5568460 DOI: 10.1038/mp.2017.8] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/02/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022]
Abstract
Paternal environmental perturbations including exposure to drugs of abuse can produce profound effects on the physiology and behavior of offspring via epigenetic modifications. Here we show that adult drug-naive male offspring of cocaine-exposed sires have memory formation deficits and associated reductions in NMDA receptor-mediated hippocampal synaptic plasticity. Reduced levels of the endogenous NMDA receptor co-agonist d-serine were accompanied by increased expression of the d-serine degrading enzyme d-amino acid oxidase (Dao1) in the hippocampus of cocaine-sired male progeny. Increased Dao1 transcription was associated with enrichment of permissive epigenetic marks on histone proteins in the hippocampus of male cocaine-sired progeny, some of which were enhanced near the Dao1 locus. Finally, hippocampal administration of d-serine reversed both the memory formation and synaptic plasticity deficits. Collectively, these results demonstrate that paternal cocaine exposure produces epigenetic remodeling in the hippocampus leading to NMDA receptor-dependent memory formation and synaptic plasticity impairments only in male progeny, which has significant implications for the male descendants of chronic cocaine users.
Collapse
Affiliation(s)
- ME Wimmer
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - LA Briand
- Department of Psychology and Neuroscience, College of Liberal Arts, Temple University, Philadelphia, PA, USA
| | - B Fant
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - LA Guercio
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - AC Arreola
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - HD Schmidt
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - S Sidoli
- Epigenetic Program, Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Y Han
- Epigenetic Program, Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - BA Garcia
- Epigenetic Program, Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - RC Pierce
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
36
|
Distinct roles for the deacetylase domain of HDAC3 in the hippocampus and medial prefrontal cortex in the formation and extinction of memory. Neurobiol Learn Mem 2017; 145:94-104. [PMID: 28890149 DOI: 10.1016/j.nlm.2017.09.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/29/2017] [Accepted: 09/06/2017] [Indexed: 12/22/2022]
Abstract
Histone deacetylases (HDACs) are chromatin modifying enzymes that have been implicated as powerful negative regulators of memory processes. HDAC3has been shown to play a pivotal role in long-term memory for object location as well as the extinction of cocaine-associated memory, but it is unclear whether this function depends on the deacetylase domain of HDAC3. Here, we tested whether the deacetylase domain of HDAC3has a role in object location memory formation as well as the formation and extinction of cocaine-associated memories. Using a deacetylase-dead point mutant of HDAC3, we found that selectively blocking HDAC3 deacetylase activity in the dorsal hippocampus enhanced long-term memory for object location, but had no effect on the formation of cocaine-associated memory. When this same point mutant virus of HDAC3 was infused into the prelimbic cortex, it failed to affect cocaine-associated memory formation. With regards to extinction, impairing the HDAC3 deacetylase domain in the infralimbic cortex had no effect on extinction, but a facilitated extinction effect was observed when the point mutant virus was delivered to the dorsal hippocampus. These results suggest that the deacetylase domain of HDAC3 plays a selective role in specific brain regions underlying long-term memory formation of object location as well as cocaine-associated memory formation and extinction.
Collapse
|
37
|
The role of the hippocampus in recognition memory. Cortex 2017; 93:155-165. [DOI: 10.1016/j.cortex.2017.05.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 12/20/2016] [Accepted: 05/12/2017] [Indexed: 11/20/2022]
|
38
|
An analysis of dentate gyrus function (an update). Behav Brain Res 2017; 354:84-91. [PMID: 28756212 DOI: 10.1016/j.bbr.2017.07.033] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 01/14/2023]
Abstract
In this review there will be a description of the dentate gyrus (DG) neural circuitry that mediates the operation of a variety of mnemonic processes associated with dorsal and ventral DG function in rats. Dysfunction of the dorsal DG can be shown to mediate mnemonic processing of spatially based information including a) the operation of conjunctive encoding of multiple sensory inputs to determine spatial representations, b) pattern separation based on reducing interference between similar spatial locations and spatial contexts for horizontal distance between objects, vertical distance for height of objects, slope or angle of motor movements, c) importance of spatial context in object recognition and processing of shades of grey associated with the walls of the box d) temporal integration in the creation of remote memory based in part on DG neurogenesis and function of the CA3 subregion of the hippocampus. Dysfunction of the ventral DG can be shown to mediate mnemonic processing of odor and reward value based information including a) pattern separation for odors and reward value, and b) social recognition.
