1
|
Sava R, Stanisic N, Hindrot L, Chrcanovic B, Pillai RS, Bucci R, Svensson P, Häggman-Henrikson B. Occlusal acuity and bite force in young adults. Neuroscience 2025; 568:38-45. [PMID: 39809359 DOI: 10.1016/j.neuroscience.2025.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/04/2024] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
Occlusal tactile acuity (OTA) and bite force are essential components of the sensorimotor control of oral behaviors. While these variables have been studied independently, it has not yet been revealed whether compressive force impacts the occlusal perception mediated by the mechanoreceptive afferents in the periodontal ligament. The present study examined the effect of repetition and maximum bite force on OTA by testing nine aluminum foils of different thicknesses together with a sham test with no foil, three times each, in randomized order in 36 healthy individuals. In addition, the 40 μm foil was tested three more times at the start of each session to evaluate possible short-term effects. This test session was repeated with and without an interspersed maximum bite force task in between. The results demonstrated that repeated measurements increased OTA significantly (p = 0.033); a change mainly driven by the 40 μm thickness, whereas maximum bite force tests did not affect OTA (p = 0.097). Collectively, the results suggest that the enhanced OTA may be attributed to repetition-mediated learning and neuroplasticity within the pathways related to OTA. Furthermore, the compressive bite force may have induced a short-term change that lasted seconds and was not detected by the subsequent OTA measurements or may have altogether inhibited the facilitatory effect of repeated OTA. This underscores the potential for future research to explore the implications of compressive force and pain on OTA in patient populations, which could provide valuable insights into the adaptive mechanisms of the sensorimotor system in pathological conditions.
Collapse
Affiliation(s)
- Rebeca Sava
- Department of Orofacial Pain and Jaw Function, Malmö University, Malmö, Sweden
| | - Nikola Stanisic
- Department of Orofacial Pain and Jaw Function, Malmö University, Malmö, Sweden; Section for Orofacial Pain and Jaw Function, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark.
| | - Linn Hindrot
- Department of Orofacial Pain and Jaw Function, Malmö University, Malmö, Sweden
| | - Bruno Chrcanovic
- Department of Oral and Maxillofacial Surgery and Oral Medicine, Malmö University, Malmö, Sweden
| | - Rajath Sasidharan Pillai
- Department of Orofacial Pain and Jaw Function, Malmö University, Malmö, Sweden; Scandinavian Center for Orofacial Neurosciences (SCON)
| | - Rosaria Bucci
- Department of Neurosciences, Reproductive Sciences, and Oral Sciences, University of Naples Federico II, Naples, Italy
| | - Peter Svensson
- Department of Orofacial Pain and Jaw Function, Malmö University, Malmö, Sweden; Scandinavian Center for Orofacial Neurosciences (SCON); Faculty of Dentistry, National University of Singapore, Singapore
| | - Birgitta Häggman-Henrikson
- Department of Orofacial Pain and Jaw Function, Malmö University, Malmö, Sweden; Scandinavian Center for Orofacial Neurosciences (SCON)
| |
Collapse
|
2
|
Ständer S, Schmelz M. Skin Innervation. J Invest Dermatol 2024; 144:1716-1723. [PMID: 38402477 DOI: 10.1016/j.jid.2023.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 02/26/2024]
Abstract
All layers and appendages of the skin are densely innervated by afferent and efferent neurons providing sensory information and controlling skin perfusion and sweating. In mice, neuronal functions have been comprehensively linked to unique single-cell expression patterns and to characteristic arborization of nerve endings in skin and dorsal horn, whereas for humans, specific molecular markers for functional classes of afferent neurons are still lacking. Moreover, bidirectional communication between sensory neurons and local skin cells has become of particular interest, resulting in a broader physiological understanding of sensory function but also of trophic functions and immunomodulation in disease states.
Collapse
Affiliation(s)
- Sonja Ständer
- Department of Dermatology and Center for Chronic Pruritus, University Hospital, Münster, Germany
| | - Martin Schmelz
- Department of Experimental Pain Research, Mannheim Center for Translational Neuroscience (MCTN), Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
3
|
Bittar KCB, Zamboti CL, de Souza GMC. Mandible Position and Chewing Preference Side Do Not Alter Plantar Support in Children Aged 4-11 Years. Int J Clin Pediatr Dent 2024; 17:658-664. [PMID: 39391131 PMCID: PMC11463812 DOI: 10.5005/jp-journals-10005-2886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Introduction Mandible positioning can cause global postural adaptations. Physiotherapists and dentists try to relate the mandible position and chewing side to plantar support; however, this indication is uncertain. Objectives To check the existence of a relationship between mandible position, preferred chewing side, age, and plantar support in children. Materials and methods This is a cross-sectional study with 93 children, aged between 4 and 11 years. Photogrammetry was used to confirm the mandibular positions (centralized, to the right, and to the left), and baropodometry was used to measure plantar support. The mandibular displacement distance to the right and left was evaluated, and the plantar support in the three mandibular positions was compared as a function of age (4-7 and 8-11 years) and preferred chewing side. Results There was greater mandibular displacement in left laterality [13 (9-19) cm] compared to right laterality [7 (3.50-12.00) cm] (p < 0.01). Mandibular position did not alter mean pressure, maximum pressure, or plantar support surface (p > 0.05). With the mandible centralized, higher mean pressure, maximum pressure, and surface area were observed in the left foot (p < 0.01). Older children showed greater mandibular displacement to the left (p < 0.01). No differences were observed for the variables of plantar support as a function of age (p > 0.05) and chewing side (p > 0.05). There was a moderate to strong correlation between age, body mass, height, and plantar surface area (0.63 < r < 0.83; p < 0.05) and between mean and maximum pressures of plantar support (0.58 < r < 0.89; p < 0.05). Conclusion Mandibular position, age, and preferred chewing side do not influence plantar support in children. How to cite this article Bittar KCB, Zamboti CL, Macedo CSG. Mandible Position and Chewing Preference Side Do Not Alter Plantar Support in Children Aged 4-11 Years. Int J Clin Pediatr Dent 2024;17(6):658-664.
Collapse
|
4
|
Kent RD. The Feel of Speech: Multisystem and Polymodal Somatosensation in Speech Production. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:1424-1460. [PMID: 38593006 DOI: 10.1044/2024_jslhr-23-00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
PURPOSE The oral structures such as the tongue and lips have remarkable somatosensory capacities, but understanding the roles of somatosensation in speech production requires a more comprehensive knowledge of somatosensation in the speech production system in its entirety, including the respiratory, laryngeal, and supralaryngeal subsystems. This review was conducted to summarize the system-wide somatosensory information available for speech production. METHOD The search was conducted with PubMed/Medline and Google Scholar for articles published until November 2023. Numerous search terms were used in conducting the review, which covered the topics of psychophysics, basic and clinical behavioral research, neuroanatomy, and neuroscience. RESULTS AND CONCLUSIONS The current understanding of speech somatosensation rests primarily on the two pillars of psychophysics and neuroscience. The confluence of polymodal afferent streams supports the development, maintenance, and refinement of speech production. Receptors are both canonical and noncanonical, with the latter occurring especially in the muscles innervated by the facial nerve. Somatosensory representation in the cortex is disproportionately large and provides for sensory interactions. Speech somatosensory function is robust over the lifespan, with possible declines in advanced aging. The understanding of somatosensation in speech disorders is largely disconnected from research and theory on speech production. A speech somatoscape is proposed as the generalized, system-wide sensation of speech production, with implications for speech development, speech motor control, and speech disorders.
Collapse
|
5
|
Glovsky TE, Iwasaki LR, Wu Y, Liu H, Liu Y, Sousa Melo SL, Nickel JC. Orthognathic surgery effects on temporomandibular joint compressive stresses. Orthod Craniofac Res 2023; 26 Suppl 1:142-150. [PMID: 37000157 DOI: 10.1111/ocr.12659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 04/01/2023]
Abstract
INTRODUCTION This study tested orthognathic surgery effects on temporomandibular joint (TMJ) compressive stresses. METHODS Pre- (T1) and post-surgery (T2) cone-beam computed tomography images were collected from consenting subjects aged ≥15 years. Anatomical data were used to measure surgical changes in anteroposterior mandibular position and occlusal plane angle (FH-OP), estimate condylar loading areas (mm2 ) and calculate T1 and T2 TMJ and jaw muscle forces (N) during canine biting via numerical modelling. Analysis of covariance tested for sex and biting angle differences in T2 - T1 TMJ compressive stresses (TMJ force/loading area, MPa). Principal component analyses identified jaw muscle forces that accounted for changes in T2 - T1 TMJ loads. Regression analyses tested the correlations between surgical changes in mandibular position, FH-OP, TMJ loads and muscle forces. RESULTS Of 148 cases screened, 28 females and 16 males provided complete records. Condylar loading areas were significantly smaller (P = .024) for females vs males (124 ± 5 vs 144 ± 7 mm2 ). T2 - T1 differences in TMJ compressive stresses varied by surgical change, biting angle and sex. Overall, the largest increases in TMJ compressive stresses post-surgery were for females with mandibular setbacks where FH-OP angle decreased. T2 - T1 changes in jaw muscle forces had moderate (ipsilateral, λ = 4.59; η2 = 0.071) to large (contralateral, λ = 1.49; η2 = 0.31) effects on TMJ loads. CONCLUSIONS T2 - T1 differences in TMJ compressive stresses during canine biting were affected by surgical changes in mandibular position and occlusal plane angle, biting angle and sex. Surgical changes altered jaw muscle forces for the same biting conditions and, thus, affected TMJ loads and compressive stresses.
Collapse
Affiliation(s)
- Taylor E Glovsky
- School of Dentistry, Oregon Health and Science University, 97201, Oregon, Portland, 2730 S Moody Ave., USA
| | - Laura R Iwasaki
- Department of Oral and Craniofacial Sciences, School of Dentistry, Oregon Health and Science University, 97201, Oregon, Portland, 2730 S Moody Ave., USA
| | - Ying Wu
- Department of Oral and Craniofacial Sciences, School of Dentistry, Oregon Health and Science University, 97201, Oregon, Portland, 2730 S Moody Ave., USA
| | - Hongzeng Liu
- Department of Oral and Craniofacial Sciences, School of Dentistry, Oregon Health and Science University, 97201, Oregon, Portland, 2730 S Moody Ave., USA
| | - Ying Liu
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, Tennessee, 37614, USA
| | - Saulo L Sousa Melo
- Department of Oral and Craniofacial Sciences, School of Dentistry, Oregon Health and Science University, 97201, Oregon, Portland, 2730 S Moody Ave., USA
| | - Jeffrey C Nickel
- Department of Oral and Craniofacial Sciences, School of Dentistry, Oregon Health and Science University, 97201, Oregon, Portland, 2730 S Moody Ave., USA
| |
Collapse
|
6
|
Martín-Cruces J, Martín-Biedma B, García-Mesa Y, Cuendias P, Gaite JJ, García-Suárez O, Cobo JL, Vega JA. Exploring somatosensory innervation of the human lip: A focus on the vermilion. Ann Anat 2023; 250:152159. [PMID: 37741584 DOI: 10.1016/j.aanat.2023.152159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND The lips are a vital component of the face and are densely innervated to perform various functions. The lip edges are covered with mucocutaneous tissue called vermilion which is particularly receptive to touch and temperature. The aim of this study was to investigate the somatosensory innervation of human lips, focusing on sensory corpuscles and the presence of mechano-gated (ASIC2, PIEZO2, and TRPV4) and thermosensing (TRPV1, TRPM2, and RPM8) ion channels within them. METHODS Twelve intact lips (6 upper and 6 lower) were obtained from non-embalmed frozen cadavers (five females and seven males) with an age range of 60-80 years. The specimens were divided into three zones (medial, lateral, and median). The morphotypes of sensory corpuscles and their immunohistochemical profile was analysed. The occurrence of ion channels involved in mechanosensation and temperature detection was examined using various antibodies. Sensory corpuscle density was quantified in vermilion sections, and statistical analyses were conducted to assess differences between the upper and lower lips, as well as between females and males (p < 0.05). RESULTS Different morphotypes of sensory corpuscles were identified: Ruffini-like associated with hair follicles, Meissner and glomerular corpuscles in the vermilion, and less classifiable sensory corpuscles within the mucosa. The density of sensory corpuscles in the vermilion was higher in the upper lip than in the lower lip; glomerular corpuscles predominated in the medial and median segments, whereas Meissner corpuscles were more abundant in the lateral segment. No sex-related differences were observed in the density or distribution of the two main corpuscular morphotypes. In contrast, the axons of both the glomeruli and Meissner corpuscles regularly displayed ASIC2 and PIEZO2 immunoreactivity, whereas immunoreactivity for TRPV1, TRPV4, TRPM2, and TRPV8 was absent. CONCLUSIONS These results demonstrate that the sensory corpuscles of the vermilion are a mixture of those typical of glabrous skin mucocutaneous tissues. The presence of PIEZO2 and ASIC2 in their axons suggests that these sensory corpuscles function as mechanosensors.
