1
|
Yang J, Chen L, Li X, Guo Y, Hu H, Li F, Wang T, Wang Y, Yao L, Zhang L, Liu J. Activation or blockade of prelimbic 5-HT 4 receptors improves working memory in hemiparkinsonian rats. Neurochem Int 2025; 188:105996. [PMID: 40414564 DOI: 10.1016/j.neuint.2025.105996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/26/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
Working memory deficits commonly occur in Parkinson's disease. 5-hydroxytryptamine4 (5-HT4) receptors are widely distributed in the prelimbic cortex (PrL) and involved in cognition. Here we tested the effects of activation and blockade of PrL 5-HT4 receptors on working memories by T-maze rewarded alternation and Morris water maze tests in rats with unilateral 6-hydroxydopamine (6-OHDA) lesion of the medial forebrain bundle. The lesion induced working memory deficits, decreased dopamine levels in the limbic-related brain regions, changed normalized δ, high θ, α, β, low and high γ power of the PrL, and upregulated expression of PrL 5-HT4 receptor. Intra-PrL injection of 5-HT4 receptor agonist BIMU8 or antagonist GR113808 did not impact working memories in sham rats, but improved working memory deficits in the lesioned rats. Intra-PrL injection of BIMU8 or GR113808 had no effect on monoamine levels in the limbic-related brain regions or normalized low and high γ power of the PrL in sham rats. However, in the lesioned rats, intra-PrL injection of BIMU8 significantly increased dopamine and 5-HT levels in the medial prefrontal cortex, amygdala and dorsal hippocampus, while intra-PrL injection of GR113808 significantly increased dopamine levels in these brain regions and increased normalized low and high γ power of the PrL. These results suggest that 6-OHDA lesion in rats induces working memory deficits, while activation or blockade of PrL 5-HT4 receptors improves the deficits in the lesioned rats, which possibly due to the changes of monoamine levels in the limbic-related brain regions and network activity of neurons in the PrL.
Collapse
Affiliation(s)
- Jie Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Li Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xiaoying Li
- Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuan Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Hao Hu
- Basic Medicine Experimental Teaching Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Fan Li
- Basic Medicine Experimental Teaching Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Tao Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Lu Yao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Li Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
2
|
Almeida-Souza T, Campos ACP, Rabelo TK, Emtyazi D, McCann E, Brandão-Lima P, Diwan M, Lipsman N, Hamani C. Sex differences in long-term fear and anxiety-like responses to deep brain stimulation in a preclinical model of PTSD. J Psychiatr Res 2025; 184:198-209. [PMID: 40056639 DOI: 10.1016/j.jpsychires.2025.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/22/2025] [Accepted: 02/20/2025] [Indexed: 03/10/2025]
Abstract
Deep brain stimulation (DBS) is currently being investigated in patients and preclinical models of posttraumatic stress disorder (PTSD), but differences in behaviour according to sex remain elusive. We exposed female and male rats to fear conditioning and extinction. Thereafter, animals were treated with ventromedial prefrontal cortex DBS, followed by a battery of tests to measure fear and anxiety-like behaviour. As in our prior work, animals with high freezing scores during extinction (weak extinction; WE) were segregated from those with lower freezing scores (non-weak extinction; nWE), since the former population was previously shown to develop prolonged fear and anxiety-like responses. Vaginal lavages were collected after fear extinction to study the estrous cycle. After the experiments, brains were processed for the measurement of estrogen (ER) and progesterone receptors (PR) in the hypothalamus and hippocampus. We found that DBS-treated males had a more pronounced reduction in freezing than females during all recall sessions. In females, DBS induced an anxiolytic-like effect in the open field, while a reduction in the latency to feed during novelty suppressed feeding was noticed in both sexes. Noteworthy, a reduction in freezing during recall and anxiolytic-like responses following DBS were observed in males of all phenotypes, but only in nWE females. While no effect of the estrous cycle was noticed on fear memory, DBS-treated females in metestrus/diestrus during extinction had a more prominent response in the elevated plus maze. A similar expression of ERα, ERβ and PRβ in the hypothalamus and hippocampus was found in DBS-treated females and controls.
Collapse
Affiliation(s)
| | | | | | - Delara Emtyazi
- . Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Eliza McCann
- . Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | | | - Mustansir Diwan
- . Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Nir Lipsman
- . Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada; . Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada; . Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada
| | - Clement Hamani
- . Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada; . Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada; . Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada.
| |
Collapse
|
3
|
Bontempi B, Lévêque P, Dubreuil D, Jay TM, Edeline JM. Effects of Head-Only Exposure to 900 MHz GSM Electromagnetic Fields in Rats: Changes in Neuronal Activity as Revealed by c-Fos Imaging without Concomitant Cognitive Impairments. Biomedicines 2024; 12:1954. [PMID: 39335468 PMCID: PMC11428239 DOI: 10.3390/biomedicines12091954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Over the last two decades, animal models have been used to evaluate the physiological and cognitive effects of mobile phone exposure. Here, we used a head-only exposure system in rats to determine whether exposure to 900 MHz GSM electromagnetic fields (EMFs) induces regional changes in neuronal activation as revealed by c-Fos imaging. In a first study, rats were exposed for 2 h to brain average specific absorption rates (BASARs) ranging from 0.5 to 6 W/kg. Changes in neuronal activation were found to be dose-dependent, with significant increases in c-Fos expression occurring at BASAR of 1 W/kg in prelimbic, infralimbic, frontal, and cingulate cortices. In a second study, rats were submitted to either a spatial working memory (WM) task in a radial maze or a spatial reference memory (RM) task in an open field arena. Exposures (45 min) were conducted before each daily training session (BASARs of 1 and 3.5 W/kg). Control groups included sham-exposed and control cage animals. In both tasks, behavioral performance evolved similarly in the four groups over testing days. However, c-Fos staining was significantly reduced in cortical areas (prelimbic, infralimbic, frontal, cingulate, and visual cortices) and in the hippocampus of animals engaged in the WM task (BASARs of 1 and 3.5 W/kg). In the RM task, EMF exposure-induced decreases were limited to temporal and visual cortices (BASAR of 1 W/kg). These results demonstrate that both acute and subchronic exposures to 900 MHz EMFs can produce region-specific changes in brain activity patterns, which are, however, insufficient to induce detectable cognitive deficits in the behavioral paradigms used here.
Collapse
Affiliation(s)
- Bruno Bontempi
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Université de Bordeaux et Ecole Pratique des Hautes Etudes, 33000 Bordeaux, France
| | - Philippe Lévêque
- XLIM, CNRS UMR 6172, Université de Limoges, 87060 Limoges, France
| | - Diane Dubreuil
- Institut des Neurosciences Paris-Saclay (NeuroPSI), Université Paris-Saclay, CNRS, CEA Paris-Saclay, bât 151, 91400 Saclay, France
| | - Thérèse M Jay
- Institut de Psychiatrie et Neurosciences de Paris, UMR_S 1266 INSERM, Université Paris Cité, 75014 Paris, France
| | - Jean-Marc Edeline
- Institut des Neurosciences Paris-Saclay (NeuroPSI), Université Paris-Saclay, CNRS, CEA Paris-Saclay, bât 151, 91400 Saclay, France
| |
Collapse
|
4
|
Granato G, Baldassarre G. Bridging flexible goal-directed cognition and consciousness: The Goal-Aligning Representation Internal Manipulation theory. Neural Netw 2024; 176:106292. [PMID: 38657422 DOI: 10.1016/j.neunet.2024.106292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
Goal-directed manipulation of internal representations is a key element of human flexible behaviour, while consciousness is commonly associated with higher-order cognition and human flexibility. Current perspectives have only partially linked these processes, thus preventing a clear understanding of how they jointly generate flexible cognition and behaviour. Moreover, these limitations prevent an effective exploitation of this knowledge for technological scopes. We propose a new theoretical perspective that extends our 'three-component theory of flexible cognition' toward higher-order cognition and consciousness, based on the systematic integration of key concepts from Cognitive Neuroscience and AI/Robotics. The theory proposes that the function of conscious processes is to support the alignment of representations with multi-level goals. This higher alignment leads to more flexible and effective behaviours. We analyse here our previous model of goal-directed flexible cognition (validated with more than 20 human populations) as a starting GARIM-inspired model. By bridging the main theories of consciousness and goal-directed behaviour, the theory has relevant implications for scientific and technological fields. In particular, it contributes to developing new experimental tasks and interpreting clinical evidence. Finally, it indicates directions for improving machine learning and robotics systems and for informing real-world applications (e.g., in digital-twin healthcare and roboethics).