Collapse
|
39
|
Johnson SA, Turner SM, Santacroce LA, Carty KN, Shafiq L, Bizon JL, Maurer AP, Burke SN. Rodent age-related impairments in discriminating perceptually similar objects parallel those observed in humans. Hippocampus 2017; 27:759-776. [PMID: 28342259 DOI: 10.1002/hipo.22729] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/13/2017] [Accepted: 03/14/2017] [Indexed: 01/24/2023]
Abstract
The ability to accurately remember distinct episodes is supported by high-level sensory discrimination. Performance on mnemonic similarity tasks, which test high-level discrimination, declines with advancing age in humans and these deficits have been linked to altered activity in hippocampal CA3 and dentate gyrus. Lesion studies in animal models, however, point to the perirhinal cortex as a brain region critical for sensory discriminations that serve memory. Reconciliation of the contributions of different regions within the cortical-hippocampal circuit requires the development of a discrimination paradigm comparable to the human mnemonic similarity task that can be used in rodents. In the present experiments, young and aged rats were cross-characterized on a spatial water maze task and two variants of an object discrimination task: one in which rats incrementally learned which object of a pair was rewarded and different pairs varied in their similarity (Experiment 1), and a second in which rats were tested on their ability to discriminate a learned target object from multiple lure objects with an increasing degree of feature overlap (Experiment 2). In Experiment 1, aged rats required more training than young to correctly discriminate between similar objects. Comparably, in Experiment 2, aged rats were impaired in discriminating a target object from lures when the pair shared more features. Discrimination deficits across experiments were correlated within individual aged rats, though, for the cohort tested, aged rats were not impaired overall in spatial learning and memory. This could suggest discrimination deficits emerging with age precede declines in spatial or episodic memory, an observation that has been made in humans. Findings of robust impairments in object discrimination abilities in the aged rats parallel results from human studies, supporting use of the developed tasks for mechanistic investigation of cortical-hippocampal circuit dysfunction in aging and disease.
Collapse
Affiliation(s)
- Sarah A Johnson
- Department of Neuroscience, Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Sean M Turner
- Department of Neuroscience, Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Lindsay A Santacroce
- Department of Neuroscience, Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Katelyn N Carty
- Department of Neuroscience, Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Leila Shafiq
- Department of Neuroscience, Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Jennifer L Bizon
- Department of Neuroscience, Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Andrew P Maurer
- Department of Neuroscience, Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, FL.,Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Sara N Burke
- Department of Neuroscience, Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, FL.,Institute on Aging, University of Florida, Gainesville, FL
| |
Collapse
|
40
|
Dyck B, Branstetter B, Gharbaoui T, Hudson AR, Breitenbucher JG, Gomez L, Botrous I, Marrone T, Barido R, Allerston CK, Cedervall EP, Xu R, Sridhar V, Barker R, Aertgeerts K, Schmelzer K, Neul D, Lee D, Massari ME, Andersen CB, Sebring K, Zhou X, Petroski R, Limberis J, Augustin M, Chun LE, Edwards TE, Peters M, Tabatabaei A. Discovery of Selective Phosphodiesterase 1 Inhibitors with Memory Enhancing Properties. J Med Chem 2017; 60:3472-3483. [DOI: 10.1021/acs.jmedchem.7b00302] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Brian Dyck
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Bryan Branstetter
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Tawfik Gharbaoui
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Andrew R. Hudson
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - J. Guy Breitenbucher
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Laurent Gomez
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Iriny Botrous
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Tami Marrone
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Richard Barido
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Charles K. Allerston
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - E. Peder Cedervall
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Rui Xu
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Vandana Sridhar
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Ryan Barker