Collapse
Affiliation(s)
- José Martín-Cruces
- Departamento de Morfología y Biología Celular - Grupo SINPOs, Universidad de Oviedo, Oviedo, Spain
| | - Benjamín Martín-Biedma
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Yolanda García-Mesa
- Departamento de Morfología y Biología Celular - Grupo SINPOs, Universidad de Oviedo, Oviedo, Spain
| | - Patricia Cuendias
- Departamento de Morfología y Biología Celular - Grupo SINPOs, Universidad de Oviedo, Oviedo, Spain
| | - Juan J Gaite
- Unidad Dental, Clínica Universitaria de Navarra, Pamplona, Spain
| | - Olivia García-Suárez
- Departamento de Morfología y Biología Celular - Grupo SINPOs, Universidad de Oviedo, Oviedo, Spain
| | - Juan L Cobo
- Departamento de Morfología y Biología Celular - Grupo SINPOs, Universidad de Oviedo, Oviedo, Spain; Servico de Cirugía Maxillofacial, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - José A Vega
- Departamento de Morfología y Biología Celular - Grupo SINPOs, Universidad de Oviedo, Oviedo, Spain; Facutad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago de Chile, Chile.
| |
Collapse
|
7
|
Tereshenko V, Maierhofer U, Dotzauer DC, Laengle G, Politikou O, Carrero Rojas G, Festin C, Luft M, Jaklin FJ, Hruby LA, Gohritz A, Farina D, Blumer R, Bergmeister KD, Aszmann OC. Axonal mapping of the motor cranial nerves. Front Neuroanat 2023; 17:1198042. [PMID: 37332322 PMCID: PMC10272770 DOI: 10.3389/fnana.2023.1198042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023] Open
Abstract
Basic behaviors, such as swallowing, speech, and emotional expressions are the result of a highly coordinated interplay between multiple muscles of the head. Control mechanisms of such highly tuned movements remain poorly understood. Here, we investigated the neural components responsible for motor control of the facial, masticatory, and tongue muscles in humans using specific molecular markers (ChAT, MBP, NF, TH). Our findings showed that a higher number of motor axonal population is responsible for facial expressions and tongue movements, compared to muscles in the upper extremity. Sensory axons appear to be responsible for neural feedback from cutaneous mechanoreceptors to control the movement of facial muscles and the tongue. The newly discovered sympathetic axonal population in the facial nerve is hypothesized to be responsible for involuntary control of the muscle tone. These findings shed light on the pivotal role of high efferent input and rich somatosensory feedback in neuromuscular control of finely adjusted cranial systems.
Collapse
Affiliation(s)
- Vlad Tereshenko
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Udo Maierhofer
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Dominik C. Dotzauer
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Gregor Laengle
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Olga Politikou
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Genova Carrero Rojas
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Christopher Festin
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Matthias Luft
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
- Department of Plastic, Aesthetic and Reconstructive Surgery, University Hospital St. Pölten, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Florian J. Jaklin
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Laura A. Hruby
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Andreas Gohritz
- Department of Plastic Surgery, University of Basel, Basel, Switzerland
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Roland Blumer
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Konstantin D. Bergmeister
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
- Department of Plastic, Aesthetic and Reconstructive Surgery, University Hospital St. Pölten, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Oskar C. Aszmann
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Wang Y, Sun K, Zhang Q, Yu SS, Han BS, Wang J, Zhao M, Meng X, Chen S, Zheng Y. Flexible integrated sensor with asymmetric structure for simultaneously 3D tactile and thermal sensing. Biosens Bioelectron 2023; 224:115054. [PMID: 36603284 DOI: 10.1016/j.bios.2022.115054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
The human body detects tactile stimuli through a combination of pressure force and temperature signals via various cutaneous receptors. The development of a multifunctional artificial tactile perception system has potential benefits for future robotic technologies, human-machine interfaces, artificial intelligence, and health monitoring devices. However, constructing systems beyond simple pressure sensing capabilities remains challenging. Here, we propose an artificial flexible and ultra-thin (50 μ m) skin system to simultaneously capture 3D tactile and thermal signals, which mimics the human tactile recognition process using customized sensor pairs and compact peripheral signal-converting circuits. The 3D tactile sensors have a flower-like asymmetric structure with 5-ports and 4 capacitive elements in pairs. Differential and average signals would reveal the curl and amplitude values of the fore field with a resolution of 0.18/mm. The resistive thermal sensors are fabricated with serpentine lines and possess stable heat-sensing performance (165 mV/°C) under shape deformation conditions. Real-time monitoring of the skin stimuli is displayed on the user interface and stored on mobile clients. This work offers broad capabilities relevant to practical applications ranging from assistant prosthetics to artificial electronic skins.
Collapse
Affiliation(s)
- Yongqing Wang
- School of Geophysics and Information Technology, China University of Geosciences, Beijing, 100084, China; School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Kun Sun
- Beijing Key Laboratory of Advanced Manufacturing Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Qisheng Zhang
- School of Geophysics and Information Technology, China University of Geosciences, Beijing, 100084, China
| | | | - Boon Siew Han
- Schaeffler Hub for Advanced Research (SHARE@NTU), Nanyang Technological University, 61 Nanyang Dr, 637460, Singapore
| | - Jianpeng Wang
- Department of Critical CareMedicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150007, China
| | - Mingyan Zhao
- Department of Critical CareMedicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150007, China
| | - Xianglin Meng
- Department of Critical CareMedicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150007, China
| | - Sicheng Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | - Yuanjin Zheng
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| |
Collapse
|
9
|
He R, Chou C, Chen L, Stoller M, Kang M, Ho SP. Insights Into Pulp Biomineralization in Human Teeth. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.883336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
IntroductionMineralized pulp (MP) compromises tooth function and its causation is unknown. The hypothesis of this study is that pulp mineralization is associated with pulpal tissue adaptation, increased mineral densities, and decreased permeabilities of tubular dentin and cementum. Methods will include correlative spatial mapping of physicochemical and biochemical characteristics of pulp, and contextualize these properties within the dentin-pulp complex (DPC) to reveal the inherent vunerabilities of pulp.MethodsSpecimens (N = 25) were scanned using micro X-ray computed tomography (micro-XCT) to visualize MP and measure mineral density (MD). Elemental spatial maps of MP were acquired using synchrotron X-ray fluorescence microprobe (μXRF) and energy dispersive X-ray spectroscopy (EDX). Extracted pulp tissues were sectioned for immunolabelling and the sections were imaged using a light microscope. Microscale morphologies and nanoscale ultrastructures of MP were imaged using scanning electron (SEM) and scanning transmission electron microscopy (STEM) techniques.ResultsHeterogeneous distribution of MD from 200 to 2,200 mg/cc, and an average MD of 892 (±407) mg/cc were observed. Highly mineralized pulp with increased number of occluded tubules, reduced pore diameter in cementum, and decreased connectivity in lateral channels were observed. H&E, trichrome, and von Kossa staining showed lower cell and collagen densities, and mineralized regions in pulp. The biomolecules osteopontin (OPN), osteocalcin (OCN), osterix (OSX), and bone sialoprotein (BSP) were immunolocalized around PGP 9.5 positive neurovascular bundles in MP. SEM and STEM revealed a wide range of nano/micro particulates in dentin tubules and spherulitic mineral aggregates in the collagen with intrafibrillar mineral surrounding neurovascular bundles. EDX and μXRF showed elevated counts of Ca, P, Mg, and Zn inside pulp and at the dentin-pulp interface (DPI) in the DPC.ConclusionColocalization of physical and chemical, and biomolecular compositions in MP suggest primary and secondary biomineralization pathways in pulp and dentin at a tissue level, and altered fluid dynamics at an organ level. Elevated counts of Zn at the mineralizing front in MP indicated its role in pulp biomineralization. These observations underpin the inherent mechano- and chemo-responsiveness of the neurovascular DPC and help elucidate the clinical subtleties related to pulpitis, dentin-bridge, and pulp stone formation.
Collapse
|
10
|
A review on oral tactile acuity: measurement, influencing factors and its relation to food perception and preference. Food Qual Prefer 2022. [DOI: 10.1016/j.foodqual.2022.104624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Neural signalling of gut mechanosensation in ingestive and digestive processes. Nat Rev Neurosci 2022; 23:135-156. [PMID: 34983992 DOI: 10.1038/s41583-021-00544-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/29/2022]
Abstract
Eating and drinking generate sequential mechanosensory signals along the digestive tract. These signals are communicated to the brain for the timely initiation and regulation of diverse ingestive and digestive processes - ranging from appetite control and tactile perception to gut motility, digestive fluid secretion and defecation - that are vital for the proper intake, breakdown and absorption of nutrients and water. Gut mechanosensation has been investigated for over a century as a common pillar of energy, fluid and gastrointestinal homeostasis, and recent discoveries of specific mechanoreceptors, contributing ion channels and the well-defined circuits underlying gut mechanosensation signalling and function have further expanded our understanding of ingestive and digestive processes at the molecular and cellular levels. In this Review, we discuss our current understanding of the generation of mechanosensory signals from the digestive periphery, the neural afferent pathways that relay these signals to the brain and the neural circuit mechanisms that control ingestive and digestive processes, focusing on the four major digestive tract parts: the oral and pharyngeal cavities, oesophagus, stomach and intestines. We also discuss the clinical implications of gut mechanosensation in ingestive and digestive disorders.
Collapse
|
12
|
Bhattacharjee B, Saneja R, Bhatnagar A. Effect of complete dentures on oral stereognostic ability in edentulous patients: A systematic review. J Indian Prosthodont Soc 2021; 21:109-115. [PMID: 33938860 PMCID: PMC8262433 DOI: 10.4103/jips.jips_401_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Aim: Oral stereognosis is an important sensation for a human being to percept any type of materials that are introduced in the oral cavity. It is defined as the ability of an individual to recognize objects using only tactile sensation without using vision, audition, balance, somatic function, taste, or smell. The primary purpose of this review was to evaluate the effect of complete dentures on oral stereognostic ability in edentulous subjects. Settings and Design: Systematic review based on PRISMA guidelines. Materials and Methods: A systematic search of the electronic databases like PubMed and Web of Science was done using keywords – “stereognosis,” “oral stereognosis,” “complete denture,” and “complete edentulism.” In addition to this, a manual search of references mentioned in the articles and gray literature was done. Data extraction and assessment were done by two independent reviewers. Statistical Analysis Used: Qualitative analysis. Results: The literature search yielded a total of 61 articles. Thirteen duplicate articles were removed and 36 articles were rejected after initial screening of titles and abstracts. A total of 12 articles were selected for full text reading and 5 of them were included for qualitative analysis. Conclusion: All the included studies showed complete denture treatment therapy improved stereognostic ability in terms of correct identification of test pieces and time taken to identify the objects. There is also a direct relationship between the adaptability of dentures and stereognostic ability.