Collapse
Affiliation(s)
- Giovanni Granato
- Laboratory of Embodied Natural and Artificial Intelligence, Institute of Cognitive Sciences and Technologies, National Research Council of Italy, Rome, Italy.
| | - Gianluca Baldassarre
- Laboratory of Embodied Natural and Artificial Intelligence, Institute of Cognitive Sciences and Technologies, National Research Council of Italy, Rome, Italy.
| |
Collapse
|
5
|
Garduño BM, Hanni P, Hays C, Cogram P, Insel N, Xu X. How the forebrain transitions to adulthood: developmental plasticity markers in a long-lived rodent reveal region diversity and the uniqueness of adolescence. Front Neurosci 2024; 18:1365737. [PMID: 38456144 PMCID: PMC10917993 DOI: 10.3389/fnins.2024.1365737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/02/2024] [Indexed: 03/09/2024] Open
Abstract
Maturation of the forebrain involves transitions from higher to lower levels of synaptic plasticity. The timecourse of these changes likely differs between regions, with the stabilization of some networks scaffolding the development of others. To gain better insight into neuroplasticity changes associated with maturation to adulthood, we examined the distribution of two molecular markers for developmental plasticity. We conducted the examination on male and female degus (Octodon degus), a rodent species with a relatively long developmental timecourse that offers a promising model for studying both development and age-related neuropathology. Immunofluorescent staining was used to measure perineuronal nets (PNNs), an extracellular matrix structure that emerges during the closure of critical plasticity periods, as well as microglia, resident immune cells that play a crucial role in synapse remodeling during development. PNNs (putatively restricting plasticity) were found to be higher in non-juvenile (>3 month) degus, while levels of microglia (putatively mediating plasticity) decreased across ages more gradually, and with varying timecourses between regions. Degus also showed notable variation in PNN levels between cortical layers and hippocampal subdivisions that have not been previously reported in other species. These results offer a glimpse into neuroplasticity changes occurring during degu maturation and highlight adolescence as a unique phase of neuroplasticity, in which PNNs have been established but microglia remain relatively high.
Collapse
Affiliation(s)
- B. Maximiliano Garduño
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Patrick Hanni
- Department of Psychology, University of Montana, Missoula, MT, United States
| | - Chelsea Hays
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Patricia Cogram
- Department of Ecological Sciences, Faculty of Sciences, Institute of Ecology and Biodiversity, Universidad de Chile, Santiago, Chile
- The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA, United States
| | - Nathan Insel
- Department of Psychology, University of Montana, Missoula, MT, United States
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
- The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
6
|
Lee SLT, Timmerman B, Pflomm R, Roy N, Kumar M, Markus EJ. Sequential order spatial memory in male rats: Characteristics and impact of medial prefrontal cortex and hippocampus disruption. Neurobiol Learn Mem 2023; 200:107739. [PMID: 36822465 DOI: 10.1016/j.nlm.2023.107739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/25/2022] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Remembering an experience entails linking what happened, where the event transpired, and when it occurred. Most rodent hippocampal studies involve tests of spatial memory, but fewer investigate temporal and sequential order memory. Here we provide a demonstration of rats learning an aversive sequential order task using a radial arm water maze. Male rats learned a fixed sequence of up to seven spatial locations, with each decision session separated by a temporal delay. Rats relied on visuospatial cues and the number of times they had entered the maze for a given day in order to successfully perform the task. Behavioral patterns during asymptotic performance showed similarities to the serial-position effect, especially with regards to faster first choice latency. Rats at asymptotic performance were implanted with bilateral cannula in medial prefrontal cortex, dorsal, and ventral hippocampus. After re-training, we injected muscimol to temporarily disrupt targeted brain regions. While control rats made prospective errors, rats with mPFC muscimol exhibited more retrospective errors. Rats with hippocampal muscimol no longer exhibited a prospective bias and were at chance levels in their error choices. Taken together, our results suggest disruption of mPFC, but not the hippocampus, produced an error choice bias during an aversive sequential order spatial processing task.
Collapse
Affiliation(s)
- Shang Lin Tommy Lee
- Division of Behavioral Neuroscience, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Brian Timmerman
- Division of Behavioral Neuroscience, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Riley Pflomm
- Division of Behavioral Neuroscience, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Nikita Roy
- Division of Behavioral Neuroscience, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Mahathi Kumar
- Division of Behavioral Neuroscience, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Etan J Markus
- Division of Behavioral Neuroscience, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
7
|
Wu GY, Zheng XX, Zhao SL, Wang Y, Jiang S, Wang YS, Yi YL, Yao J, Wen HZ, Liu J, Li HL, Sui JF. The prelimbic cortex regulates itch processing by controlling attentional bias. iScience 2022; 26:105829. [PMID: 36619983 PMCID: PMC9816985 DOI: 10.1016/j.isci.2022.105829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/31/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Itch is a complex and unpleasant sensory experience. Recent studies have begun to investigate the neural mechanisms underlying the modulation of sensory and emotional components of itch in the brain. However, the key brain regions and neural mechanism involved in modulating the attentional processing of itch remain elusive. Here, we showed that the prelimbic cortex (PrL) is associated with itch processing and that the manipulation of itch-responsive neurons in the PrL significantly disrupted itch-induced scratching. Interestingly, we found that increasing attentional bias toward a distracting stimulus could disturb itch processing. We also demonstrated the existence of a population of attention-related neurons in the PrL that drive attentional bias to regulate itch processing. Importantly, itch-responsive neurons and attention-related neurons significantly overlapped in the PrL and were mutually interchangeable in the regulation of itch processing at the cellular activity level. Our results revealed that the PrL regulates itch processing by controlling attentional bias.
Collapse
Affiliation(s)
- Guang-Yan Wu
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China,Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China,Corresponding author
| | - Xiao-Xia Zheng
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Shan-Lan Zhao
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Yi Wang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Shan Jiang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Yi-Song Wang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Yi-Lun Yi
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Juan Yao
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Hui-Zhong Wen
- Department of Neurobiology, College of Basic Medical Sciences, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Ju Liu
- Department of Foreign Languages, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Hong-Li Li
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China,Corresponding author
| | - Jian-Feng Sui
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China,Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China,Corresponding author
| |
Collapse
|
8
|
Macias S, Bakshi K, Troyer T, Smotherman M. The prefrontal cortex of the Mexican free-tailed bat is more selective to communication calls than primary auditory cortex. J Neurophysiol 2022; 128:634-648. [PMID: 35975923 PMCID: PMC9448334 DOI: 10.1152/jn.00436.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 07/20/2022] [Accepted: 08/05/2022] [Indexed: 11/22/2022] Open
Abstract
In this study, we examined the auditory responses of a prefrontal area, the frontal auditory field (FAF), of an echolocating bat (Tadarida brasiliensis) and presented a comparative analysis of the neuronal response properties between the FAF and the primary auditory cortex (A1). We compared single-unit responses from the A1 and the FAF elicited by pure tones, downward frequency-modulated sweeps (dFMs), and species-specific vocalizations. Unlike the A1, FAFs were not frequency tuned. However, progressive increases in dFM sweep rate elicited a systematic increase of response precision, a phenomenon that does not take place in the A1. Call selectivity was higher in the FAF versus A1. We calculated the neuronal spectrotemporal receptive fields (STRFs) and spike-triggered averages (STAs) to predict responses to the communication calls and provide an explanation for the differences in call selectivity between the FAF and A1. In the A1, we found a high correlation between predicted and evoked responses. However, we did not generate reasonable STRFs in the FAF, and the prediction based on the STAs showed lower correlation coefficient than that of the A1. This suggests nonlinear response properties in the FAF that are stronger than the linear response properties in the A1. Stimulating with a call sequence increased call selectivity in the A1, but it remained unchanged in the FAF. These data are consistent with a role for the FAF in assessing distinctive acoustic features downstream of A1, similar to the role proposed for primate ventrolateral prefrontal cortex.NEW & NOTEWORTHY In this study, we examined the neuronal responses of a frontal cortical area in an echolocating bat to behaviorally relevant acoustic stimuli and compared them with those in the primary auditory cortex (A1). In contrast to the A1, neurons in the bat frontal auditory field are not frequency tuned but showed a higher selectivity for social signals such as communication calls. The results presented here indicate that the frontal auditory field may represent an additional processing center for behaviorally relevant sounds.
Collapse
Affiliation(s)
- Silvio Macias
- Department of Biology, Texas A&M University, College Station, Texas
| | - Kushal Bakshi
- Institute for Neuroscience, Texas A&M University, College Station, Texas
| | - Todd Troyer
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas
| | - Michael Smotherman
- Department of Biology, Texas A&M University, College Station, Texas
- Institute for Neuroscience, Texas A&M University, College Station, Texas
| |
Collapse
|
9
|
Millard SJ, Bearden CE, Karlsgodt KH, Sharpe MJ. The prediction-error hypothesis of schizophrenia: new data point to circuit-specific changes in dopamine activity. Neuropsychopharmacology 2022; 47:628-640. [PMID: 34588607 PMCID: PMC8782867 DOI: 10.1038/s41386-021-01188-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a severe psychiatric disorder affecting 21 million people worldwide. People with schizophrenia suffer from symptoms including psychosis and delusions, apathy, anhedonia, and cognitive deficits. Strikingly, schizophrenia is characterised by a learning paradox involving difficulties learning from rewarding events, whilst simultaneously 'overlearning' about irrelevant or neutral information. While dysfunction in dopaminergic signalling has long been linked to the pathophysiology of schizophrenia, a cohesive framework that accounts for this learning paradox remains elusive. Recently, there has been an explosion of new research investigating how dopamine contributes to reinforcement learning, which illustrates that midbrain dopamine contributes in complex ways to reinforcement learning, not previously envisioned. This new data brings new possibilities for how dopamine signalling contributes to the symptomatology of schizophrenia. Building on recent work, we present a new neural framework for how we might envision specific dopamine circuits contributing to this learning paradox in schizophrenia in the context of models of reinforcement learning. Further, we discuss avenues of preclinical research with the use of cutting-edge neuroscience techniques where aspects of this model may be tested. Ultimately, it is hoped that this review will spur to action more research utilising specific reinforcement learning paradigms in preclinical models of schizophrenia, to reconcile seemingly disparate symptomatology and develop more efficient therapeutics.