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Kathleen Aertgeerts
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Kara Schmelzer
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - David Neul
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Dong Lee
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Mark Eben Massari
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Carsten B. Andersen
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Kristen Sebring
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Xianbo Zhou
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Robert Petroski
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - James Limberis
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Martin Augustin
- Proteros Biostructures GmbH, Bunsenstraße 7a, D-82152 Martinsried, Germany
| | - Lawrence E. Chun
- Berylllium, 7869 NE Day Road West, Bainbridge
Island, Washington 98110, United States
| | - Thomas E. Edwards
- Berylllium, 7869 NE Day Road West, Bainbridge
Island, Washington 98110, United States
| | - Marco Peters
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Ali Tabatabaei
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| |
Collapse
|
41
|
Smith G, Ahmed N, Arbuckle E, Lugo JN. Early-life status epilepticus induces long-term deficits in anxiety and spatial learning in mice. INTERNATIONAL JOURNAL OF EPILEPSY 2017; 4:36-45. [PMID: 31890565 PMCID: PMC6936764 DOI: 10.1016/j.ijep.2016.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND One of the most devastating aspects of developmental epilepsy is the long-term impact on behavior. Children with epilepsy show a high co-morbidity with anxiety disorders and autism. METHODS To examine whether early-life status epilepticus results in altered anxiety, repetitive behavior, social behavior, and learning and memory, we induced status epilepticus in male C57BL/6 mice on postnatal day (PD) 10. The mice received intraperitoneal injections of either kainic acid (2mg/kg) or 0.9% normal saline. We also included a nontreated control group. Kainic acid induced status epilepticus for approximately 1.5 hrs. At PD60, the adult mice were then tested in a battery of behavioral tasks, including open field activity, elevated-plus maze, light-dark test, marble burying, social chamber, social partition, conditioned fear, novel object recognition, and Morris water maze. RESULTS The early-life seizure group showed consistent increases in anxiety in the open field test (p < 0.05), elevated plus maze (p < 0.05), and light-dark task (p < 0.01). The seizure group showed significant (p < 0.01) impairment in the Morris water maze. There were no differences observed in marble burying, social partition, social chamber, novel object recognition, or delay fear conditioning tasks. CONCLUSIONS These results demonstrate that a single insult of status epilepticus during the neonatal period is sufficient to cause specific, long-term impairments in anxiety and spatial learning.
Collapse
Affiliation(s)
- Gregory Smith
- Institute of Biomedical Sciences, Baylor University, Waco, TX 76798, USA
| | - Nowrin Ahmed
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
| | - Erin Arbuckle
- Institute of Biomedical Sciences, Baylor University, Waco, TX 76798, USA
| | - Joaquin N. Lugo
- Institute of Biomedical Sciences, Baylor University, Waco, TX 76798, USA
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
42
|
Heckman PRA, Blokland A, Prickaerts J. From Age-Related Cognitive Decline to Alzheimer's Disease: A Translational Overview of the Potential Role for Phosphodiesterases. ADVANCES IN NEUROBIOLOGY 2017; 17:135-168. [PMID: 28956332 DOI: 10.1007/978-3-319-58811-7_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Phosphodiesterase inhibitors (PDE-Is) are pharmacological compounds enhancing cAMP and/or cGMP signaling. Both these substrates affect neural communication by influencing presynaptic neurotransmitter release and postsynaptic intracellular pathways after neurotransmitter binding to its receptor. Both cAMP and cGMP play an important role in a variety of cellular functions including neuroplasticity and neuroprotection. This chapter provides a translational overview of the effects of different classes of PDE-Is on cognition enhancement in age-related cognitive decline and Alzheimer's disease (AD). The most effective PDE-Is in preclinical models of aging and AD appear to be PDE2-Is, PDE4-Is and PDE5-Is. Clinical studies are relatively sparse and so far PDE1-Is and PDE4-Is showed some promising results. In the future, the demonstration of clinical proof of concept and the generation of isoform selective PDE-Is are the hurdles to overcome in developing safe and efficacious novel PDE-Is for the treatment of age-related cognitive decline and cognitive dysfunction in AD.