Collapse
Affiliation(s)
- Bappaditya Bhattacharjee
- Department of Prosthodontics, Faculty of Dental Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ritu Saneja
- Department of Prosthodontics, Faculty of Dental Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Atul Bhatnagar
- Department of Prosthodontics, Faculty of Dental Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
13
|
Stahl F, Pollex D, Mathmann P, Weinhold L, Rohrbach S. Digitomotography in children with oro-facial dysfunction (OFD, oro-facial myofunctional disorders) and childhood apraxia of speech (CAS). J Oral Rehabil 2021; 48:937-944. [PMID: 33797781 DOI: 10.1111/joor.13174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/26/2021] [Accepted: 03/18/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Oro-facial dysfunctions (OFDs; oro-facial myofunctional disorders) in children and childhood apraxia of speech (CAS) often cause severe problems in articulation, chewing, swallowing and oral posture. OBJECTIVES Pathognomonic symptoms could yet not be identified, but central problems in planning, programming, timing and automating oro-facial, as well as other fine motor skills, are assumed to be affected. METHODS To investigate the nature of motor and coordinative deficits in OFD and CAS, digitomotography was applied. The testing focused on recording frequency, force, rhythm and regularity of the index finger including speeded and metronome tapping tasks. 25 children with OFD (7 girls and 18 boys, age 7.9 ± 2.3) and 5 children with CAS (0 girls and 5 boys, age 7.6 ± 2.3), and 31 healthy controls (12 girls and 19 boys, age 9.3 ± 2.2) were tested. Statistical significance was accepted at α = 0.05. ANOVA test, non-parametric Mann-Whitney U test, Kruskal-Wallis test and Spearman's rank correlation coefficient were used. RESULTS Cross-sectional data revealed consistent significant differences between children with OFD and healthy controls concerning frequency, force, rhythm and regularity of index finger tapping. Individuals with CAS showed particularly low results. Tapping results correlated with disease burden. CONCLUSION These findings support that underlying superordinated sensorimotor deficits exist. This may help phenotyping and influence diagnostical and therapeutical approaches.
Collapse
Affiliation(s)
- Friederike Stahl
- Audiology and Phoniatrics, Charité-University Medicine Berlin, Berlin, Germany.,Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Dörte Pollex
- Audiology and Phoniatrics, Charité-University Medicine Berlin, Berlin, Germany
| | - Philipp Mathmann
- Audiology and Phoniatrics, Charité-University Medicine Berlin, Berlin, Germany.,Department of Phoniatrics and Pedaudiology, University Hospital Münster, University of Münster, Münster, Germany
| | - Leonie Weinhold
- Department of Medical Biometry, Informatics and Epidemiology, University Hospital, Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Saskia Rohrbach
- Audiology and Phoniatrics, Charité-University Medicine Berlin, Berlin, Germany.,ENT and phoniatrics, Berlin, Germany
| |
Collapse
|
14
|
Olson RA, Montuelle SJ, Chadwell BA, Curtis H, Williams SH. Jaw kinematics and tongue protraction-retraction during chewing and drinking in the pig. J Exp Biol 2021; 224:jeb239509. [PMID: 33674496 PMCID: PMC8077536 DOI: 10.1242/jeb.239509] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/19/2021] [Indexed: 11/20/2022]
Abstract
Mastication and drinking are rhythmic and cyclic oral behaviors that require interactions between the tongue, jaw and a food or liquid bolus, respectively. During mastication, the tongue transports and positions the bolus for breakdown between the teeth. During drinking, the tongue aids in ingestion and then transports the bolus to the oropharynx. The objective of this study was to compare jaw and tongue kinematics during chewing and drinking in pigs. We hypothesized there would be differences in jaw gape cycle dynamics and tongue protraction-retraction between behaviors. Mastication cycles had an extended slow-close phase, reflecting tooth-food-tooth contact, whereas drinking cycles had an extended slow-open phase, corresponding to tongue protrusion into the liquid. Compared with chewing, drinking jaw movements were of lower magnitude for all degrees of freedom examined (jaw protraction, yaw and pitch), and were bilaterally symmetrical with virtually no yaw. The magnitude of tongue protraction-retraction (Txt), relative to a mandibular coordinate system, was greater during mastication than during drinking, but there were minimal differences in the timing of maximum and minimum Txt relative to the jaw gape cycle between behaviors. However, during drinking, the tongue tip is often located outside the oral cavity for the entire cycle, leading to differences between behaviors in the timing of anterior marker maximum Txt. This demonstrates that there is variation in tongue-jaw coordination between behaviors. These results show that jaw and tongue movements vary significantly between mastication and drinking, which hints at differences in the central control of these behaviors.
Collapse
Affiliation(s)
- Rachel A. Olson
- Ohio University, Department of Biological Sciences, Irvine Hall 107, Athens, OH 45701, USA
| | - Stéphane J. Montuelle
- Ohio University Heritage College of Osteopathic Medicine, Department of Biomedical Sciences, 4180 Warrensville Center Road, SPS121, Warrensville Heights, OH 44122, USA
| | - Brad A. Chadwell
- Idaho College of Osteopathic Medicine, 1401 E. Central Dr., Meridian, ID 83642, USA
| | - Hannah Curtis
- Ohio University Heritage College of Osteopathic Medicine, Department of Biomedical Sciences, Irvine Hall 228, Athens, OH 45701, USA
| | - Susan H. Williams
- Ohio University Heritage College of Osteopathic Medicine, Department of Biomedical Sciences, Irvine Hall 228, Athens, OH 45701, USA
| |
Collapse
|
15
|
Tereshenko V, Dotzauer DC, Maierhofer U, Festin C, Luft M, Laengle G, Politikou O, Klein HJ, Blumer R, Aszmann OC, Bergmeister KD. Selective Denervation of the Facial Dermato-Muscular Complex in the Rat: Experimental Model and Anatomical Basis. Front Neuroanat 2021; 15:650761. [PMID: 33828465 PMCID: PMC8019738 DOI: 10.3389/fnana.2021.650761] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
The facial dermato-muscular system consists of highly specialized muscles tightly adhering to the overlaying skin and thus form a complex morphological conglomerate. This is the anatomical and functional basis for versatile facial expressions, which are essential for human social interaction. The neural innervation of the facial skin and muscles occurs via branches of the trigeminal and facial nerves. These are also the most commonly pathologically affected cranial nerves, often requiring surgical treatment. Hence, experimental models for researching these nerves and their pathologies are highly relevant to study pathophysiology and nerve regeneration. Experimental models for the distinctive investigation of the complex afferent and efferent interplay within facial structures are scarce. In this study, we established a robust surgical model for distinctive exploration of facial structures after complete elimination of afferent or efferent innervation in the rat. Animals were allocated into two groups according to the surgical procedure. In the first group, the facial nerve and in the second all distal cutaneous branches of the trigeminal nerve were transected unilaterally. All animals survived and no higher burden was caused by the procedures. Whisker pad movements were documented with video recordings 4 weeks after surgery and showed successful denervation. Whole-mount immunofluorescent staining of facial muscles was performed to visualize the innervation pattern of the neuromuscular junctions. Comprehensive quantitative analysis revealed large differences in afferent axon counts in the cutaneous branches of the trigeminal nerve. Axon number was the highest in the infraorbital nerve (28,625 ± 2,519), followed by the supraorbital nerve (2,131 ± 413), the mental nerve (3,062 ± 341), and the cutaneous branch of the mylohyoid nerve (343 ± 78). Overall, this surgical model is robust and reliable for distinctive surgical deafferentation or deefferentation of the face. It may be used for investigating cortical plasticity, the neurobiological mechanisms behind various clinically relevant conditions like facial paralysis or trigeminal neuralgia as well as local anesthesia in the face and oral cavity.
Collapse
Affiliation(s)
- Vlad Tereshenko
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Dominik C Dotzauer
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Udo Maierhofer
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Christopher Festin
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Matthias Luft
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Gregor Laengle
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Olga Politikou
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Holger J Klein
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Roland Blumer
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Oskar C Aszmann
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria.,Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Konstantin D Bergmeister
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria.,Department of Plastic, Aesthetic and Reconstructive Surgery, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, Krems, Austria.,Department of Plastic, Aesthetic and Reconstructive Surgery, University Hospital St. Poelten, Krems, Austria
| |
Collapse
|
16
|
Hellmann D, Glöggler JC, Plaschke K, Jäger R, Eiglsperger U, Schindler HJ, Lapatki BG. Effects of preventing intercuspation on the precision of jaw movements. J Oral Rehabil 2021; 48:392-402. [PMID: 33368502 DOI: 10.1111/joor.13137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Closing movements are among the jaw's basic physiological motor actions. During functional movements, the jaw changes position continually, which requires appropriate proprioception. However, the significance of the various proprioceptive receptors involved and how they interact is not yet fully clear. OBJECTIVES This study's main objective was to test whether preventing intercuspation (IC) for 1 week would affect the precision of jaw-closing movements into IC and the functional space of habitual chewing movements (HCM). A secondary objective was to compare precision of jaw-closing movements into IC with the precision of movements into a target position (TP) far from IC. METHODS Fourteen participants' HCM and jaw-closing movements into IC were recorded on two sessions (T1 and T2) 1 week apart. Between sessions, participants wore posterior bite plates to prevent IC. They also received a 10-minute training session at T1 to guide their jaw-closing movements into TP. The precision of the closing movements into IC and TP was analysed. For HCM, the vertical amplitude, lateral width and area of chewing cycles were evaluated. RESULTS The precision of jaw movements into IC increased as the jaw gap decreased, but precision did not differ significantly between T1 and T2. For HCM, the vertical amplitude and area of chewing cycles increased significantly between T1 and T2. The precision of the closing trajectory into TP increased significantly during the training session. CONCLUSION Our results confirm the excellent adaptability of the craniomandibular system, controlled by stringent motor programmes that are supported by continuous peripheral sensory input.
Collapse
Affiliation(s)
- Daniel Hellmann
- Dental Academy for Continuing Professional Development Karlsruhe, Karlsruhe, Germany.,Department of Prosthodontics, University of Würzburg, Würzburg, Germany
| | | | | | - Rudolf Jäger
- Department of Orthodontics, University of Ulm, Ulm, Germany
| | | | - Hans J Schindler
- Department of Prosthodontics, University of Würzburg, Würzburg, Germany.,Biomechanics Research Group, Institute for Mechanics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | |
Collapse
|
17
|
Naito S, Kato C, Yabushita T, Ono T. Functional changes in the temporomandibular joint mechanoreceptors associated with experimentally induced condylar resorption in rats. Angle Orthod 2020; 90:831-836. [PMID: 33378516 DOI: 10.2319/020420-80.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/01/2020] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES To evaluate the influence of experimentally induced progressive condylar resorption (PCR) on temporomandibular joint (TMJ) mechanoreception. MATERIALS AND METHODS Twenty 13-week-old male albino Wistar rats were divided equally into control and PCR groups. A compressive force was loaded on the left TMJ of PCR group rats to induce condylar resorption. Single-unit activities of TMJ mechanoreceptors were also induced through passive jaw movement. Recording was performed for the left Gasserian ganglion at 3 days and 1 week after the establishment of PCR group. The effects of PCR on TMJ units were assessed by measuring the firing threshold, maximum instantaneous firing frequency, and average firing frequency. RESULTS Compared with the control group, there were no significant differences in the firing threshold of the PCR group after 3 days. The thresholds were significantly higher 1 week after compressive force loading on the condyle. The maximum instantaneous firing frequencies and the average firing frequencies showed no significant differences after 3 days. However, these were significantly lower 1 week after compressive force loading. CONCLUSIONS The findings suggest that compressive force loading on the condyle may influence the function of TMJ mechanoreceptors.