Collapse
Affiliation(s)
- Samuel J Millard
- Department of Psychology, University of California, Los Angeles, CA, 90095, USA.
| | - Carrie E Bearden
- Department of Psychology, University of California, Los Angeles, CA, 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, 90095, USA
| | - Katherine H Karlsgodt
- Department of Psychology, University of California, Los Angeles, CA, 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, 90095, USA
| | - Melissa J Sharpe
- Department of Psychology, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
10
|
Cabeza L, Ramadan B, Cramoisy S, Houdayer C, Haffen E, Risold PY, Fellmann D, Peterschmitt Y. Chronic Distress in Male Mice Impairs Motivation Compromising Both Effort and Reward Processing With Altered Anterior Insular Cortex and Basolateral Amygdala Neural Activation. Front Behav Neurosci 2021; 15:717701. [PMID: 34588963 PMCID: PMC8475760 DOI: 10.3389/fnbeh.2021.717701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/17/2021] [Indexed: 12/02/2022] Open
Abstract
In humans and mammals, effort-based decision-making for monetary or food rewards paradigms contributes to the study of adaptive goal-directed behaviours acquired through reinforcement learning. Chronic distress modelled by repeated exposure to glucocorticoids in rodents induces suboptimal decision-making under uncertainty by impinging on instrumental acquisition and prompting negative valence behaviours. In order to further disentangle the motivational tenets of adaptive decision-making, this study addressed the consequences of enduring distress on relevant effort and reward-processing dimensions. Experimentally, appetitive and consummatory components of motivation were evaluated in adult C57BL/6JRj male mice experiencing chronic distress induced by oral corticosterone (CORT), using multiple complementary discrete behavioural tests. Behavioural data (from novelty suppressed feeding, operant effort-based choice, free feeding, and sucrose preference tasks) collectively show that behavioural initiation, effort allocation, and hedonic appreciation and valuation are altered in mice exposed to several weeks of oral CORT treatment. Additionally, data analysis from FosB immunohistochemical processing of postmortem brain samples highlights CORT-dependent dampening of neural activation in the anterior insular cortex (aIC) and basolateral amygdala (BLA), key telencephalic brain regions involved in appetitive and consummatory motivational processing. Combined, these results suggest that chronic distress-induced irregular aIC and BLA neural activations with reduced effort production and attenuated reward value processing during reinforcement-based instrumental learning could result in maladaptive decision-making under uncertainty. The current study further illustrates how effort and reward processing contribute to adjust the motivational threshold triggering goal-directed behaviours in versatile environments.
Collapse
Affiliation(s)
- Lidia Cabeza
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Bourgogne – Franche-Comté, Besançon, France
| | - Bahrie Ramadan
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Bourgogne – Franche-Comté, Besançon, France
| | - Stephanie Cramoisy
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Bourgogne – Franche-Comté, Besançon, France
| | - Christophe Houdayer
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Bourgogne – Franche-Comté, Besançon, France
| | - Emmanuel Haffen
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Bourgogne – Franche-Comté, Besançon, France
- Clinical Psychiatry, Hôpital Universitaire CHRU, Besançon, France
- CIC-INSERM-1431, Hôpital Universitaire CHRU, Besançon, France
| | - Pierre-Yves Risold
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Bourgogne – Franche-Comté, Besançon, France
| | - Dominique Fellmann
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Bourgogne – Franche-Comté, Besançon, France
| | - Yvan Peterschmitt
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Bourgogne – Franche-Comté, Besançon, France
| |
Collapse
|
11
|
Esmaeili V, Diamond ME. Neuronal Correlates of Tactile Working Memory in Prefrontal and Vibrissal Somatosensory Cortex. Cell Rep 2020; 27:3167-3181.e5. [PMID: 31189103 PMCID: PMC6581739 DOI: 10.1016/j.celrep.2019.05.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 04/05/2019] [Accepted: 05/09/2019] [Indexed: 11/25/2022] Open
Abstract
Tactile working memory engages a broad network of cortical regions in primates. To assess whether the conclusions drawn from primates apply to rodents, we examined the vibrissal primary somatosensory cortex (vS1) and the prelimbic cortex (PL) in a delayed comparison task. Rats compared the speeds of two vibrissal vibrations, stimulus1 and stimulus2, separated by a delay of 2 s. Neuronal firing rates in vS1 and PL encode both stimuli in real time. Across the delay, the stimulus1 representation declines more precipitously in vS1 than in PL. Theta-band local field potential (LFP) coherence between vS1 and PL peaks at trial onset and remains elevated during the interstimulus interval; simultaneously, vS1 spikes become phase locked to PL LFP. Phase locking is stronger on correct (versus error) trials. Tactile working memory in rats appears to be mediated by a posterior (vS1) to anterior (PL) flow of information, with performance facilitated through coherent LFP oscillation. Rats compared the speeds of two sequential vibrissal vibrations, separated by 2 s Neurons in the primary somatosensory (vS1) and prelimbic (PL) cortex coded the stimuli Theta local field potential coherence between vS1 and PL peaked at trial onset Intracortical coherent oscillations may play a role in rat tactile working memory
Collapse
Affiliation(s)
- Vahid Esmaeili
- Tactile Perception and Learning Laboratory, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Mathew E Diamond
- Tactile Perception and Learning Laboratory, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy.
| |
Collapse
|
12
|
Kuo CC, Hsieh JC, Tsai HC, Kuo YS, Yau HJ, Chen CC, Chen RF, Yang HW, Min MY. Inhibitory interneurons regulate phasic activity of noradrenergic neurons in the mouse locus coeruleus and functional implications. J Physiol 2020; 598:4003-4029. [PMID: 32598024 DOI: 10.1113/jp279557] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/25/2020] [Indexed: 01/16/2023] Open
Abstract
KEY POINTS The locus coeruleus (LC) contains noradrenergic (NA) neurons that respond to novel stimuli in the environment with phasic activation to initiate an orienting response; phasic LC activation is also triggered by stimuli, representing the outcome of task-related decision processes, to facilitate ensuing behaviours and help optimize task performance. Here, we report that LC-NA neurons exhibit bursts of action potentials in vitro resembling phasic LC activation in vivo, and the activity is gated by inhibitory interneurons (I-INs) located in the peri-LC. We also observe that inhibition of peri-LC I-INs enhances prepulse inhibition and axons from cortical areas that play important roles in evaluating the cost/reward of a stimulus synapse on both peri-LC I-INs and LC-NA neurons. The results help us understand the cellular mechanisms underlying the generation and regulation of phasic LC activation with a focus on the role of peri-LC I-INs. ABSTRACT Noradrenergic (NA) neurons in the locus coeruleus (LC) have global axonal projection to the brain. These neurons discharge action potentials phasically in response to either novel stimuli in the environment to initiate an orienting behaviour or stimuli representing the outcome of task-related decision processes to facilitate ensuing behaviours and help optimize task performance. Nevertheless, the cellular mechanisms underlying the generation and regulation of phasic LC activation remain unknown. We report here that LC-NA neurons recorded in brain slices exhibit bursts of action potentials that resembled the phasic activation-pause profile observed in animals. The activity was referred to as phasic-like activity (PLA) and was suppressed and enhanced by blocking excitatory and inhibitory synaptic transmissions, respectively. These results suggest the existence of a local circuit to drive PLA, and the activity could be regulated by the excitatory-inhibitory balance of the circuit. In support of this notion, we located a population of inhibitory interneurons (I-INs) in the medial part of the peri-LC that exerted feedforward inhibition of LC-NA neurons through GABAergic and glycinergic transmissions. Selective inhibition of peri-LC I-INs with chemogenetic methods could enhance PLA in brain slices and increase prepulse inhibition in animals. Moreover, axons from the orbitofrontal and prelimbic cortices, which play important roles in evaluating the cost/reward of a stimulus, synapse on both peri-LC I-INs and LC-NA neurons. These observations demonstrate functional roles of peri-LC I-INs in integrating inputs of the frontal cortex onto LC-NA neurons and gating the phasic LC output.