Collapse
Affiliation(s)
- Pim R A Heckman
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
- Department of Neuropsychology and Psychopharmacology, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - Arjan Blokland
- Department of Neuropsychology and Psychopharmacology, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands.
| |
Collapse
|
43
|
Koss WA, Frick KM. Sex differences in hippocampal function. J Neurosci Res 2016; 95:539-562. [DOI: 10.1002/jnr.23864] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/28/2016] [Accepted: 07/11/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Wendy A. Koss
- Department of Psychology; University of Wisconsin-Milwaukee; Milwaukee Wisconsin
| | - Karyn M. Frick
- Department of Psychology; University of Wisconsin-Milwaukee; Milwaukee Wisconsin
| |
Collapse
|
44
|
Kinnavane L, Amin E, Olarte-Sánchez CM, Aggleton JP. Detecting and discriminating novel objects: The impact of perirhinal cortex disconnection on hippocampal activity patterns. Hippocampus 2016; 26:1393-1413. [PMID: 27398938 PMCID: PMC5082501 DOI: 10.1002/hipo.22615] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2016] [Indexed: 12/11/2022]
Abstract
Perirhinal cortex provides object‐based information and novelty/familiarity information for the hippocampus. The necessity of these inputs was tested by comparing hippocampal c‐fos expression in rats with or without perirhinal lesions. These rats either discriminated novel from familiar objects (Novel‐Familiar) or explored pairs of novel objects (Novel‐Novel). Despite impairing Novel‐Familiar discriminations, the perirhinal lesions did not affect novelty detection, as measured by overall object exploration levels (Novel‐Novel condition). The perirhinal lesions also largely spared a characteristic network of linked c‐fos expression associated with novel stimuli (entorhinal cortex→CA3→distal CA1→proximal subiculum). The findings show: I) that perirhinal lesions preserve behavioral sensitivity to novelty, whilst still impairing the spontaneous ability to discriminate novel from familiar objects, II) that the distinctive patterns of hippocampal c‐fos activity promoted by novel stimuli do not require perirhinal inputs, III) that entorhinal Fos counts (layers II and III) increase for novelty discriminations, IV) that hippocampal c‐fos networks reflect proximal‐distal connectivity differences, and V) that discriminating novelty creates different pathway interactions from merely detecting novelty, pointing to top‐down effects that help guide object selection. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lisa Kinnavane
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, Wales, CF10 3AT, United Kingdom.