Collapse
|
18
|
Slaoui Hasnaoui M, Arsenault I, Verdier D, Obeid S, Kolta A. Functional Connectivity Between the Trigeminal Main Sensory Nucleus and the Trigeminal Motor Nucleus. Front Cell Neurosci 2020; 14:167. [PMID: 32655373 PMCID: PMC7324845 DOI: 10.3389/fncel.2020.00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/19/2020] [Indexed: 11/24/2022] Open
Abstract
The present study shows new evidence of functional connectivity between the trigeminal main sensory (NVsnpr) and motor (NVmt) nuclei in rats and mice. NVsnpr neurons projecting to NVmt are most highly concentrated in its dorsal half. Their electrical stimulation induced multiphasic excitatory synaptic responses in trigeminal MNs and evoked calcium responses mainly in the jaw-closing region of NVmt. Induction of rhythmic bursting in NVsnpr neurons by local applications of BAPTA also elicited rhythmic firing or clustering of postsynaptic potentials in trigeminal motoneurons, further emphasizing the functional relationship between these two nuclei in terms of rhythm transmission. Biocytin injections in both nuclei and calcium-imaging in one of the two nuclei during electrical stimulation of the other revealed a specific pattern of connectivity between the two nuclei, which organization seemed to critically depend on the dorsoventral location of the stimulation site within NVsnpr with the most dorsal areas of NVsnpr projecting to the dorsolateral region of NVmt and intermediate areas projecting to ventromedial NVmt. This study confirms and develops earlier experiments by exploring the physiological nature and functional topography of the connectivity between NVsnpr and NVmt that was demonstrated in the past with neuroanatomical techniques.
Collapse
Affiliation(s)
- Mohammed Slaoui Hasnaoui
- Groupe de Recherche sur le Systéme Nerveux Central, Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréeal, QC, Canada
| | - Isabel Arsenault
- Groupe de Recherche sur le Systéme Nerveux Central, Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréeal, QC, Canada
| | - Dorly Verdier
- Groupe de Recherche sur le Systéme Nerveux Central, Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréeal, QC, Canada
| | - Sami Obeid
- Groupe de Recherche sur le Systéme Nerveux Central, Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréeal, QC, Canada
| | - Arlette Kolta
- Groupe de Recherche sur le Systéme Nerveux Central, Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréeal, QC, Canada.,Département de Stomatologie, Faculté de Médecine Dentaire, Université de Montreal, Montreal, QC, Canada
| |
Collapse
|
19
|
|
20
|
Lv C, Lou L, Mosca AC, Wang X, Yang N, Chen J. Effect of tongue temperature on oral tactile sensitivity and viscosity discrimination. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Barlow S, Custead R, Lee J, Hozan M, Greenwood J. Wireless Sensing of Lower Lip and Thumb-Index Finger 'Ramp-and-Hold' Isometric Force Dynamics in a Small Cohort of Unilateral MCA Stroke: Discussion of Preliminary Findings. SENSORS 2020; 20:s20041221. [PMID: 32102239 PMCID: PMC7070866 DOI: 10.3390/s20041221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 01/22/2023]
Abstract
Automated wireless sensing of force dynamics during a visuomotor control task was used to rapidly assess residual motor function during finger pinch (right and left hand) and lower lip compression in a cohort of seven adult males with chronic, unilateral middle cerebral artery (MCA) stroke with infarct confirmed by anatomic magnetic resonance imaging (MRI). A matched cohort of 25 neurotypical adult males served as controls. Dependent variables were extracted from digitized records of ‘ramp-and-hold’ isometric contractions to target levels (0.25, 0.5, 1, and 2 Newtons) presented in a randomized block design; and included force reaction time, peak force, and dF/dtmax associated with force recruitment, and end-point accuracy and variability metrics during the contraction hold-phase (mean, SD, criterion percentage ‘on-target’). Maximum voluntary contraction force (MVCF) was also assessed to establish the force operating range. Results based on linear mixed modeling (LMM, adjusted for age and handedness) revealed significant patterns of dissolution in fine force regulation among MCA stroke participants, especially for the contralesional thumb-index finger followed by the ipsilesional digits, and the lower lip. For example, the contralesional thumb-index finger manifest increased reaction time, and greater overshoot in peak force during recruitment compared to controls. Impaired force regulation among MCA stroke participants during the contraction hold-phase was associated with significant increases in force SD, and dramatic reduction in the ability to regulate force output within prescribed target force window (±5% of target). Impaired force regulation during contraction hold-phase was greatest in the contralesional hand muscle group, followed by significant dissolution in ipsilateral digits, with smaller effects found for lower lip. These changes in fine force dynamics were accompanied by large reductions in the MVCF with the LMM marginal means for contralesional and ipsilesional pinch forces at just 34.77% (15.93 N vs. 45.82 N) and 66.45% (27.23 N vs. 40.98 N) of control performance, respectively. Biomechanical measures of fine force and MVCF performance in adult stroke survivors provide valuable information on the profile of residual motor function which can help inform clinical treatment strategies and quantitatively monitor the efficacy of rehabilitation or neuroprotection strategies.
Collapse
Affiliation(s)
- Steven Barlow
- Department of Special Education and Communication Disorders, University of Nebraska, 141 Barkley Memorial Center, Lincoln, NE 68583-0738, USA; (R.C.); (M.H.); (J.G.)
- Department of Biological Systems Engineering, University of Nebraska, 230 L.W. Chase Hall, Lincoln, NE 68583-0726, USA
- Center for Brain-Biology-Behavior, University of Nebraska, C89 East Stadium, Lincoln, NE 68588-0156, USA
- Correspondence: ; Tel.: +1-402-472-6395; Fax: +1-402-472-7697
| | - Rebecca Custead
- Department of Special Education and Communication Disorders, University of Nebraska, 141 Barkley Memorial Center, Lincoln, NE 68583-0738, USA; (R.C.); (M.H.); (J.G.)
| | - Jaehoon Lee
- Department of Educational Psychology & Leadership, Texas Tech University, PO Box 41071, Lubbock, TX 79409, USA;
| | - Mohsen Hozan
- Department of Special Education and Communication Disorders, University of Nebraska, 141 Barkley Memorial Center, Lincoln, NE 68583-0738, USA; (R.C.); (M.H.); (J.G.)
- Department of Biological Systems Engineering, University of Nebraska, 230 L.W. Chase Hall, Lincoln, NE 68583-0726, USA
- Center for Brain-Biology-Behavior, University of Nebraska, C89 East Stadium, Lincoln, NE 68588-0156, USA
| | - Jacob Greenwood
- Department of Special Education and Communication Disorders, University of Nebraska, 141 Barkley Memorial Center, Lincoln, NE 68583-0738, USA; (R.C.); (M.H.); (J.G.)
- Department of Biological Systems Engineering, University of Nebraska, 230 L.W. Chase Hall, Lincoln, NE 68583-0726, USA
- Center for Brain-Biology-Behavior, University of Nebraska, C89 East Stadium, Lincoln, NE 68588-0156, USA
| |
Collapse
|
22
|
Effects of food properties on chewing in pigs: Flexibility and stereotypy of jaw movements in a mammalian omnivore. PLoS One 2020; 15:e0228619. [PMID: 32032365 PMCID: PMC7006907 DOI: 10.1371/journal.pone.0228619] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 01/20/2020] [Indexed: 11/19/2022] Open
Abstract
Chewing is a rhythmic oral behavior that requires constant modifications of jaw movements in response to changes in food properties. The food-specific kinematic response is dependent on the potential for kinematic flexibility allowed by morphology and modulation of motor control. This study investigates the effects of food toughness and stiffness on the amplitude and variability of jaw movements during chewing in a typical omnivorous mammalian model (pigs). Jaw movements were reconstructed using X-ray Reconstruction Of Moving Morphology (XROMM) and kinematic data associated with the amplitude of jaw pitch (opening-closing) and jaw yaw (mediolateral rotation) were extracted for each cycle. Between-food differences were tested for the amplitude of jaw movements during each phase of the gape cycle, as well as in their respective within-food variability, or stereotypy, as indicated by coefficients of variation. With increasing toughness, jaw pitch amplitude is decreased during fast close, larger and more stereotyped during slow close, smaller but more variable during slow open, and more variable during fast open. In addition, when chewing on tougher foods, the amplitude of jaw yaw during slow close only increases in a subset of individuals, but all become less variable (i.e., more stereotyped). In contrast, increasing food stiffness has no effect on the amplitude or the variability of jaw pitch, whereas jaw yaw increases significantly in the majority of individuals studied. Our data demonstrate that food stiffness and toughness both play a role in modulating gape cycle dynamics by altering the trajectory of jaw movements, especially during the slow-close phase and tooth-food-tooth contact, albeit differently. This highlights how a generalist oral morphology such as that of pigs (e.g., bunodont teeth lacking precise occlusion, permissive temporomandibular joint allowing extensive condylar displacements in 3 dimensions) enables organisms to not only adjust chewing movements in their amplitude, but also in their variability.
Collapse
|
23
|
Grigoriadis A, Kumar A, Åberg MK, Trulsson M. Effect of Sudden Deprivation of Sensory Inputs From Periodontium on Mastication. Front Neurosci 2019; 13:1316. [PMID: 31920486 PMCID: PMC6914695 DOI: 10.3389/fnins.2019.01316] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/25/2019] [Indexed: 01/05/2023] Open
Abstract
Objective To investigate the effect of sudden deprivation of sensory inputs from the periodontium on jaw kinematics and time-varying activation profile of the masseter muscle. Methods Fourteen (age range: 22–26 years; four men) healthy and natural dentate volunteers participated in a single experimental session. During the experiment, the participants were asked to eat six hard visco-elastic test food models, three each before and after an anesthetic intervention. The movements of the jaw in three dimensions and electromyographic (EMG) activity of the masseter muscle on the chewing side were recorded. Results The results of the study showed no significant differences in the number of chewing cycles (P = 0.233) and the duration of chewing sequence (P = 0.198) due to sudden deprivation of sensory inputs from the periodontium. However, there was a significant increase in the jaw opening velocity (P = 0.030) and a significant increase in the duration of occlusal phase (P = 0.004) during the anesthetized condition. The EMG activity of the jaw closing phase was significantly higher during the control condition [116.5 arbitrary units (AU)] than anesthetized condition (93.9 AU). The temporal profile of the masseter muscle showed a biphasic increase in the excitatory muscle drive in the control condition but this increase was virtually absent during the anesthetized condition. Conclusion Sudden deprivation of sensory inputs from the periodontium affects the jaw kinematics and jaw muscle activity, with a clear difference in the time-varying activation profile of the masseter muscle. The activation profile of the masseter muscle shows that periodontal mechanoreceptors contribute to approximately 20% of the EMG activity during the jaw closing phase.
Collapse
Affiliation(s)
- Anastasios Grigoriadis
- Section of Oral Rehabilitation, Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden.,Scandinavian Center for Orofacial Neurosciences, Huddinge, Sweden
| | - Abhishek Kumar
- Section of Oral Rehabilitation, Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden.,Scandinavian Center for Orofacial Neurosciences, Huddinge, Sweden
| | - Magnus K Åberg
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Mats Trulsson
- Section of Oral Rehabilitation, Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden.,Scandinavian Center for Orofacial Neurosciences, Huddinge, Sweden
| |
Collapse
|
24
|
Al Sayegh S, Borgwardt A, Svensson KG, Kumar A, Grigoriadis A, Christidis N. Effects of Chronic and Experimental Acute Masseter Pain on Precision Biting Behavior in Humans. Front Physiol 2019; 10:1369. [PMID: 31736787 PMCID: PMC6828929 DOI: 10.3389/fphys.2019.01369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/15/2019] [Indexed: 01/24/2023] Open
Abstract
Chronic pain in the orofacial region is common worldwide. Pain seems to affect the jaw motor control. Hence, temporomandibular disorders (TMD) are often accompanied by pain upon chewing, restricted mouth opening and impaired maximal bite forces. However, little is known on the effects of pain, in particular the effects of chronic jaw muscle pain on precision biting. The aim of the study was to investigate the effect of chronic and acute jaw muscle pain on oral motor control during precision biting in humans. Eighteen patients with chronic masseter muscle pain and 18 healthy participants completed the experiment. All participants were examined according to the Diagnostic Criteria for TMD. Experimental acute pain was induced by bilateral, simultaneous sterile hypertonic saline infusions into the healthy masseter muscles. A standardized hold and split biting task was used to assess the precision biting. The data was analyzed with non-parametric statistical tests. The results showed no significant differences in the hold forces, split forces, durations of split or peak split rates within or between the pain and pain-free conditions. The mean split rate increased significantly compared to baseline values both in the chronic patients and the pain-free condition. However, this increase was not evident in the experimental acute pain condition. Further, there were no significant differences in the mean split rates between the conditions. The data suggest that jaw muscle pain does not seem to alter precision biting in humans, however, the possibility that a nociceptive modulation of spindle afferent activity might have occurred but compensated for cannot be ruled out.