Collapse
Affiliation(s)
- Chao-Cheng Kuo
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Jung-Chien Hsieh
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Hsing-Chun Tsai
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Shan Kuo
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan.,Departments of Biomedical Sciences and Medical Research, Chung-Shan Medical University and Chung-Shan Medical University Hospital, Taichung, 40201, Taiwan
| | - Hau-Jie Yau
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Chih-Cheng Chen
- Institute of Biomedical Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Ruei-Feng Chen
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Hsiu-Wen Yang
- Departments of Biomedical Sciences and Medical Research, Chung-Shan Medical University and Chung-Shan Medical University Hospital, Taichung, 40201, Taiwan
| | - Ming-Yuan Min
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
13
|
Affiliation(s)
- Quenten Highgate
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| | - Susan Schenk
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
14
|
Habitual use of GPS negatively impacts spatial memory during self-guided navigation. Sci Rep 2020; 10:6310. [PMID: 32286340 PMCID: PMC7156656 DOI: 10.1038/s41598-020-62877-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/04/2020] [Indexed: 12/04/2022] Open
Abstract
Global Positioning System (GPS) navigation devices and applications have become ubiquitous over the last decade. However, it is unclear whether using GPS affects our own internal navigation system, or spatial memory, which critically relies on the hippocampus. We assessed the lifetime GPS experience of 50 regular drivers as well as various facets of spatial memory, including spatial memory strategy use, cognitive mapping, and landmark encoding using virtual navigation tasks. We first present cross-sectional results that show that people with greater lifetime GPS experience have worse spatial memory during self-guided navigation, i.e. when they are required to navigate without GPS. In a follow-up session, 13 participants were retested three years after initial testing. Although the longitudinal sample was small, we observed an important effect of GPS use over time, whereby greater GPS use since initial testing was associated with a steeper decline in hippocampal-dependent spatial memory. Importantly, we found that those who used GPS more did not do so because they felt they had a poor sense of direction, suggesting that extensive GPS use led to a decline in spatial memory rather than the other way around. These findings are significant in the context of society’s increasing reliance on GPS.
Collapse
|
15
|
Ito T, Yamamoto R, Furuyama T, Hase K, Kobayasi KI, Hiryu S, Honma S. Three forebrain structures directly inform the auditory midbrain of echolocating bats. Neurosci Lett 2019; 712:134481. [PMID: 31494222 DOI: 10.1016/j.neulet.2019.134481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 01/10/2023]
Abstract
Echolocating bats emit various types of vocalizations for navigation and communication, and need to pay attention to vocal sounds. Projections from forebrain centers to auditory centers are involved in the attention to vocalizations, with the inferior colliculus (IC) being the main target of the projections. Here, using a retrograde tracer, we demonstrate that three forebrain structures, namely, the medial prefrontal cortex (mPFC), amygdala, and auditory cortex (AC), send direct descending projections to the central nucleus of IC. We found that all three structures projected to the bilateral IC. A comparison of the patterns of retrogradely labeled cells across animals suggests that the ipsilateral AC-IC projection is topographically organized, whereas mPFC-IC or amygdala-IC projections did not show clear topographic organization. Together with evidence from previous studies, these results suggest that three descending projections to the IC form loops between the forebrain and IC to make attention to various vocal sounds.
Collapse
Affiliation(s)
- Tetsufumi Ito
- Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.
| | - Ryo Yamamoto
- Department of Physiology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Takafumi Furuyama
- Department of Physiology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan; Neuroethology and Bioengineering Laboratory, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
| | - Kazuma Hase
- Neuroethology and Bioengineering Laboratory, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
| | - Kohta I Kobayasi
- Neuroethology and Bioengineering Laboratory, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
| | - Shizuko Hiryu
- Neuroethology and Bioengineering Laboratory, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
| | - Satoru Honma
- Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| |
Collapse
|
16
|
Schuch CP, Balbinot G, Jeffers MS, McDonald MW, Dykes A, Kuhl LM, Corbett D. An RFID-based activity tracking system to monitor individual rodent behavior in environmental enrichment: Implications for post-stroke cognitive recovery. J Neurosci Methods 2019; 324:108306. [DOI: 10.1016/j.jneumeth.2019.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/13/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022]
|
17
|
López-Vázquez MÁ, Gama-García CE, Estrada-Reyes Y, Gaytán-Tocavén L, Alfaro JMC, Olvera-Cortés ME. Neonatal Monosodium Glutamate Administration Disrupts Place Learning and Alters Hippocampal-Prefrontal Learning-Related Theta Activity in the Adult Rat. Neuroscience 2019; 414:228-244. [PMID: 31299349 DOI: 10.1016/j.neuroscience.2019.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/23/2019] [Accepted: 07/01/2019] [Indexed: 01/30/2023]
Abstract
Neonatal treatment with monosodium glutamate causes profound deficits in place learning and memory in adult rats evaluated in the Morris maze. Theta activity has been related to hippocampal learning, and increased high-frequency theta activity occurs through efficient place learning training in the Morris maze. We wondered whether the place learning deficits observed in adult rats that had been neonatally treated with monosodium glutamate (MSG), were related to altered theta patterns in the hippocampus and prelimbic cortex, which were recorded during place learning training in the Morris maze. The MSG-treated group had a profound deficit in place learning ability, with a marginal reduction in escape latencies during the final days of training. Learning-related changes were observed in the relative power distribution in control and MSG-treated groups in the hippocampal EEG, but not in the prelimbic cortex. Increased prefrontal and reduced hippocampal absolute power that appeared principally during the final days of training, and reduced coherence between regions throughout the training (4-12 Hz), were observed in the MSG-treated rats, thereby suggesting a misfunction of the circuits rather than a hyperexcitable general state. In conclusion, neonatal administration of MSG, which caused a profound deficit in place learning at the adult age, also altered the theta pattern both in the hippocampus and prelimbic cortex.
Collapse
Affiliation(s)
- Miguel Ángel López-Vázquez
- Laboratorio de Neuroplasticidad de los Procesos Cognitivos, División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Camino de la Arboleda 300, Ex-Hacienda de San José de la Huerta, C.P., 58341, Morelia, Michoacán, México.
| | - Carla Estefanía Gama-García
- Laboratorio de Neurofisiología Experimental, División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Camino de la Arboleda 300, Ex-Hacienda de San José de la Huerta, C.P., 58341, Morelia, Michoacán, México
| | - Yoana Estrada-Reyes
- Laboratorio de Neuroplasticidad de los Procesos Cognitivos, División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Camino de la Arboleda 300, Ex-Hacienda de San José de la Huerta, C.P., 58341, Morelia, Michoacán, México
| | - Lorena Gaytán-Tocavén
- Laboratorio de Neurofisiología Experimental, División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Camino de la Arboleda 300, Ex-Hacienda de San José de la Huerta, C.P., 58341, Morelia, Michoacán, México
| | - José Miguel Cervantes Alfaro
- Laboratorio de Neurociencias, Departamento de Postgrado, Facultad de Medicina "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo, Rafael Carrillo esq. Salvador González Herrejón S/N. C.P., 58000, Colonia Centro, Morelia, Michoacán, México
| | - María Esther Olvera-Cortés
- Laboratorio de Neurofisiología Experimental, División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Camino de la Arboleda 300, Ex-Hacienda de San José de la Huerta, C.P., 58341, Morelia, Michoacán, México
| |
Collapse
|
18
|
Biró S, Lasztóczi B, Klausberger T. A Visual Two-Choice Rule-Switch Task for Head-Fixed Mice. Front Behav Neurosci 2019; 13:119. [PMID: 31244622 PMCID: PMC6562896 DOI: 10.3389/fnbeh.2019.00119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/17/2019] [Indexed: 12/02/2022] Open
Abstract
Cognitive flexibility is the innate ability of the brain to change mental processes and to modify behavioral responses according to an ever-changing environment. As our brain has a limited capacity to process the information of our surroundings in any given moment, it uses sets as a strategy to aid neural processing systems. With assessing the capability of shifting between task sets, it is possible to test cognitive flexibility and executive functions. The most widely used neuropsychological task for the evaluation of these functions in humans is the Wisconsin Card Sorting Test (WCST), which requires the subject to alter response strategies and use previously irrelevant information to solve a problem. The test has proven clinical relevance, as poor performance has been reported in multiple neuropsychiatric conditions. Although, similar tasks have been used in pre-clinical rodent research, many are limited because of their manual-based testing procedures and their hardware attenuates neuronal recordings. We developed a two-choice rule-switch task whereby head-fixed C57BL/6 mice had to choose correctly one of the two virtual objects presented to retrieve a small water reward. The animals learnt to discriminate the visual cues and they successfully switched their strategies according to the related rules. We show that reaching successful performance after the rule changes required more trials in this task and that animals took more time to execute decisions when the two rules were in conflict. We used optogenetics to inhibit temporarily the medial prefrontal cortex (mPFC) during reward delivery and consumption, which significantly increased the number of trials needed to perform the second rule successfully (i.e., succeed in switching between rules), compared to control experiments. Furthermore, by assessing two types of error animals made after the rule switch, we show that interfering with the positive feedback integration, but leaving the negative feedback processing intact, does not influence the initial disengagement from the first rule, but impedes the maintenance of the newly acquired response set. These findings support the role of prefrontal networks in mice for cognitive flexibility, which is impaired during numerous neuropsychiatric diseases, such as schizophrenia and depression.