| | - Eman Amin
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, Wales, CF10 3AT, United Kingdom
| | | | - John P Aggleton
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, Wales, CF10 3AT, United Kingdom
| |
Collapse
|
45
|
Hamson DK, Roes MM, Galea LAM. Sex Hormones and Cognition: Neuroendocrine Influences on Memory and Learning. Compr Physiol 2016; 6:1295-337. [DOI: 10.1002/cphy.c150031] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
López AJ, Kramár E, Matheos DP, White AO, Kwapis J, Vogel-Ciernia A, Sakata K, Espinoza M, Wood MA. Promoter-Specific Effects of DREADD Modulation on Hippocampal Synaptic Plasticity and Memory Formation. J Neurosci 2016; 36:3588-99. [PMID: 27013687 PMCID: PMC4804014 DOI: 10.1523/jneurosci.3682-15.2016] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/20/2016] [Accepted: 02/15/2016] [Indexed: 11/21/2022] Open
Abstract
Designer receptors exclusively activated by designer drug (DREADDs) are a novel tool with the potential to bidirectionally drive cellular, circuit, and ultimately, behavioral changes. We used DREADDs to evaluate memory formation in a hippocampus-dependent task in mice and effects on synaptic physiology in the dorsal hippocampus. We expressed neuron-specific (hSyn promoter) DREADDs that were either excitatory (HM3D) or inhibitory (HM4D) in the dorsal hippocampus. As predicted, hSyn-HM3D was able to transform a subthreshold learning event into long-term memory (LTM), and hSyn-HM4D completely impaired LTM formation. Surprisingly, the opposite was observed during experiments examining the effects on hippocampal long-term potentiation (LTP). hSyn-HM3D impaired LTP and hSyn-HM4D facilitated LTP. Follow-up experiments indicated that the hSyn-HM3D-mediated depression of fEPSP appears to be driven by presynaptic activation of inhibitory currents, whereas the hSyn-HM4D-mediated increase of fEPSP is induced by a reduction in GABAA receptor function. To determine whether these observations were promoter specific, we next examined the effects of using the CaMKIIα promoter that limits expression to forebrain excitatory neurons. CaMKIIα-HM3D in the dorsal hippocampus led to the transformation of a subthreshold learning event into LTM, whereas CaMKIIα-HM4D blocked LTM formation. Consistent with these findings, baseline synaptic transmission and LTP was increased in CaMKIIα-HM3D hippocampal slices, whereas slices from CaMKIIα-HM4D mice produced expected decreases in baseline synaptic transmission and LTP. Together, these experiments further demonstrate DREADDs as being a robust and reliable means of modulating neuronal function to manipulate long-term changes in behavior, while providing evidence for specific dissociations between LTM and LTP. SIGNIFICANCE STATEMENT This study evaluates the efficacy of designer receptors exclusively activated by designer drug (DREADDs) as a means of bidirectionally modulating the hippocampus in not only a hippocampus-dependent task but also in hippocampal synaptic plasticity. This is the first study to evaluate the effects of DREADD-mediated inhibition and excitation in hippocampal long-term potentiation. More specifically, this study evaluates the effect of promoter-specific expression of DREADD viruses in a heterogenic cell population, which revealed surprising effects of different promoters. With chemogenetics becoming a more ubiquitous tool throughout studies investigating circuit-specific function, these data are of broad interest to the neuroscientific community because we have shown that promoter-specific effects can drastically alter synaptic function within a specific region, without parallel changes at the level of behavior.
Collapse
Affiliation(s)
- Alberto J López
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, UC Irvine Center for Addiction Neuroscience, and
| | - Enikö Kramár
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, UC Irvine Center for Addiction Neuroscience, and
| | - Dina P Matheos
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, UC Irvine Center for Addiction Neuroscience, and
| | - André O White
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, UC Irvine Center for Addiction Neuroscience, and
| | - Janine Kwapis
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, UC Irvine Center for Addiction Neuroscience, and
| | - Annie Vogel-Ciernia
- Davis M.I.N.D. Institute, University of California, Davis, Davis, California 96516
| | - Keith Sakata
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, UC Irvine Center for Addiction Neuroscience, and
| | - Monica Espinoza
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, UC Irvine Center for Addiction Neuroscience, and
| | - Marcelo A Wood
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, UC Irvine Center for Addiction Neuroscience, and
| |
Collapse
|
47
|
Hochmann JR, Mody S, Carey S. Infants' representations of same and different in match- and non-match-to-sample. Cogn Psychol 2016; 86:87-111. [PMID: 26970605 DOI: 10.1016/j.cogpsych.2016.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 01/27/2016] [Accepted: 01/30/2016] [Indexed: 10/22/2022]
Abstract
Three experiments investigated the representations that underlie 14-month-old infants' and adults' success at match-to-sample (MTS) and non-match-to-sample (NMTS) tasks. In Experiment 1, 14-month-old infants were able to learn rules based on abstract representations of sameness and/or difference. When presented with one of eighteen sample stimuli (A) and a choice between a stimulus that was the same as the sample (A) and a different stimulus (B), infants learned to choose A in MTS and B in NMTS. In Experiments 2 and 3, we began to explore the nature of the representations at play in these paradigms. Experiment 2 confirmed that abstract representations were at play, as infants generalized the MTS and NMTS rules to stimuli unseen during familiarization. Experiment 2 also showed that infants tested in MTS learned to seek the stimulus that was the same as the sample, whereas infants tested in NMTS did not learn to seek the different stimulus, but instead learned to avoid the stimulus that was the same as the sample. Infants appeared to only use an abstract representation of the relation same in these experiments. Experiment 3 showed that adult participants, despite knowing the words "same" and "different", also relied on representations of sameness in both MTS and NMTS in a paradigm modeled on that of Experiment 2. We conclude with a discussion of how young infants may possibly represent the abstract relation same.