Collapse
Affiliation(s)
- Samaa Al Sayegh
- Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden.,Scandinavian Center for Orofacial Neurosciences, Huddinge, Sweden
| | - Annie Borgwardt
- Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | | | - Abhishek Kumar
- Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden.,Scandinavian Center for Orofacial Neurosciences, Huddinge, Sweden
| | - Anastasios Grigoriadis
- Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden.,Scandinavian Center for Orofacial Neurosciences, Huddinge, Sweden
| | - Nikolaos Christidis
- Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden.,Scandinavian Center for Orofacial Neurosciences, Huddinge, Sweden
| |
Collapse
|
25
|
Bono D, Haggard P. Where is my mouth? Rapid experience-dependent plasticity of perceived mouth position in humans. Eur J Neurosci 2019; 50:3814-3830. [PMID: 31286587 PMCID: PMC6973246 DOI: 10.1111/ejn.14508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/15/2019] [Accepted: 07/01/2019] [Indexed: 12/31/2022]
Abstract
Several neural and behavioural studies propose that movements of the hand to the mouth are a key motor primitive of the primate sensorimotor system. These studies largely focus on sensorimotor coordination required to reach the mouth with the hand. However, hand-to-mouth movement depends on representing the location of the mouth. We report 5 experiments using a novel dental model illusion (DMI) that investigates the neural representation of mouth position. When participants used their right index finger to touch the teeth of an unseen dental model in synchrony with the experimenter's tactile stimulation of the participant's own teeth, participants felt that the position of their own teeth was shifted towards the dental model and stated that their right index finger was touching their actual teeth. This result replicated across four experiments and provides an oral analogue to the rubber hand illusion. Synchrony between the two tactile motions was necessary condition to elicit DMI (Experiment 3). DMI was moderately affected by manipulating the macrogeometric or microgeometric tactile properties of the dental model, suggesting cognitive images of one's own oral morphology play a modest role (Experiments 4 and 5). Neuropsychological theories often stress that hand-to-mouth movement emerges early in development or may even be innate. Our research suggests that general, bottom-up principles of multisensory plasticity suffice to provide spatial representation of the egocentric core, including mouth position.
Collapse
Affiliation(s)
- Davide Bono
- Institute of Cognitive Neuroscience, University College London, London, WC1N 3AZ, UK
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, London, WC1N 3AZ, UK
| |
Collapse
|
26
|
Vibratory stimulus to the masseter muscle impairs the oral fine motor control during biting tasks. J Prosthodont Res 2019; 63:354-360. [DOI: 10.1016/j.jpor.2018.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 11/20/2022]
|
27
|
Zhou Y, Cao LH, Sui XW, Guo XQ, Luo DG. Mechanosensory circuits coordinate two opposing motor actions in Drosophila feeding. SCIENCE ADVANCES 2019; 5:eaaw5141. [PMID: 31131327 PMCID: PMC6531006 DOI: 10.1126/sciadv.aaw5141] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/17/2019] [Indexed: 05/29/2023]
Abstract
Mechanoreception detects physical forces in the senses of hearing, touch, and proprioception. Here, we show that labellar mechanoreception wires two motor circuits to facilitate and terminate Drosophila feeding. Using patch-clamp recordings, we identified mechanosensory neurons (MSNs) in taste pegs of the inner labella and taste bristles of the outer labella, both of which rely on the same mechanoreceptor, NOMPC (no mechanoreceptor potential C), to transduce mechanical deflection. Connecting with distinct brain motor circuits, bristle MSNs drive labellar spread to facilitate feeding and peg MSNs elicit proboscis retraction to terminate feeding. Bitter sense modulates these two mechanosensory circuits in opposing manners, preventing labellar spread by bristle MSNs and promoting proboscis retraction by peg MSNs. Together, these labeled-line circuits enable labellar peg and bristle MSNs to use the same mechanoreceptors to direct opposing feeding actions and differentially integrate gustatory information in shaping feeding decisions.
Collapse
Affiliation(s)
- Yao Zhou
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Li-Hui Cao
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiu-Wen Sui
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiao-Qing Guo
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Dong-Gen Luo
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
28
|
Song D, Jegatheesan P, Nafday S, Ahmad KA, Nedrelow J, Wearden M, Nemerofsky S, Pooley S, Thompson D, Vail D, Cornejo T, Cohen Z, Govindaswami B. Patterned frequency-modulated oral stimulation in preterm infants: A multicenter randomized controlled trial. PLoS One 2019; 14:e0212675. [PMID: 30817764 PMCID: PMC6394921 DOI: 10.1371/journal.pone.0212675] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/30/2019] [Indexed: 12/15/2022] Open
Abstract
Objective To evaluate the effect of patterned, frequency-modulated oro-somatosensory stimulation on time to full oral feeds in preterm infants born 26–30 weeks gestation. Study design This is a multicenter randomized controlled trial. The experimental group (n = 109) received patterned, frequency-modulated oral stimulation via the NTrainer system through a pulsatile pacifier and the control group (n = 101) received a non-pulsatile pacifier. Intent-to-treat analysis (n = 210) was performed to compare the experimental and control groups and the outcomes were analyzed using generalized estimating equations. Time-to-event analyses for time to reach full oral feeds and length of hospital stay were conducted using Cox proportional hazards models. Results The experimental group had reduction in time to full oral feeds compared to the control group (-4.1 days, HR 1.37 (1.03, 1.82) p = 0.03). In the 29–30 weeks subgroup, infants in the experimental group had a significant reduction in time to discharge (-10 days, HR 1.87 (1.23, 2.84) p < 0.01). This difference was not observed in the 26–28 weeks subgroup. There was no difference in growth, mortality or morbidities between the two groups. Conclusions Patterned, frequency-modulated oro-somatosensory stimulation improves feeding development in premature infants and reduces their length of hospitalization. Trial registration ClinicalTrials.gov NCT01158391
Collapse
Affiliation(s)
- Dongli Song
- Pediatrics—Neonatology, Santa Clara Valley Medical Center, San Jose, CA, United States of America
- Stanford University School of Medicine, Palo Alto, CA, United States of America
- * E-mail:
| | - Priya Jegatheesan
- Pediatrics—Neonatology, Santa Clara Valley Medical Center, San Jose, CA, United States of America
- Stanford University School of Medicine, Palo Alto, CA, United States of America
| | - Suhas Nafday
- Pediatrics—Neonatology, Children's Hospital at Montefiore-Weiler Division, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Kaashif A. Ahmad
- Pediatrix Medical Group, North Central Baptist Hospital, San Antonio, TX, United States of America
- Pediatrics–Neonatology, Baylor College of Medicine, San Antonio, TX, United States of America
| | - Jonathan Nedrelow
- Pediatrics–Neonatology, Cook Children's Medical Center, Fort Worth, TX, United States of America
| | - Mary Wearden
- Pediatrix Medical Group, North Central Baptist Hospital, San Antonio, TX, United States of America
| | - Sheri Nemerofsky
- Pediatrics–Neonatology, Children's Hospital at Montefiore-Wakefield Division, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Sunshine Pooley
- Pediatrics—Neonatology, Santa Clara Valley Medical Center, San Jose, CA, United States of America
- Stanford University School of Medicine, Palo Alto, CA, United States of America
| | - Diane Thompson
- aVenture Consulting, LLC, Leawood, KS, United States of America
| | - Daniel Vail
- Stanford University School of Medicine, Palo Alto, CA, United States of America
| | - Tania Cornejo
- Neonatology, Montefiore Medical Center-Weiler, Bronx, New York, United States of America
| | - Zahava Cohen
- Neonatology, Montefiore Medical Center-Wakefield, Bronx, New York, United States of America
| | - Balaji Govindaswami
- Pediatrics—Neonatology, Santa Clara Valley Medical Center, San Jose, CA, United States of America
- Stanford University School of Medicine, Palo Alto, CA, United States of America
| |
Collapse
|
29
|
|
30
|
Testa M, Geri T, Pitance L, Lentz P, Gizzi L, Erlenwein J, Petkze F, Falla D. Alterations in jaw clenching force control in people with myogenic temporomandibular disorders. J Electromyogr Kinesiol 2018; 43:111-117. [DOI: 10.1016/j.jelekin.2018.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 11/26/2022] Open
|
31
|
Shupe GE, Resmondo ZN, Luckett CR. Characterization of oral tactile sensitivity and masticatory performance across adulthood. J Texture Stud 2018; 49:560-568. [PMID: 30238470 DOI: 10.1111/jtxs.12364] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/04/2018] [Accepted: 09/09/2018] [Indexed: 01/03/2023]
Abstract
Texture perception is one of the most important factors in food acceptance, yet population-wide differences in texture sensations are not well understood. The variation in texture perception across populations is thought to depend on oral tactile sensitivity and masticatory performance. To address this hypothesis, we aimed to measure tactile acuity with a battery of tests and quantitate the relationship to masticatory performance. The study was performed on 98 participants, in three age groups (20-25, 35-45, or over 62). Two main measures of oral sensitivity were performed: to assess bite force, subjects were asked to discriminate between foam samples of varying hardness. Second, to assess lingual sensitivity the subjects were asked to identify 3D printed shapes using their tongue, as well as identify confectionary letters. Additionally, masticatory performance was measured through assessing each participants ability to mix two-colored chewing gum. In general, we found that sensitivity and masticatory performance in the younger age groups was superior to that of older adults. We also found a positive linear trend between bite force sensitivity and masticatory performance with younger participants, a trend not found in older participants. We found no significant relationship between age groups for bite force sensitivity and masticatory performance, suggesting that age-related declines in bite force sensitivity are not a significant cause of altered masticatory performance. This study represents a valuable first step in showing that bite force sensitivity does not depend on age, and the minimal influence of factors such as oral sensitivity on masticatory performance. PRACTICAL APPLICATIONS: In a society that is rapidly aging, it is important to understand the subtle changes in physiology and eating behavior that are associated with aging. This study used a variety of tests oral sensitivity to better understand which aspects of oral physiology are integral for effective chewing. The information gained helps shed light on to the factors that create an effective chewing cycle. Besides moving knowledge forward, this study may help in designing food and rehabilitation programs for those with trouble chewing and swallowing, increasing their overall quality of life.
Collapse
Affiliation(s)
- Grace E Shupe
- Department of Food Science, University of Tennessee, Knoxville, Tennessee
| | - Zoe N Resmondo
- Department of Food Science, University of Tennessee, Knoxville, Tennessee
| | - Curtis R Luckett
- Department of Food Science, University of Tennessee, Knoxville, Tennessee
| |
Collapse
|
32
|
Barlow SM, Hozan M, Lee J, Greenwood J, Custead R, Wardyn B, Tippin K. Orofacial and thumb-index finger ramp-and-hold isometric force dynamics in young neurotypical adults. J Biomech 2018. [PMID: 29526460 DOI: 10.1016/j.jbiomech.2018.02.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The relation among several parameters of the ramp-and-hold isometric force contraction (peak force and dF/dtmax during the initial phase of force recruitment, and the proportion of hold-phase at target) was quantified for the right and left thumb-index finger pinch, and lower lip midline compression in 40 neurotypical right-handed young adults (20 female/20 males) using wireless force sensors and data acquisition technology developed in our laboratory. In this visuomotor control task, participants produced ramp-and-hold isometric forces as 'rapidly and accurately' as possible to end-point target levels at 0.25, 0.5, 1 and 2 Newtons presented to a computer monitor in a randomized block design. Significant relations were found between the parameters of the ramp-and-hold lip force task and target force level, including the peak rate of force change (dF/dtmax), peak force, and the criterion percentage of force within ±5% of target during the contraction hold phase. A significant performance advantage was found among these force variables for the thumb-index finger over the lower lip. The maximum voluntary compression force (MVCF) task revealed highly significant differences in force output between the thumb-index fingers and lower lip (∼4.47-4.70 times greater for the digits versus lower lip), a significant advantage of the right thumb-index finger over the non-dominant left thumb-index finger (12% and 25% right hand advantage for males and females, respectively), and a significant sex difference (∼1.65-1.73 times greater among males).