Collapse
Affiliation(s)
- Szabolcs Biró
- Center for Brain Research, Division of Cognitive Neurobiology, Medical University of Vienna, Vienna, Austria
| | | | - Thomas Klausberger
- Center for Brain Research, Division of Cognitive Neurobiology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
White MG, Panicker M, Mu C, Carter AM, Roberts BM, Dharmasri PA, Mathur BN. Anterior Cingulate Cortex Input to the Claustrum Is Required for Top-Down Action Control. Cell Rep 2019; 22:84-95. [PMID: 29298436 DOI: 10.1016/j.celrep.2017.12.023] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/30/2017] [Accepted: 12/06/2017] [Indexed: 01/13/2023] Open
Abstract
Cognitive abilities, such as volitional attention, operate under top-down, executive frontal cortical control of hierarchically lower structures. The circuit mechanisms underlying this process are unresolved. The claustrum possesses interconnectivity with many cortical areas and, thus, is hypothesized to orchestrate the cortical mantle for top-down control. Whether the claustrum receives top-down input and how this input may be processed by the claustrum have yet to be formally tested, however. We reveal that a rich anterior cingulate cortex (ACC) input to the claustrum encodes a preparatory top-down information signal on a five-choice response assay that is necessary for optimal task performance. We further show that ACC input monosynaptically targets claustrum inhibitory interneurons and spiny glutamatergic projection neurons, the latter of which amplify ACC input in a manner that is powerfully constrained by claustrum inhibitory microcircuitry. These results demonstrate ACC input to the claustrum is critical for top-down control guiding action.
Collapse
Affiliation(s)
- Michael G White
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Matthew Panicker
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Chaoqi Mu
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ashley M Carter
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Bradley M Roberts
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Poorna A Dharmasri
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Brian N Mathur
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
20
|
Abstract
RATIONALE The experience of strong traumata leads to the formation of enduring fear memories that may degenerate into post-traumatic stress disorder. One of the most successful treatments for this condition consists of extinction training during which the repeated exposure to trauma-inducing stimuli in a safe environment results in an attenuation of the fearful component of trauma-related memories. While numerous studies have investigated the neural substrates of recent (e.g., 1-day-old) fear memory attenuation, much less is known about the neural networks mediating the attenuation of remote (e.g., 30-day-old) fear memories. Since extinction training becomes less effective when applied long after the original encoding of the traumatic memory, this represents an important gap in memory research. OBJECTIVES Here, we aimed to generate a comprehensive map of brain activation upon effective remote fear memory attenuation in the mouse. METHODS We developed an efficient extinction training paradigm for 1-month-old contextual fear memory attenuation and performed cFos immunohistochemistry and network connectivity analyses on a set of cortical, amygdalar, thalamic, and hippocampal regions. RESULTS Remote fear memory attenuation induced cFos in the prelimbic cortex, the basolateral amygdala, the nucleus reuniens of the thalamus, and the ventral fields of the hippocampal CA1 and CA3. All these structures were equally recruited by remote fear memory recall, but not by the recall of a familiar neutral context. CONCLUSION These results suggest that progressive fear attenuation mediated by repetitive exposure is accompanied by sustained neuronal activation and not reverted to a pre-conditioning brain state. These findings contribute to the identification of brain areas as targets for therapeutic approaches against traumatic memories.
Collapse
|
21
|
Varodayan FP, Sidhu H, Kreifeldt M, Roberto M, Contet C. Morphological and functional evidence of increased excitatory signaling in the prelimbic cortex during ethanol withdrawal. Neuropharmacology 2018; 133:470-480. [PMID: 29471053 PMCID: PMC5865397 DOI: 10.1016/j.neuropharm.2018.02.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/26/2018] [Accepted: 02/16/2018] [Indexed: 02/06/2023]
Abstract
Excessive alcohol consumption in humans induces deficits in decision making and emotional processing, which indicates a dysfunction of the prefrontal cortex (PFC). The present study aimed to determine the impact of chronic intermittent ethanol (CIE) inhalation on mouse medial PFC pyramidal neurons. Data were collected 6-8 days into withdrawal from 7 weeks of CIE exposure, a time point when mice exhibit behavioral symptoms of withdrawal. We found that spine maturity in prelimbic (PL) layer 2/3 neurons was increased, while dendritic spines in PL layer 5 neurons or infralimbic (IL) neurons were not affected. Corroborating these morphological observations, CIE enhanced glutamatergic transmission in PL layer 2/3 pyramidal neurons, but not IL layer 2/3 neurons. Contrary to our predictions, these cellular alterations were associated with improved, rather than impaired, performance in reversal learning and strategy switching tasks in the Barnes maze at an earlier stage of chronic ethanol exposure (5-7 days withdrawal from 3 to 4 weeks of CIE), which could result from the anxiety-like behavior associated with ethanol withdrawal. Altogether, this study adds to a growing body of literature indicating that glutamatergic activity in the PFC is upregulated following chronic ethanol exposure, and identifies PL layer 2/3 pyramidal neurons as a sensitive target of synaptic remodeling. It also indicates that the Barnes maze is not suitable to detect deficits in cognitive flexibility in CIE-withdrawn mice.
Collapse
Affiliation(s)
| | - Harpreet Sidhu
- The Scripps Research Institute, Department of Neuroscience, La Jolla, CA, USA
| | - Max Kreifeldt
- The Scripps Research Institute, Department of Neuroscience, La Jolla, CA, USA
| | - Marisa Roberto
- The Scripps Research Institute, Department of Neuroscience, La Jolla, CA, USA
| | - Candice Contet
- The Scripps Research Institute, Department of Neuroscience, La Jolla, CA, USA.
| |
Collapse
|
22
|
Viena TD, Linley SB, Vertes RP. Inactivation of nucleus reuniens impairs spatial working memory and behavioral flexibility in the rat. Hippocampus 2018; 28:297-311. [PMID: 29357198 DOI: 10.1002/hipo.22831] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/19/2017] [Accepted: 01/18/2018] [Indexed: 02/03/2023]
Abstract
The hippocampal formation (HF) and medial prefrontal cortex (mPFC) play critical roles in spatial working memory (SWM). The nucleus reuniens (RE) of the ventral midline thalamus is an important anatomical link between the HF and mPFC, and as such is crucially involved in SWM functions that recruit both structures. Little is known, however, regarding the role of RE in other behaviors mediated by this circuit. In the present study, we examined the role of RE in spatial working memory and executive functioning following reversible inactivation of RE with either muscimol or procaine. Rats were implanted with an indwelling cannula targeting RE and trained in a delayed nonmatch to sample spatial alternation T-maze task. For the task, sample and choice runs were separated by moderate or long delays (30, 60, and 120 s). Following asymptotic performance, rats were tested following infusions of drug or vehicle. Muscimol infused into RE impaired SWM at all delays, whereby procaine only impaired performance at the longest delays. Furthermore, RE inactivation with muscimol produced a failure in win-shift strategy as well as severe spatial perseveration, whereby rats persistently made re-entries into incorrect arms during correction trials, despite the absence of reward. This demonstrated marked changes in behavioral flexibility and response strategy. These results strengthen the role of nucleus reuniens as a pivotal link between hippocampus and prefrontal cortex in cognitive and executive functions and suggest that nucleus reuniens may be a potential target in the treatment of CNS disorders such as schizophrenia, attention deficit hyperactivity disorder, addiction, and obsessive-compulsive disorder, whose symptoms are defined by hippocampal-prefrontal dysfunctions.
Collapse
Affiliation(s)
- Tatiana D Viena
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida 33431
| | - Stephanie B Linley
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida 33431.,Department of Psychology, Florida Atlantic University, Boca Raton, Florida 33431
| | - Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida 33431
| |
Collapse
|
23
|
Thomasson J, Canini F, Poly-Thomasson B, Trousselard M, Granon S, Chauveau F. Neuropeptide S overcomes short term memory deficit induced by sleep restriction by increasing prefrontal cortex activity. Eur Neuropsychopharmacol 2017; 27:1308-1318. [PMID: 28941995 DOI: 10.1016/j.euroneuro.2017.08.431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 07/27/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023]
Abstract
Sleep restriction (SR) impairs short term memory (STM) that might be related to different processes. Neuropeptide S (NPS), an endogenous neuropeptide that improves short term memory, activates arousal and decreases anxiety is likely to counteract the SR-induced impairment of STM. The objective of the present study was to find common cerebral pathways in sleep restriction and NPS action in order to ultimately antagonize SR effect on memory. The STM was assessed using a spontaneous spatial alternation task in a T-maze. C57-Bl/6J male mice were distributed in 4 groups according to treatment (0.1nmol of NPS or vehicle intracerebroventricular injection) and to 20h-SR. Immediately after behavioural testing, regional c-fos immunohistochemistry was performed and used as a neural activation marker for spatial short term memory (prefrontal cortex, dorsal hippocampus) and emotional reactivity (basolateral amygdala and ventral hippocampus). Anxiety-like behaviour was assessed using elevated-plus maze task. Results showed that SR impaired short term memory performance and decreased neuronal activation in cingular cortex.NPS injection overcame SR-induced STM deficits and increased neuronal activation in infralimbic cortex. SR spared anxiety-like behavior in the elevated-plus maze. Neural activation in basolateral nucleus of amygdala and ventral hippocampus were not changed after SR.In conclusion, the present study shows that NPS overcomes SR-induced STM deficits by increasing prefrontal cortex activation independently of anxiety-like behaviour.