Collapse
Affiliation(s)
- Jean-Rémy Hochmann
- Department of Psychology, Harvard University, William James Hall, 33 Kirkland Street, Cambridge, MA 02138, USA; CNRS - Institut des Sciences Cognitives - Marc Jeannerod - UMR 5304 (Laboratoire sur le Langage, le Cerveau et la Cognition - L2C2), Univ Lyon, 67 Boulevard Pinel, 69675 Bron, France.
| | - Shilpa Mody
- Department of Psychology, Harvard University, William James Hall, 33 Kirkland Street, Cambridge, MA 02138, USA
| | - Susan Carey
- Department of Psychology, Harvard University, William James Hall, 33 Kirkland Street, Cambridge, MA 02138, USA
| |
Collapse
|
48
|
Kim S, Kim T, Lee HR, Jang EH, Ryu HH, Kang M, Rah SY, Yoo J, Lee B, Kim JI, Lim CS, Kim SJ, Kim UH, Lee YS, Kaang BK. Impaired learning and memory in CD38 null mutant mice. Mol Brain 2016; 9:16. [PMID: 26856703 PMCID: PMC4746819 DOI: 10.1186/s13041-016-0195-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/01/2016] [Indexed: 11/17/2022] Open
Abstract
CD38 is an enzyme that catalyzes the formation of cyclic ADP ribose and nicotinic acid adenine dinucleotide phosphate, both of which are involved in the mobilization of Ca2+ from intracellular stores. Recently, CD38 has been shown to regulate oxytocin release from hypothalamic neurons. Importantly, CD38 mutations are associated with autism spectrum disorders (ASD) and CD38 knockout (CD38−/−) mice display ASD-like behavioral phenotypes including deficient parental behavior and poor social recognition memory. Although ASD and learning deficits commonly co-occur, the role of CD38 in learning and memory has not been investigated. We report that CD38−/− mice show deficits in various learning and memory tasks such as the Morris water maze, contextual fear conditioning, and the object recognition test. However, either long-term potentiation or long-term depression is not impaired in the hippocampus of CD38−/− mice. Our results provide convincing evidence that CD38−/− mice show deficits in various learning and memory tasks including spatial and non-spatial memory tasks. Our data demonstrate that CD38 is critical for regulating hippocampus-dependent learning and memory without modulating synaptic plasticity.
Collapse
Affiliation(s)
- Somi Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea.
| | - TaeHyun Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea.
| | - Hye-Ryeon Lee
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea.
| | - Eun-Hye Jang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea.
| | - Hyun-Hee Ryu
- Department of Life Science, Chung-Ang University, Seoul, 156-756, South Korea.
| | - Minkyung Kang
- Department of Life Science, Chung-Ang University, Seoul, 156-756, South Korea.
| | - So-Young Rah
- Departments of Biochemistry, Institute of Cardiovascular Research, Chonbuk National University Medical School, Jeonju, 561-182, South Korea.
| | - Juyoun Yoo
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea.
| | - Bolam Lee
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea.
| | - Jae-Ick Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea.
| | - Chae Seok Lim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea.