Collapse
Affiliation(s)
- Steven M Barlow
- Department of Special Education and Communication Disorders, University of Nebraska, 141 Barkley Memorial Center, Lincoln, NE 68583-0738, USA; Department of Biological Systems Engineering, University of Nebraska, 230 L.W. Chase Hall, Lincoln, NE 68583-0726, USA; Center for Brain, Biology, and Behavior, University of Nebraska, C89 East Stadium, Lincoln, NE 68588-0156, USA.
| | - Mohsen Hozan
- Department of Special Education and Communication Disorders, University of Nebraska, 141 Barkley Memorial Center, Lincoln, NE 68583-0738, USA; Department of Biological Systems Engineering, University of Nebraska, 230 L.W. Chase Hall, Lincoln, NE 68583-0726, USA; Center for Brain, Biology, and Behavior, University of Nebraska, C89 East Stadium, Lincoln, NE 68588-0156, USA.
| | - Jaehoon Lee
- Department of Educational Psychology & Leadership, Texas Tech University, PO Box 41071, Lubbock, TX 79409, USA.
| | - Jake Greenwood
- Department of Special Education and Communication Disorders, University of Nebraska, 141 Barkley Memorial Center, Lincoln, NE 68583-0738, USA; Department of Biological Systems Engineering, University of Nebraska, 230 L.W. Chase Hall, Lincoln, NE 68583-0726, USA; Center for Brain, Biology, and Behavior, University of Nebraska, C89 East Stadium, Lincoln, NE 68588-0156, USA.
| | - Rebecca Custead
- Department of Special Education and Communication Disorders, University of Nebraska, 141 Barkley Memorial Center, Lincoln, NE 68583-0738, USA; Center for Brain, Biology, and Behavior, University of Nebraska, C89 East Stadium, Lincoln, NE 68588-0156, USA.
| | - Brianna Wardyn
- Department of Special Education and Communication Disorders, University of Nebraska, 141 Barkley Memorial Center, Lincoln, NE 68583-0738, USA.
| | - Kaytlin Tippin
- Department of Special Education and Communication Disorders, University of Nebraska, 141 Barkley Memorial Center, Lincoln, NE 68583-0738, USA.
| |
Collapse
|
33
|
The Effects of Tooth Brushing on Whole Salivary Flow Rate in Older Adults. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3904139. [PMID: 29682540 PMCID: PMC5846348 DOI: 10.1155/2018/3904139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/17/2018] [Indexed: 11/18/2022]
Abstract
Objectives (1) To determine whether manual (MTB), or electric, tooth brushing (ETB) modulates whole salivary flow rate in older adults who are free of systemic disease. (2) To determine the duration of the brushing-related modulation of salivary flow rate. (3) To compare salivary flow rate modulation associated with MTB and ETB. Method Twenty-one adults aged 60 years and older participated in two experimental sessions during which they used a manual, or electric, toothbrush to brush their teeth, tongue, and palate. Whole salivary flow rates were determined using the draining method before, during, and after brushing. Differences in salivary flow rates across time periods, and between conditions, were examined using paired samples t-tests applying a Holm-Bonferroni sequential procedure (pcorr < 0.0045). The relationship between tooth brushing and age with respect to maximum salivary flow rate increase was examined using Pearson's correlation coefficient (p < 0.05). Results/Conclusion Whole salivary flow rates increased during, and for up to 5 minutes following, tooth brushing in adults aged 60 years and older who were free of systemic disease. The salivary effects of MTB and ETB were not significantly different. A moderate, positive correlation was observed between tooth-brushing-related maximum salivary flow rate increase and age.
Collapse
|
34
|
Van der Cruyssen F, Politis C. Neurophysiological aspects of the trigeminal sensory system: an update. Rev Neurosci 2018; 29:115-123. [DOI: 10.1515/revneuro-2017-0044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/20/2017] [Indexed: 02/04/2023]
Abstract
AbstractThe trigeminal system is one of the most complex cranial nerve systems of the human body. Research on it has vastly grown in recent years and concentrated more and more on molecular mechanisms and pathophysiology, but thorough reviews on this topic are lacking, certainly on the normal physiology of the trigeminal sensory system. Here we review the current literature on neurophysiology of the trigeminal nerve from peripheral receptors up to its central projections toward the somatosensory cortex. We focus on the most recent scientific discoveries and describe historical relevant research to substantiate further. One chapter on new insights of the pathophysiology of pain at the level of the trigeminal system is added. A database search of Medline, Embase and Cochrane was conducted with the search terms ‘animal study’, ‘neurophysiology’, ‘trigeminal’, ‘oral’ and ‘sensory’. Articles were manually selected after reading the abstract and where needed the article. Reference lists also served to include relevant research articles. Fifty-six articles were included after critical appraisal. Physiological aspects on mechanoreceptors, trigeminal afferents, trigeminal ganglion and central projections are reviewed in light of reference works. Embryologic and anatomic insights are cited where needed. A brief description of pathophysiology of pain pathways in the trigeminal area and recent advances in dental stem cell research are also discussed. Neurophysiology at the level of the central nervous system is not reviewed. The current body of knowledge is mainly based on animal and cadaveric studies, but recent advancements in functional imaging and molecular neuroscience are elucidating the pathways and functioning of this mixed nerve system. Extrapolation of animal studies or functioning of peripheral nerves should be warranted.
Collapse
|
35
|
Montuelle SJ, Olson R, Curtis H, Sidote J, Williams SH. Flexibility of feeding movements in pigs: effects of changes in food toughness and stiffness on the timing of jaw movements. J Exp Biol 2018; 221:jeb168088. [PMID: 29378880 PMCID: PMC5818028 DOI: 10.1242/jeb.168088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/20/2017] [Indexed: 11/20/2022]
Abstract
In mammals, chewing movements can be modified, or flexible, in response to changes in food properties. Variability between and within food in the temporal characteristics of chewing movements can impact chewing frequency and rhythmicity, which in turn may affect food breakdown, energy expenditure and tooth wear. Here, we compared total chewing cycle duration and intra-cycle phase durations in pigs chewing on three foods varying in toughness and stiffness: apples (low toughness, low stiffness), carrots (high toughness, low stiffness), and almonds (high toughness, high stiffness). We also determined whether within-food variability in timing parameters is modified in response to changes in food properties. X-ray Reconstruction Of Moving Morphology (XROMM) demonstrates that the timing of jaw movements are flexible in response to changes in food properties. Within each food, pigs also exhibited flexibility in their ability to vary cycle parameters. The timing of jaw movements during processing of high-toughness foods is more variable, potentially decreasing chewing rhythmicity. In contrast, low-toughness foods result in jaw movements that are more stereotyped in their timing parameters. In addition, the duration of tooth-food-tooth contact is more variable during the processing of low-stiffness foods compared with tough or stiff foods. Increased toughness is suggested to alter the timing of the movements impacting food fracture whereas increased stiffness may require a more cautious control of jaw movements. This study emphasizes that flexibility in biological movements in response to changes in conditions may not only be observed in timing but also in the variability of their timing within each condition.
Collapse
Affiliation(s)
- Stéphane J Montuelle
- Ohio University Heritage College of Osteopathic Medicine, Department of Biomedical Sciences, 4180 Warrensville Center Road, SPS121, Warrensville Heights, OH 44122, USA
- Ohio University Heritage College of Osteopathic Medicine, Department of Biomedical Sciences, Irvine Hall 228, Athens, OH 45701, USA
| | - Rachel Olson
- Ohio University, Department of Biological Sciences, Irvine Hall 107, Athens, OH 45701, USA
| | - Hannah Curtis
- Ohio University Heritage College of Osteopathic Medicine, Department of Biomedical Sciences, Irvine Hall 228, Athens, OH 45701, USA
| | - JoAnna Sidote
- Ohio University Heritage College of Osteopathic Medicine, Department of Biomedical Sciences, Irvine Hall 228, Athens, OH 45701, USA
| | - Susan H Williams
- Ohio University Heritage College of Osteopathic Medicine, Department of Biomedical Sciences, Irvine Hall 228, Athens, OH 45701, USA
| |
Collapse
|
36
|
Shinagawa H, Ono T, Honda EI, Kurabayashi T, Iriki A, Ohyama K. Distinctive Cortical Articulatory Representation in Cleft Lip and Palate: A Preliminary Functional Magnetic Resonance Imaging Study. Cleft Palate Craniofac J 2017; 43:620-4. [PMID: 16986981 DOI: 10.1597/05-027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objective: To investigate cortical representation of articulation of the bilabial plosive in patients with cleft lip and palate. Design: We examined cortical representation for /pa/-articulation in cleft lip and palate patients using blood oxygenation level–dependent functional magnetic resonance imaging. Subjects: Data from four postsurgical adult cleft lip and palate patients were compared with those from six healthy volunteers. Results: Activation foci were found in the bilateral primary sensorimotor cortex in all cleft lip and palate patients, as in the controls. The sensorimotor cortex ipsilateral to the side of cleft lip and palate showed greater activation in unilateral cleft lip and palate patients, whereas the sensorimotor cortex contralateral to the side on which cheiloplasty had been performed earlier showed greater activation in a bilateral cleft lip and palate patient. Conclusions: The results suggest that there may be an ipsilateral dominance in cortical representation during bilabial articulation to the side of the cleft in the upper lip.
Collapse
Affiliation(s)
- Hideo Shinagawa
- Maxillofacial Orthognathics, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Dagsdóttir LK, Bellan V, Skyt I, Vase L, Baad-Hansen L, Castrillon E, Svensson P. Multisensory modulation of experimentally evoked perceptual distortion of the face. J Oral Rehabil 2017; 45:1-8. [PMID: 29054121 DOI: 10.1111/joor.12581] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Chronic oro-facial pain patients often perceive the painful face area as "swollen" without clinical signs, that is a perceptual distortion (PD). Local anaesthetic (LA) injections in healthy participants are also associated with PD. OBJECTIVE The aim was to explore whether PD evoked by LA into the infraorbital region could be modulated by adding mechanical stimulation (MS) to the affected area. METHODS Mechanical stimulation was given with a brush and a 128-mN von Frey filament. Firstly, sixty healthy participants were randomly divided into three groups: (i) LA control, (ii) LA with MS, (iii) isotonic solution (ISO) with MS as an additional control condition. To further examine the role of a multisensory modulation, an additional experiment was conducted. Twenty participants received LA with MS (filament) in addition to visual feedback of their distorted face. The results of the two experiments are presented together. RESULTS All three LA groups experienced PD; per contra, PD was not reported in the ISO group. MS alone did not change the magnitude of PD: brush (P = .089), filament (P = .203). However, when the filament stimulation was combined with additional visual information of a distorted face, there was observable decrease in PD (P = .002). CONCLUSION The findings indicate the importance of multisensory integration for PD and represent a significant step forward in the understanding of the factors that may influence this common condition. Future studies are encouraged to investigate further the cortical processing for possible implications for PD in pain management.