Collapse
Affiliation(s)
- Julien Thomasson
- Institut de Recherche Biomédicale des Armées Brétigny-sur-Orge, France
| | - Frédéric Canini
- Institut de Recherche Biomédicale des Armées Brétigny-sur-Orge, France; Ecole du Val de Grâce, 1 Place Laveran, Paris, France
| | | | - Marion Trousselard
- Institut de Recherche Biomédicale des Armées Brétigny-sur-Orge, France; Ecole du Val de Grâce, 1 Place Laveran, Paris, France
| | - Sylvie Granon
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), CNRS UMR 9197, Université Paris-Saclay, Orsay, France
| | - Frédéric Chauveau
- Institut de Recherche Biomédicale des Armées Brétigny-sur-Orge, France.
| |
Collapse
|
24
|
Saha R, Shrivastava K, Jing L, Schayek R, Maroun M, Kriebel M, Volkmer H, Richter-Levin G. Perturbation of GABAergic Synapses at the Axon Initial Segment of Basolateral Amygdala Induces Trans-regional Metaplasticity at the Medial Prefrontal Cortex. Cereb Cortex 2017; 28:395-410. [DOI: 10.1093/cercor/bhx300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- Rinki Saha
- Sagol Department of Neurobiology, University of Haifa, Haifa 31905, Israel
| | | | - Liang Jing
- The Institute for the Study of Affective Neuroscience, University of Haif, Haifa 31905, Israel
| | - Rachel Schayek
- Sagol Department of Neurobiology, University of Haifa, Haifa 31905, Israel
| | - Mouna Maroun
- Sagol Department of Neurobiology, University of Haifa, Haifa 31905, Israel
| | - Martin Kriebel
- NMI Natural and Medical Sciences Institute, University of Tübingen, 72770 Reutlingen, Germany
| | - Hansjürgen Volkmer
- NMI Natural and Medical Sciences Institute, University of Tübingen, 72770 Reutlingen, Germany
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, Haifa 31905, Israel
- Department of Psychology, University of Haifa, Haifa 31905, Israel
- The Institute for the Study of Affective Neuroscience, University of Haif, Haifa 31905, Israel
| |
Collapse
|
25
|
Nakatani A, Nakamura S, Kimura H. The phosphodiesterase 10A selective inhibitor, TAK-063, induces c-Fos expression in both direct and indirect pathway medium spiny neurons and sub-regions of the medial prefrontal cortex in rats. Neurosci Res 2017; 125:29-36. [PMID: 28687229 DOI: 10.1016/j.neures.2017.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/20/2017] [Accepted: 06/29/2017] [Indexed: 11/30/2022]
Abstract
TAK-063, a selective phosphodiesterase 10A (PDE10A) inhibitor, produces potent antipsychotic-like and pro-cognitive effects in rodents via balanced activation of striatal direct and indirect pathway medium spiny neurons (MSNs). Brain activity modulation by TAK-063 has been characterized using pharmacological magnetic resonance imaging and electroencephalography in animals, revealing modulation of activity in the prefrontal cortex (PFC) where there is little or no PDE10A expression. To understand the specific brain regions and cells affected by TAK-063 in rats, we assessed neural activation in the striatal complex and PFC using immunofluorescence staining to measure c-Fos expression. TAK-063 at 0.3 and 3mg/kg induced a dose-dependent increase in the number of c-Fos immunoreactive cells in the striatal complex. Furthermore, TAK-063 increased the number of MSNs expressing c-fos mRNA in both the D1 receptor-expressing direct pathway and D2 receptor-expressing indirect pathway of the striatal complex. TAK-063 (0.3 and 3mg/kg) induced c-Fos expression in the anterior cingulate cortex (ACC) and prelimbic cortex (PrL), but not the infralimbic, dorsal peduncular, primary motor or anterior insular cortices. These findings suggest that administration of TAK-063 activates similar numbers of direct and indirect pathway MSNs, resulting in activation predominantly in medial PFC sub-regions, such as the ACC and PrL.
Collapse
Affiliation(s)
- Atsushi Nakatani
- CNS Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Sayuri Nakamura
- CNS Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Haruhide Kimura
- CNS Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
26
|
Inactivation of the Prelimbic Cortex Attenuates Context-Dependent Operant Responding. J Neurosci 2017; 37:2317-2324. [PMID: 28137970 DOI: 10.1523/jneurosci.3361-16.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 01/25/2023] Open
Abstract
Operant responding in rats provides an analog to voluntary behavior in humans and is used to study maladaptive behaviors, such as overeating, drug taking, or relapse. In renewal paradigms, extinguished behavior recovers when tested outside the context where extinction was learned. Inactivation of the prelimbic (PL) region of the medial prefrontal cortex by baclofen/muscimol (B/M) during testing attenuates renewal when tested in the original acquisition context after extinction in another context (ABA renewal). Two experiments tested the hypothesis that the PL is important in context-dependent responding learned during conditioning. In the first, rats learned to lever-press for a sucrose-pellet reward. Following acquisition, animals were infused with either B/M or vehicle in the PL and tested in the acquisition context (A) and in a different context (B). All rats showed a decrement in responding when switched from Context A to Context B, but PL inactivation decreased responding only in Context A. Experiment 2a examined the effects of PL inactivation on ABC renewal in the same rats. Here, following reacquisition of the response, responding was extinguished in a new context (C). Following infusions of B/M or vehicle in the PL, responding was tested in Context C and another new context (D). The rats exhibited ACD renewal regardless of PL inactivation. Experiment 2b demonstrated that PL inactivation attenuated the ABA renewal effect in the same animals, replicating earlier results and demonstrating that cannulae were still functional. The results suggest that, rather than attenuating renewal generally, PL inactivation specifically affects ABA renewal by reducing responding in the conditioning context.SIGNIFICANCE STATEMENT Extinguished operant behavior can recover ("renew") when tested outside the extinction context. This suggests that behaviors, such as overeating or drug taking, might be especially prone to relapse following treatment. In rats, inactivation of the prelimbic cortex (PL) attenuates renewal. However, we report that PL inactivation after training attenuates responding in the context in which responding was acquired, but not in another one. A similar inactivation has no impact on renewal when testing occurs in a new, rather than the original, context following extinction. The PL thus has a more specific role in controlling contextually dependent operant behavior than has been previously reported.
Collapse
|
27
|
Cognitive correlates of spatial navigation: Associations between executive functioning and the virtual Morris Water Task. Behav Brain Res 2017; 317:470-478. [DOI: 10.1016/j.bbr.2016.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/29/2016] [Accepted: 10/03/2016] [Indexed: 11/21/2022]
|
28
|
McKlveen JM, Morano RL, Fitzgerald M, Zoubovsky S, Cassella SN, Scheimann JR, Ghosal S, Mahbod P, Packard BA, Myers B, Baccei ML, Herman JP. Chronic Stress Increases Prefrontal Inhibition: A Mechanism for Stress-Induced Prefrontal Dysfunction. Biol Psychiatry 2016; 80:754-764. [PMID: 27241140 PMCID: PMC5629635 DOI: 10.1016/j.biopsych.2016.03.2101] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/06/2016] [Accepted: 03/10/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Multiple neuropsychiatric disorders, e.g., depression, are linked to imbalances in excitatory and inhibitory neurotransmission and prefrontal cortical dysfunction, and are concomitant with chronic stress. METHODS We used electrophysiologic (n = 5-6 animals, 21-25 cells/group), neuroanatomic (n = 6-8/group), and behavioral (n = 12/group) techniques to test the hypothesis that chronic stress increases inhibition of medial prefrontal cortex (mPFC) glutamatergic output neurons. RESULTS Using patch clamp recordings from infralimbic mPFC pyramidal neurons, we found that chronic stress selectively increases the frequency of miniature inhibitory postsynaptic currents with no effect on amplitude, which suggests that chronic stress increases presynaptic gamma-aminobutyric acid release. Elevated gamma-aminobutyric acid release under chronic stress is accompanied by increased inhibitory appositions and terminals onto glutamatergic cells, as assessed by both immunohistochemistry and electron microscopy. Furthermore, chronic stress decreases glucocorticoid receptor immunoreactivity specifically in a subset of inhibitory neurons, which suggests that increased inhibitory tone in the mPFC after chronic stress may be caused by loss of a glucocorticoid receptor-mediated brake on interneuron activity. These neuroanatomic and functional changes are associated with impairment of a prefrontal-mediated behavior. During chronic stress, rats initially make significantly more errors in the delayed spatial win-shift task, an mPFC-mediated behavior, which suggests a diminished impact of the mPFC on decision making. CONCLUSIONS Taken together, the data suggest that chronic stress increases synaptic inhibition onto prefrontal glutamatergic output neurons, limiting the influence of the prefrontal cortex in control of stress reactivity and behavior. Thus, these data provide a mechanistic link among chronic stress, prefrontal cortical hypofunction, and behavioral dysfunction.