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, South Korea.
| | - Uh-Hyun Kim
- Departments of Biochemistry, Institute of Cardiovascular Research, Chonbuk National University Medical School, Jeonju, 561-182, South Korea.
| | - Yong-Seok Lee
- Department of Life Science, Chung-Ang University, Seoul, 156-756, South Korea.
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
49
|
Wang Z, Fan J, Wang J, Li Y, Duan D, Du G, Wang Q. Chronic cerebral hypoperfusion induces long-lasting cognitive deficits accompanied by long-term hippocampal silent synapses increase in rats. Behav Brain Res 2016; 301:243-52. [PMID: 26756439 DOI: 10.1016/j.bbr.2015.12.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/29/2015] [Accepted: 12/29/2015] [Indexed: 11/26/2022]
Abstract
Synaptic dysfunction underlies cognitive deficits induced by chronic cerebral hypoperfusion (CCH). There are silent synapses in neural circuits, but the effect of CCH on silent synapses is unknown. The present study was designed to explore learning and memory deficits and dynamic changes in silent synapses by direct visualization in a rat model of CCH. Adult male Sprague-Dawley rats were subjected to permanent bilateral common carotid artery occlusion (BCCAO) to reproduce CCH. Learning and memory effects were examined at 1, 4, 12, and 24 weeks after BCCAO. In addition, immunofluorescent confocal microscopy was used to detect AMPA and N-methyl-d-aspartate receptors colocalized with synaptophysin, and Golgi-Cox staining was used to observe dendritic spine density. We found that BCCAO rats exhibited recognition memory deficits from 4 weeks; spatial learning and memory, as well as working memory impairment began at 1 week and persistent to 24 weeks after surgery. Following BCCAO, the percentage of silent synapses increased by 29.81-55.08% compared with the controls at different time points (P<0.001). Compared with control groups, dendritic spine density in the CA1 region of BCCAO groups significantly decreased (P<0.001). Thus, the present study suggests that CCH can induce long-lasting cognitive deficits and long-term increase in the number of silent synapses. Furthermore, the decrease in dendritic spine density was correlated with the decrease in the number of functional synapses. The results suggest a potential mechanism by which CCH can induce learning and memory deficits.
Collapse
Affiliation(s)
- Zhiqiang Wang
- The Graduate Management Team, The Third Military Medical University, Chongqing 400038, China; Department of Neurology, Chengdu Military General Hospital, Chengdu 610083, China
| | - Jin Fan
- Department of Neurology, Chengdu Military General Hospital, Chengdu 610083, China
| | - Jian Wang
- Department of Neurology, Chengdu Military General Hospital, Chengdu 610083, China
| | - Yuxia Li
- Department of Neurology, Chengdu Military General Hospital, Chengdu 610083, China
| | - Dan Duan
- Department of Neurology, Chengdu Military General Hospital, Chengdu 610083, China
| | - Guo Du
- Department of Neurology, Chengdu Military General Hospital, Chengdu 610083, China
| | - Qingsong Wang
- Department of Neurology, Chengdu Military General Hospital, Chengdu 610083, China.
| |
Collapse
|
50
|
What Versus Where: Non-spatial Aspects of Memory Representation by the Hippocampus. Curr Top Behav Neurosci 2016; 37:101-117. [PMID: 27677779 DOI: 10.1007/7854_2016_450] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Since the discovery of place cells and other findings indicating strong involvement of the hippocampus in spatial information processing, there has been continued controversy about the extent to which the hippocampus also processes non-spatial aspects of experience. In recent years, many experiments studying the effects of hippocampal damage and characterizing hippocampal neural activity in animals and humans have revealed a clear and specific role of the hippocampus in the processing of non-spatial information. Here this evidence is reviewed in support of the notion that the hippocampus organizes the contents of memory in space, in time, and in networks of related memories.
Collapse
|