Collapse
Affiliation(s)
- L K Dagsdóttir
- Section of Orofacial Pain and Jaw Function, Department of Odontology and Oral Health, Aarhus University, Aarhus, Denmark.,Scandinavian Center of Orofacial Neurosciences (SCON), Aarhus, Denmark
| | - V Bellan
- Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - I Skyt
- Department of Psychology and Behavioral Sciences, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark
| | - L Vase
- Department of Psychology and Behavioral Sciences, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark
| | - L Baad-Hansen
- Section of Orofacial Pain and Jaw Function, Department of Odontology and Oral Health, Aarhus University, Aarhus, Denmark.,Scandinavian Center of Orofacial Neurosciences (SCON), Aarhus, Denmark
| | - E Castrillon
- Section of Orofacial Pain and Jaw Function, Department of Odontology and Oral Health, Aarhus University, Aarhus, Denmark.,Scandinavian Center of Orofacial Neurosciences (SCON), Aarhus, Denmark
| | - P Svensson
- Section of Orofacial Pain and Jaw Function, Department of Odontology and Oral Health, Aarhus University, Aarhus, Denmark.,Scandinavian Center of Orofacial Neurosciences (SCON), Aarhus, Denmark.,Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| |
Collapse
|
38
|
Custead R, Oh H, Wang Y, Barlow S. Brain encoding of saltatory velocity through a pulsed pneumotactile array in the lower face. Brain Res 2017; 1677:58-73. [PMID: 28958864 DOI: 10.1016/j.brainres.2017.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/31/2017] [Accepted: 09/20/2017] [Indexed: 12/25/2022]
Abstract
Processing dynamic tactile inputs is a primary function of the somatosensory system. Spatial velocity encoding mechanisms by the nervous system are important for skilled movement production and may play a role in recovery of sensorimotor function following neurological insult. Little is known about tactile velocity encoding in mechanosensory trigeminal networks required for speech, suck, mastication, and facial gesture. High resolution functional magnetic resonance imaging (fMRI) was used to investigate the neural substrates of velocity encoding in the human orofacial somatosensory system during unilateral saltatory pneumotactile stimulation of perioral and buccal hairy skin in 20 neurotypical adults. A custom multichannel, scalable pneumotactile array consisting of 7 TAC-Cells was used to present 5 stimulus conditions: 5cm/s, 25cm/s, 65cm/s, ALL-ON synchronous activation, and ALL-OFF. The spatiotemporal organization of whole-brain blood oxygen level-dependent (BOLD) response was analyzed with general linear modeling (GLM) and fitted response estimates of percent signal change to compare activations associated with each velocity, and the main effect of velocity alone. Sequential saltatory inputs to the right lower face produced localized BOLD responses in 6 key regions of interest (ROI) including; contralateral precentral and postcentral gyri, and ipsilateral precentral, superior temporal (STG), supramarginal gyri (SMG), and cerebellum. The spatiotemporal organization of the evoked BOLD response was highly dependent on velocity, with the greatest amplitude of BOLD signal change recorded during the 5cm/s presentation in the contralateral hemisphere. Temporal analysis of BOLD response by velocity indicated rapid adaptation via a scalability of networks processing changing pneumotactile velocity cues.
Collapse
Affiliation(s)
- Rebecca Custead
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Hyuntaek Oh
- Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Yingying Wang
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Steven Barlow
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| |
Collapse
|
39
|
Gothard KM, Mosher CP, Zimmerman PE, Putnam PT, Morrow JK, Fuglevand AJ. New perspectives on the neurophysiology of primate amygdala emerging from the study of naturalistic social behaviors. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2017; 9. [PMID: 28800678 DOI: 10.1002/wcs.1449] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 11/07/2022]
Abstract
A major challenge of primate neurophysiology, particularly in the domain of social neuroscience, is to adopt more natural behaviors without compromising the ability to relate patterns of neural activity to specific actions or sensory inputs. Traditional approaches have identified neural activity patterns in the amygdala in response to simplified versions of social stimuli such as static images of faces. As a departure from this reduced approach, single images of faces were replaced with arrays of images or videos of conspecifics. These stimuli elicited more natural behaviors and new types of neural responses: (1) attention-gated responses to faces, (2) selective responses to eye contact, and (3) selective responses to touch and somatosensory feedback during the production of facial expressions. An additional advance toward more natural social behaviors in the laboratory was the implementation of dyadic social interactions. Under these conditions, neurons encoded similarly rewards that monkeys delivered to self and to their social partner. These findings reinforce the value of bringing natural, ethologically valid, behavioral tasks under neurophysiological scrutiny. WIREs Cogn Sci 2018, 9:e1449. doi: 10.1002/wcs.1449 This article is categorized under: Psychology > Emotion and Motivation Neuroscience > Cognition Neuroscience > Physiology.
Collapse
Affiliation(s)
- Katalin M Gothard
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Clayton P Mosher
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Prisca E Zimmerman
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Philip T Putnam
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Jeremiah K Morrow
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Andrew J Fuglevand
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
40
|
Kumar A, Tanaka Y, Grigoriadis A, Grigoriadis J, Trulsson M, Svensson P. Training-induced dynamics of accuracy and precision in human motor control. Sci Rep 2017; 7:6784. [PMID: 28754929 PMCID: PMC5533741 DOI: 10.1038/s41598-017-07078-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/22/2017] [Indexed: 11/24/2022] Open
Abstract
The study investigated the dynamic changes in accuracy and precision during a simple oral and digital motor task involving a controlled and a ballistic force. Eighteen healthy participants participated in four experimental sessions during which they performed one hundred trials of targeting a controlled (low/high hold force) and a ballistic force during an oral and a digital motor task (OMT and DMT). Accuracy and precision across one hundred trials were calculated and subjected to segmented linear regression analysis. Repeated performance of controlled forces show a significant dynamic change in accuracy during initial stage of targeting high hold forces during OMT and a significant dynamic change in both accuracy and precision during final stage of targeting high hold forces during DMT. Repeated performance of ballistic force showed a significant dynamic change in both accuracy and precision during final stage of targeting high hold force forces during OMT and a significant dynamic change in accuracy during the initial stages of targeting high hold force during the DMT. The findings indicate a subtle degree of dissociation between accuracy and precision in terms of dynamic modulation of forces due to repeated performance of both OMT and DMT.
Collapse
Affiliation(s)
- Abhishek Kumar
- Section of Oral Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden.
- SCON| Scandinavian Center for Orofacial Neurosciences, Huddinge, Sweden.
| | - Yuto Tanaka
- Department of Dentistry for Disability and Oral Health, Osaka Dental University Hospital, Osaka, Japan
| | - Anastasios Grigoriadis
- Section of Oral Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
- SCON| Scandinavian Center for Orofacial Neurosciences, Huddinge, Sweden
| | - Joannis Grigoriadis
- Section of Oral Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
- SCON| Scandinavian Center for Orofacial Neurosciences, Huddinge, Sweden
| | - Mats Trulsson
- Section of Oral Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
- SCON| Scandinavian Center for Orofacial Neurosciences, Huddinge, Sweden
| | - Peter Svensson
- Section of Oral Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
- Section of Orofacial Pain and Jaw Function, Institute of Odontology and Oral Health, Aarhus University, Aarhus, Denmark
- SCON| Scandinavian Center for Orofacial Neurosciences, Huddinge, Sweden
| |
Collapse
|
41
|
Krivanek J, Adameyko I, Fried K. Heterogeneity and Developmental Connections between Cell Types Inhabiting Teeth. Front Physiol 2017. [PMID: 28638345 PMCID: PMC5461273 DOI: 10.3389/fphys.2017.00376] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Every tissue is composed of multiple cell types that are developmentally, evolutionary and functionally integrated into the unit we call an organ. Teeth, our organs for biting and mastication, are complex and made of many different cell types connected or disconnected in terms of their ontogeny. In general, epithelial and mesenchymal compartments represent the major framework of tooth formation. Thus, they give rise to the two most important matrix–producing populations: ameloblasts generating enamel and odontoblasts producing dentin. However, the real picture is far from this quite simplified view. Diverse pulp cells, the immune system, the vascular system, the innervation and cells organizing the dental follicle all interact, and jointly participate in transforming lifeless matrix into a functional organ that can sense and protect itself. Here we outline the heterogeneity of cell types that inhabit the tooth, and also provide a life history of the major populations. The mouse model system has been indispensable not only for the studies of cell lineages and heterogeneity, but also for the investigation of dental stem cells and tooth patterning during development. Finally, we briefly discuss the evolutionary aspects of cell type diversity and dental tissue integration.
Collapse
Affiliation(s)
- Jan Krivanek
- Department of Molecular Neurosciences, Center for Brain Research, Medical University ViennaVienna, Austria
| | - Igor Adameyko
- Department of Molecular Neurosciences, Center for Brain Research, Medical University ViennaVienna, Austria.,Department of Physiology and Pharmacology, Karolinska InstitutetStockholm, Sweden
| | - Kaj Fried
- Department of Neuroscience, Karolinska InstitutetStockholm, Sweden
| |
Collapse
|
42
|
Severson KS, Xu D, Van de Loo M, Bai L, Ginty DD, O'Connor DH. Active Touch and Self-Motion Encoding by Merkel Cell-Associated Afferents. Neuron 2017; 94:666-676.e9. [PMID: 28434802 DOI: 10.1016/j.neuron.2017.03.045] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 02/15/2017] [Accepted: 03/29/2017] [Indexed: 01/12/2023]
Abstract
Touch perception depends on integrating signals from multiple types of peripheral mechanoreceptors. Merkel-cell associated afferents are thought to play a major role in form perception by encoding surface features of touched objects. However, activity of Merkel afferents during active touch has not been directly measured. Here, we show that Merkel and unidentified slowly adapting afferents in the whisker system of behaving mice respond to both self-motion and active touch. Touch responses were dominated by sensitivity to bending moment (torque) at the base of the whisker and its rate of change and largely explained by a simple mechanical model. Self-motion responses encoded whisker position within a whisk cycle (phase), not absolute whisker angle, and arose from stresses reflecting whisker inertia and activity of specific muscles. Thus, Merkel afferents send to the brain multiplexed information about whisker position and surface features, suggesting that proprioception and touch converge at the earliest neural level.
Collapse
Affiliation(s)
- Kyle S Severson
- Kavli Neuroscience Discovery Institute, Brain Science Institute, The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Neuroscience Training Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Duo Xu
- Kavli Neuroscience Discovery Institute, Brain Science Institute, The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Neuroscience Training Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Margaret Van de Loo
- Kavli Neuroscience Discovery Institute, Brain Science Institute, The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ling Bai
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Neuroscience Training Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Daniel H O'Connor
- Kavli Neuroscience Discovery Institute, Brain Science Institute, The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
43
|
Gray-Stuart EM, Jones JR, Bronlund JE. Defining the end-point of mastication: A conceptual model. J Texture Stud 2017; 48:345-356. [PMID: 28967214 DOI: 10.1111/jtxs.12253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/12/2017] [Accepted: 01/19/2017] [Indexed: 11/28/2022]
Abstract
The great risks of swallowing are choking and aspiration of food into the lungs. Both are rare in normal functioning humans, which is remarkable given the diversity of foods and the estimated 10 million swallows performed in a lifetime. Nevertheless, it remains a major challenge to define the food properties that are necessary to ensure a safe swallow. Here, the mouth is viewed as a well-controlled processor where mechanical sensory assessment occurs throughout the occlusion-circulation cycle of mastication. Swallowing is a subsequent action. It is proposed here that, during mastication, temporal maps of interfacial property data are generated, which the central nervous system compares against a series of criteria in order to be sure that the bolus is safe to swallow. To determine these criteria, an engineering hazard analysis tool, alongside an understanding of fluid and particle mechanics, is used to deduce the mechanisms by which food may deposit or become stranded during swallowing. These mechanisms define the food properties that must be avoided. By inverting the thinking, from hazards to ensuring safety, six criteria arise which are necessary for a safe-to-swallow bolus. A new conceptual model is proposed to define when food is safe to swallow during mastication. This significantly advances earlier mouth models. PRACTICAL APPLICATIONS The conceptual model proposed in this work provides a framework of decision-making to define when food is safe to swallow. This will be of interest to designers of dietary foods, foods for dysphagia sufferers and will aid the further development of mastication robots for preparation of artificial boluses for digestion research. It enables food designers to influence the swallow-point properties of their products. For example, a product may be designed to satisfy five of the criteria for a safe-to-swallow bolus, which means the sixth criterion and its attendant food properties define the swallow-point. Alongside other organoleptic factors, these properties define the end-point texture and enduring sensory perception of the food.