Collapse
|
29
|
Abstract
Working memory - the ability to maintain and manipulate information over a period of seconds - is a core component of higher cognitive functions. The storage capacity of working memory is limited but can be expanded by training, and evidence of the neural mechanisms underlying this effect is accumulating. Human imaging studies and neurophysiological recordings in non-human primates, together with computational modelling studies, reveal that training increases the activity of prefrontal neurons and the strength of connectivity in the prefrontal cortex and between the prefrontal and parietal cortex. Dopaminergic transmission could have a facilitatory role. These changes more generally inform us of the plasticity of higher cognitive functions.
Collapse
|
30
|
Halladay LR, Blair HT. Prefrontal infralimbic cortex mediates competition between excitation and inhibition of body movements during pavlovian fear conditioning. J Neurosci Res 2016; 95:853-862. [PMID: 26997207 DOI: 10.1002/jnr.23736] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 01/21/2023]
Abstract
The infralimbic subregion of the prefrontal cortex (IL) is broadly involved in behavioral flexibility, risk assessment, and outcome reinforcement. In aversive conditioning tasks, the IL has been implicated in fear extinction and in mediating transitions between Pavlovian and instrumental responses. Here we examine the role of the IL in mediating transitions between two competing Pavlovian fear responses, conditioned motor inhibition (CMI) and conditioned motor excitation (CME). Rats were trained to fear an auditory conditioned stimulus (CS) by pairing it with periorbital shock to one eyelid (the unconditioned stimulus [US]). Trained animals exhibited CMI responses (movement suppression) to the CS when they had not recently encountered the US (>24 hr), but, after recent encounters with the US (<5 min), the CS evoked CME responses (turning in circles away from anticipated shock). Animals then received bilateral infusions of muscimol or picrotoxin to inactivate or hyperactivate the IL, respectively. Neither drug reliably affected CMI responses, but there was a bidirectional effect on CME responses; inactivation of the IL attenuated CME responses, whereas hyperactivation potentiated CME responses. These results provide evidence that activation of the IL may promote behavioral strategies that involve mobilizing the body and suppress strategies that involve immobilizing the body. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lindsay R Halladay
- Department of Psychology, University of California Los Angeles, Los Angeles, California.,National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Hugh T Blair
- Department of Psychology, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
31
|
Ma J, Duan Y, Qin Z, Wang J, Liu W, Xu M, Zhou S, Cao X. Overexpression of αCaMKII impairs behavioral flexibility and NMDAR-dependent long-term depression in the medial prefrontal cortex. Neuroscience 2015; 310:528-40. [PMID: 26415772 DOI: 10.1016/j.neuroscience.2015.09.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/02/2015] [Accepted: 09/20/2015] [Indexed: 01/24/2023]
Abstract
The medial prefrontal cortex (mPFC) participates in the behavioral flexibility. As a major downstream molecule in the NMDA receptor signaling, alpha-Ca(2+)/calmodulin-dependent protein kinase II (αCaMKII) is crucial for hippocampal long-term potentiation (LTP) and hippocampus-related memory. However, the role of αCaMKII in mPFC-related behavioral flexibility and mPFC synaptic plasticity remains elusive. In the present study, using chemical-genetic approaches to temporally up-regulate αCaMKII activity, we found that αCaMKII-F89G transgenic mice exhibited impaired behavioral flexibility in Y-water maze arm reversal task. Notably, in vitro electrophysiological analysis showed normal basal synaptic transmission, LTP and depotentiation, but selectively impaired NMDAR-dependent long-term depression (LTD) in the mPFC of αCaMKII-F89G transgenic mice. In accordance with the deficit in NMDAR-dependent LTD, αCaMKII-F89G transgenic mice exhibited impaired AMPAR internalization during NMDAR-dependent chemical LTD expression in the mPFC. Furthermore, the above deficits in behavioral flexibility, NMDAR-dependent LTD and AMPAR internalization could all be reversed by 1-naphthylmethyl (NM)-PP1, a specific inhibitor of exogenous αCaMKII-F89G activity. Taken together, our results for the first time indicate that αCaMKII overexpression in the forebrain impairs behavioral flexibility and NMDAR-dependent LTD in the mPFC, and supports the notion that there is a close relationship between NMDAR-dependent LTD and behavioral flexibility.
Collapse
Affiliation(s)
- J Ma
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Y Duan
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Z Qin
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - J Wang
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - W Liu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - M Xu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - S Zhou
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - X Cao
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
32
|
Spiers HJ, Gilbert SJ. Solving the detour problem in navigation: a model of prefrontal and hippocampal interactions. Front Hum Neurosci 2015; 9:125. [PMID: 25852515 PMCID: PMC4366647 DOI: 10.3389/fnhum.2015.00125] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/22/2015] [Indexed: 11/21/2022] Open
Abstract
Adapting behavior to accommodate changes in the environment is an important function of the nervous system. A universal problem for motile animals is the discovery that a learned route is blocked and a detour is required. Given the substantial neuroscience research on spatial navigation and decision-making it is surprising that so little is known about how the brain solves the detour problem. Here we review the limited number of relevant functional neuroimaging, single unit recording and lesion studies. We find that while the prefrontal cortex (PFC) consistently responds to detours, the hippocampus does not. Recent evidence suggests the hippocampus tracks information about the future path distance to the goal. Based on this evidence we postulate a conceptual model in which: Lateral PFC provides a prediction error signal about the change in the path, frontopolar and superior PFC support the re-formulation of the route plan as a novel subgoal and the hippocampus simulates the new path. More data will be required to validate this model and understand (1) how the system processes the different options; and (2) deals with situations where a new path becomes available (i.e., shortcuts).
Collapse
Affiliation(s)
- Hugo J Spiers
- Department of Experimental Psychology, UCL Institute of Behavioural Neuroscience, Division of Psychology and Language Sciences, University College London London, UK
| | - Sam J Gilbert
- UCL Institute of Cognitive Neuroscience, Division of Psychology and Language Sciences, University College London London, UK
| |
Collapse
|
33
|
Nguyen HN, Huppé-Gourgues F, Vaucher E. Activation of the mouse primary visual cortex by medial prefrontal subregion stimulation is not mediated by cholinergic basalo-cortical projections. Front Syst Neurosci 2015; 9:1. [PMID: 25709570 PMCID: PMC4321436 DOI: 10.3389/fnsys.2015.00001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 01/06/2015] [Indexed: 12/21/2022] Open
Abstract
The medial prefrontal cortex (mPFC) exerts top-down control of primary visual cortex (V1) activity. As there is no direct neuronal projection from mPFC to V1, this functional connection may use an indirect route, i.e., via basalo-cortical cholinergic projections. The cholinergic projections to V1 originate from neurons in the horizontal limb of the diagonal band of Broca (HDB), which receive neuronal projections from the ventral part of the mPFC, composed of prelimbic (PrL) and infralimbic cortices (IL). Therefore, the objective of this study was to determine whether electrical stimulation of mice mPFC subregions activate (1) V1 neurons; and (2) HDB cholinergic neurons, suggesting that the HDB serves as a relay point in the mPFC-V1 interaction. Neuronal activation was quantified using c-Fos immunocytochemistry or thallium autometallography for each V1 layer using automated particle analysis tools and optical density measurement. Stimulation of IL and PrL induced significantly higher c-Fos expression or thallium labeling in layers II/III and V of V1 in the stimulated hemisphere only. A HDB cholinergic neuron-specific lesion by saporin administration reduced IL-induced c-Fos expression in layers II/III of V1 but not in layer V. However, there was no c-Fos expression or thallium labeling in the HDB neurons, suggesting that this area was not activated by IL stimulation. Stimulation of another mPFC subarea, the anterior cingulate cortex (AC), which is involved in attention and receives input from V1, activated neither V1 nor HDB. The present results indicate that IL and PrL, but not AC, stimulation activates V1 with the minor involvement of the HDB cholinergic projections. These results suggest a functional link between the ventral mPFC and V1, but this function is only marginally supported by HDB cholinergic neurons and may involve other brain regions.