Collapse
Affiliation(s)
- Eli M Gray-Stuart
- School of Engineering and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Jim R Jones
- School of Engineering and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - John E Bronlund
- School of Engineering and Advanced Technology, Massey University, Palmerston North, New Zealand
| |
Collapse
|
44
|
Abstract
Several studies have suggested the jaw-muscle spindle as the receptor responsible for regulating and maintaining the occlusal vertical dimension (OVD). However, to challenge this assumption, we hypothesized that long-term changes in OVD could affect the sensory inputs from jaw-muscle spindles. In this study, we investigated changes in masseter muscle spindle function under an increased OVD (iOVD) condition. Responses of primary and secondary endings of masseter muscle spindles to cyclic sinusoidal stretches were investigated. Twenty barbiturate-anesthetized female Wistar rats were divided into control and iOVD groups. Rats in the iOVD group received a 2.0-mm composite resin build-up to the maxillary molars. After iOVD, masseter muscle spindle sensitivity gradually decreased. Primary and secondary spindle endings were affected differently. We conclude that iOVD caused reduction in masseter muscle spindle sensitivity. This result suggests that peripheral sensory plasticity may occur following changes in OVD. Such changes may provide a basis for physiological adaptation to clinical occlusal adjustments.
Collapse
Affiliation(s)
- T Yabushita
- Orthodontic Science, Department of Orofacial Development and Function, Division of Oral Health Sciences, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549.
| | | | | | | |
Collapse
|
45
|
Fine motor control of the jaw following alteration of orofacial afferent inputs. Clin Oral Investig 2016; 21:613-626. [PMID: 27568306 PMCID: PMC5318472 DOI: 10.1007/s00784-016-1939-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 07/26/2016] [Indexed: 11/08/2022]
Abstract
Objective The study was designed to investigate if alteration of different orofacial afferent inputs would have different effects on oral fine motor control and to test the hypothesis that reduced afferent inputs will increase the variability of bite force values and jaw muscle activity, and repeated training with splitting of food morsel in conditions with reduced afferent inputs would decrease the variability and lead to optimization of bite force values and jaw muscle activity. Material methods Forty-five healthy volunteers participated in a single experimental session and were equally divided into incisal, mucosal, and block anesthesia groups. The participants performed six series (with ten trials) of a standardized hold and split task after the intervention with local anesthesia was made in the respective groups. The hold and split forces along with the corresponding jaw muscle activity were recorded and compared to a reference group. Results The hold force and the electromyographic (EMG) activity of the masseter muscles during the hold phase were significantly higher in the incisal and block anesthesia group, as compared to the reference group (P < 0.001). However, there was no significant effect of groups on the split force (P = 0.975) but a significant decrease in the EMG activity of right masseter in mucosal anesthesia group as compared to the reference group (P = 0.006). The results also revealed that there was no significant effect of local anesthesia on the variability of the hold and split force (P < 0.677). However, there was a significant decrease in the variability of EMG activity of the jaw closing muscles in the block anesthesia group as compared to the reference group (P < 0.041), during the hold phase and a significant increase in the variability of EMG activity of right masseter in the mucosal anesthesia group (P = 0.021) along with a significant increase in the EMG activity of anterior temporalis muscle in the incisal anesthesia group, compared to the reference group (P = 0.018), during the split phase. Conclusions The results of the present study indicated that altering different orofacial afferent inputs may have different effects on some aspects of oral fine motor control. Further, inhibition of afferent inputs from the orofacial or periodontal mechanoreceptors did not increase the variability of bite force values and jaw muscle activity; indicating that the relative precision of the oral fine motor task was not compromised inspite of the anesthesia. The results also suggest the propensity of optimization of bite force values and jaw muscle activity due to repeated splitting of the food morsels, inspite of alteration of sensory inputs. Clinical relevance Skill acquisition following a change in oral sensory environment is crucial for understanding how humans learn and re-learn oral motor behaviors and the kind of adaptation that takes place after successful oral rehabilitation procedures.
Collapse
|
46
|
Kupirovič UP, Elmadfa I, Juillerat MA, Raspor P. Effect of saliva on physical food properties in fat texture perception. Crit Rev Food Sci Nutr 2016; 57:1061-1077. [DOI: 10.1080/10408398.2013.766787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Ibrahim Elmadfa
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | | | - Peter Raspor
- Department of Food Science and Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
47
|
Pereira LJ, van der Bilt A. The influence of oral processing, food perception and social aspects on food consumption: a review. J Oral Rehabil 2016; 43:630-48. [PMID: 27061099 DOI: 10.1111/joor.12395] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2016] [Indexed: 12/11/2022]
Abstract
Eating is an essential activity to get energy and necessary nutrients for living. While chewing, the food is broken down by the teeth and dissolved by saliva. Taste, flavour and texture are perceived during chewing and will contribute to the appreciation of the food. The senses of taste and smell play an important role in selecting nutritive food instead of toxic substances. Also visual information of a food product is essential in the choice and the acceptance of food products, whereas auditory information obtained during the chewing of crispy products will provide information on whether a product is fresh or stale. Food perception does not just depend on one individual sense, but appears to be the result from multisensory integration of unimodal signals. Large differences in oral physiology parameters exist among individuals, which may lead to differences in food perception. Knowledge of the interplay between mastication and sensory experience for groups of individuals is important for the food industry to control quality and acceptability of their products. Environment factors during eating, like TV watching or electronic media use, may also play a role in food perception and the amount of food ingested. Distraction during eating a meal may lead to disregard about satiety and fullness feelings and thus to an increased risk of obesity. Genetic and social/cultural aspects seem to play an important role in taste sensitivity and food preference. Males generally show larger bite size, larger chewing power and a faster chewing rhythm than females. The size of swallowed particles seems to be larger for obese individuals, although there is no evidence until now of an 'obese chewing style'. Elderly people tend to have fewer teeth and consequently a less good masticatory performance, which may lead to lower intakes of raw food and dietary fibre. The influence of impaired mastication on food selection is still controversial, but it is likely that it may at least cause adaptation in food choice. Systemic conditions, such as high blood pressure, diabetes and cancer, with or without medicine use, tend to be associated with taste and chewing alterations. However, definite conclusions seem hard to reach, as research protocols vary largely.
Collapse
Affiliation(s)
- L J Pereira
- Department of Health Sciences - Physiology Area, Federal University of Lavras - UFLA, Lavras, MG, Brazil
| | - A van der Bilt
- Department of Oral-Maxillofacial Surgery, Prosthodontics and Special Dental Care, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
48
|
Tanaka Y, Yamada T, Maeda Y, Ikebe K. Markerless three-dimensional tracking of masticatory movement. J Biomech 2016; 49:442-9. [PMID: 26827172 DOI: 10.1016/j.jbiomech.2016.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/28/2015] [Accepted: 01/09/2016] [Indexed: 10/22/2022]
Abstract
Conventional methods for measuring mandibular movement are expensive and require headgear and a marker attached to the mandibular incisors. These make assessment of normal chewing difficult. The aim of the present study was to test the validity of a markerless three-dimensional system for tracking masticatory movement by comparing it with a conventional method using an incisal marker. The study investigated 100 chewing cycles in 10 participants. The jaw tracking system consisted of a camera capable of recording depth and red, green, and blue data simultaneously, a laptop computer, and data analysis software. Depth data for each participant's face, tracked in real time, produced a computed 3D mask. The most prominent point of the soft tissue under the lip was defined as the chin point. A dental clasp cemented to the labial surface of the mandibular incisors was defined as the incisal point. The movement of these two measuring points was simultaneously recorded during mastication of chewing gum for 20s. To conduct the same analysis on each cycle from the two measuring points, all cycles were normalized by dividing by the corresponding vertical displacement because of their size variation. The findings showed excellent intramethod correlation for normalized horizontal displacement at every level (>0.9; except for 2 out of 19 levels; 0.896 and 0.898), and a lack of proportional bias. These findings suggest a correlation between the chewing cycles from two measuring points, the incisor and the chin, further suggesting the feasibility of a markerless system for tracking masticatory movement.
Collapse
Affiliation(s)
- Yuto Tanaka
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Takafumi Yamada
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshinobu Maeda
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazunori Ikebe
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
49
|
Aktar T, Chen J, Ettelaie R, Holmes M. Tactile Sensitivity and Capability of Soft-Solid Texture Discrimination. J Texture Stud 2015. [DOI: 10.1111/jtxs.12142] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tugba Aktar
- School of Food Science and Nutrition; University of Leeds; Leeds U.K
- Faculty of Life and Natural Sciences; Abdullah Gul University; Kayseri Turkey
| | - Jianshe Chen
- School of Food Science and Bioengineering; Zhejiang Gongshang University; Hangzhou 310018 China
| | - Rammile Ettelaie
- School of Food Science and Nutrition; University of Leeds; Leeds U.K
| | - Melvin Holmes
- School of Food Science and Nutrition; University of Leeds; Leeds U.K
| |
Collapse
|
50
|
Kumar A, Grigoriadis J, Trulsson M, Svensson P, Svensson KG. Effects of short-term training on behavioral learning and skill acquisition during intraoral fine motor task. Neuroscience 2015; 306:10-7. [PMID: 26162238 DOI: 10.1016/j.neuroscience.2015.06.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/29/2015] [Accepted: 06/29/2015] [Indexed: 11/19/2022]
Abstract
Sensory information from the orofacial mechanoreceptors are used by the nervous system to optimize the positioning of food, determine the force levels, and force vectors involved in biting of food morsels. Moreover, practice resulting from repetition could be a key to learning and acquiring a motor skill. Hence, the aim of the experiment was to test the hypothesis that repeated splitting of a food morsel during a short-term training with an oral fine motor task would result in increased performance and optimization of jaw movements, in terms of reduction in duration of various phases of the jaw movements. Thirty healthy volunteers were asked to intraorally manipulate and split a chocolate candy, into two equal halves. The participants performed three series (with 10 trials) of the task before and after a short-term (approximately 30 min) training. The accuracy of the split and vertical jaw movement during the task were recorded. The precision of task performance improved significantly after training (22% mean deviation from ideal split after vs. 31% before; P<0.001). There was a significant decrease in the total duration of jaw movements during the task after the training (1.21 s total duration after vs. 1.56 s before; P<0.001). Further, when the jaw movements were divided into different phases, the jaw opening phase and contact phase were significantly shorter after training than before training (P=0.001, P=0.002). The results indicate that short-term training of an oral fine motor task induces behavior learning, skill acquisition and optimization of jaw movements in terms of better performance and reduction in the duration of jaw movements, during the task. The finding of the present study provides insights into how humans learn oral motor behaviors or the kind of adaptation that takes place after a successful prosthetic rehabilitation.
Collapse
Affiliation(s)
- A Kumar
- Section of Orofacial Pain and Jaw Function, Department of Dentistry, Aarhus University, Denmark; Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden; Scandinavian Center for Orofacial Neurosciences (SCON), Sweden.
| | - J Grigoriadis
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden; Scandinavian Center for Orofacial Neurosciences (SCON), Sweden
| | - M Trulsson
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden; Scandinavian Center for Orofacial Neurosciences (SCON), Sweden
| | - P Svensson
- Section of Orofacial Pain and Jaw Function, Department of Dentistry, Aarhus University, Denmark; Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden; Scandinavian Center for Orofacial Neurosciences (SCON), Sweden
| | - K G Svensson
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden; Scandinavian Center for Orofacial Neurosciences (SCON), Sweden
| |
Collapse
|