Collapse
Affiliation(s)
- Hoang Nam Nguyen
- Laboratoire de Neurobiologie de la Cognition Visuelle, École D'optométrie, Université de Montréal Montréal, QC, Canada
| | - Frédéric Huppé-Gourgues
- Laboratoire de Neurobiologie de la Cognition Visuelle, École D'optométrie, Université de Montréal Montréal, QC, Canada
| | - Elvire Vaucher
- Laboratoire de Neurobiologie de la Cognition Visuelle, École D'optométrie, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
34
|
Dissociable contributions of the prefrontal cortex to hippocampus- and caudate nucleus-dependent virtual navigation strategies. Neurobiol Learn Mem 2015; 117:42-50. [DOI: 10.1016/j.nlm.2014.07.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 06/12/2014] [Accepted: 07/09/2014] [Indexed: 11/23/2022]
|
35
|
Hamilton DA, Brigman JL. Behavioral flexibility in rats and mice: contributions of distinct frontocortical regions. GENES, BRAIN, AND BEHAVIOR 2015; 14:4-21. [PMID: 25561028 PMCID: PMC4482359 DOI: 10.1111/gbb.12191] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 01/06/2023]
Abstract
Research examining the contribution of genetics to behavior is increasingly focused on higher order behavioral and cognitive processes including the ability to modify behaviors when environmental demands change. The frontal cortices of mammals, including rodents, subserve a diverse set of behavioral and cognitive functions including motor planning, social behavior, evaluation of expected outcomes and working memory, which may be particularly sensitive to genetic factors and interactions with experience (e.g. stress). Behavioral flexibility is a core attribute of these functions. This review orients readers to the current landscape of the literature on the frontocortical bases of behavioral flexibility in rodent laboratory experiments. Studies are divided into three broad categories: reversal learning, inhibitory learning and set-shifting. Functional dissociations within the broader scope of behavioral flexibility are reviewed, followed by discussion of the associations between specific components of frontal cortex and specific aspects of relevant behavioral processes. Finally, the authors identify open questions that need to be addressed to better establish the constituents of frontal cortex underlying behavioral flexibility.
Collapse
Affiliation(s)
- D A Hamilton
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | | |
Collapse
|
36
|
Dubois M, Lapinte N, Villier V, Lecointre C, Roy V, Tonon MC, Gandolfo P, Joly F, Hilber P, Castel H. Chemotherapy-induced long-term alteration of executive functions and hippocampal cell proliferation: Role of glucose as adjuvant. Neuropharmacology 2014; 79:234-48. [DOI: 10.1016/j.neuropharm.2013.11.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 11/28/2022]
|
37
|
Arias N, Fidalgo C, Felipo V, Arias JL. The effects of hyperammonemia in learning and brain metabolic activity. Metab Brain Dis 2014; 29:113-20. [PMID: 24415107 DOI: 10.1007/s11011-013-9477-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/23/2013] [Indexed: 12/22/2022]
Abstract
Ammonia is thought to be central in the development of hepatic encephalopathy. However, the specific relation of ammonia with brain energy depletions and learning has not been studied. Our work attempts to reproduce an increase in rat cerebral ammonia level, study the hyperamonemic animals' performance of two learning tasks, an allocentric (ALLO) and a cue guided (CG) task, and elucidate the contribution of hyperammonemia to the differential energy requirements of the brain limbic system regions involved in these tasks. To assess these goals, four groups of animals were used: a control (CHA) CG group (n = 10), a CHA ALLO group (n = 9), a hyperammonemia (HA) CG group (n = 7), and HA ALLO group (n = 8). Oxidative metabolism of the target brain regions were assessed by histochemical labelling of cytochrome oxidase (C.O.). The behavioural results revealed that the hyperammonemic rats were not able to reach the behavioural criterion in either of the two tasks, in contrast to the CHA groups. The metabolic brain consumption revealed increased C.O. activity in the anterodorsal thalamus when comparing the HA ALLO group with the CHA ALLO group. Significant differences between animals trained in the CG task were observed in the prelimbic, infralimbic, parietal, entorhinal and perirhinal cortices, the anterolateral and anteromedial striatum, and the basolateral and central amygdala. Our findings may provide fresh insights to reveal how the differential damage to the brain limbic structures involved in these tasks differs according to the degree of task difficulty.
Collapse
Affiliation(s)
- Natalia Arias
- Laboratory of Neuroscience, Departamento de Psicología, Universidad de Oviedo, Plaza Feijoo s/n 33003, Oviedo, Spain,
| | | | | | | |
Collapse
|
38
|
Fiore VG, Mannella F, Mirolli M, Latagliata EC, Valzania A, Cabib S, Dolan RJ, Puglisi-Allegra S, Baldassarre G. Corticolimbic catecholamines in stress: a computational model of the appraisal of controllability. Brain Struct Funct 2014; 220:1339-53. [PMID: 24578177 PMCID: PMC4409646 DOI: 10.1007/s00429-014-0727-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 02/04/2014] [Indexed: 01/20/2023]
Abstract
Appraisal of a stressful situation and the possibility to control or avoid it is thought to involve frontal-cortical mechanisms. The precise mechanism underlying this appraisal and its translation into effective stress coping (the regulation of physiological and behavioural responses) are poorly understood. Here, we propose a computational model which involves tuning motivational arousal to the appraised stressing condition. The model provides a causal explanation of the shift from active to passive coping strategies, i.e. from a condition characterised by high motivational arousal, required to deal with a situation appraised as stressful, to a condition characterised by emotional and motivational withdrawal, required when the stressful situation is appraised as uncontrollable/unavoidable. The model is motivated by results acquired via microdialysis recordings in rats and highlights the presence of two competing circuits dominated by different areas of the ventromedial prefrontal cortex: these are shown having opposite effects on several subcortical areas, affecting dopamine outflow in the striatum, and therefore controlling motivation. We start by reviewing published data supporting structure and functioning of the neural model and present the computational model itself with its essential neural mechanisms. Finally, we show the results of a new experiment, involving the condition of repeated inescapable stress, which validate most of the model's predictions.
Collapse
Affiliation(s)
- Vincenzo G. Fiore
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL, 12 Queen Square, London, WC1N 3BG UK
| | - Francesco Mannella
- Laboratory of Computational Embodied Neuroscience, Istituto di Scienze e Tecnologie della Cognizione, Consiglio Nazionale delle Ricerche (LOCEN-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Marco Mirolli
- Laboratory of Computational Embodied Neuroscience, Istituto di Scienze e Tecnologie della Cognizione, Consiglio Nazionale delle Ricerche (LOCEN-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Emanuele Claudio Latagliata
- Dipartimento di Psicologia and Centro Daniel Bovet, Sapienza Università di Roma, Via dei Marsi 78, 00183 Rome, Italy
- Fondazione Santa Lucia, IRCCS, Via Ardeatina 306, 00142 Rome, Italy
| | - Alessandro Valzania
- Dipartimento di Psicologia and Centro Daniel Bovet, Sapienza Università di Roma, Via dei Marsi 78, 00183 Rome, Italy
- Fondazione Santa Lucia, IRCCS, Via Ardeatina 306, 00142 Rome, Italy
| | - Simona Cabib
- Dipartimento di Psicologia and Centro Daniel Bovet, Sapienza Università di Roma, Via dei Marsi 78, 00183 Rome, Italy
- Fondazione Santa Lucia, IRCCS, Via Ardeatina 306, 00142 Rome, Italy
| | - Raymond J. Dolan
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL, 12 Queen Square, London, WC1N 3BG UK
| | - Stefano Puglisi-Allegra
- Dipartimento di Psicologia and Centro Daniel Bovet, Sapienza Università di Roma, Via dei Marsi 78, 00183 Rome, Italy
- Fondazione Santa Lucia, IRCCS, Via Ardeatina 306, 00142 Rome, Italy
| | - Gianluca Baldassarre
- Laboratory of Computational Embodied Neuroscience, Istituto di Scienze e Tecnologie della Cognizione, Consiglio Nazionale delle Ricerche (LOCEN-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy
| |
Collapse
|
39
|
Ashwell R, Ito R. Excitotoxic lesions of the infralimbic, but not prelimbic cortex facilitate reversal of appetitive discriminative context conditioning: the role of the infralimbic cortex in context generalization. Front Behav Neurosci 2014; 8:63. [PMID: 24616678 PMCID: PMC3937954 DOI: 10.3389/fnbeh.2014.00063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/13/2014] [Indexed: 11/19/2022] Open
Abstract
The prelimbic and infralimbic regions of the rat medial prefrontal cortex (mPFC) are important components of the limbic cortico-striatal circuit, receiving converging projections from the hippocampus (HPC) and amygdala. Mounting evidence points to these regions having opposing roles in the regulation of the expression of contextual fear and context-induced cocaine-seeking. To investigate this functional differentiation in motivated behavior further, this study employed a novel radial maze task previously shown to be dependent on the integrity of the hippocampus and its functional connection to the nucleus accumbens (NAc) shell, to investigate the effects of selective excitotoxic lesions of the prelimbic (PL) and infralimbic (IL) upon the spatial contextual control over reward learning. To this end, rats were trained to develop discriminative responding towards a reward-associated discrete cue presented in three out of six spatial locations (3 arms out of 6 radial maze arms), and to avoid the same discrete cue presented in the other three spatial locations. Once acquired, the reward contingencies of the spatial locations were reversed, such that responding to the cue presented in a previously rewarded location was no longer rewarded. Furthermore, the acquisition of spatial learning was probed separately using conditioned place preference (CPP) and the monitoring of arm selection at the beginning of each training session. Lesions of the PL transiently attenuated the acquisition of the initial cue approach training and spatial learning, while leaving reversal learning intact. In contrast, IL lesions led to a significantly superior performance of spatial context-dependent discriminative cue approach and reversal learning, in the absence of a significant preference for the new reward-associated spatial locations. These results indicate that the PL and IL have functionally dissociative, and potentially opposite roles in the regulation of spatial contextual control over appetitive learning.
Collapse
Affiliation(s)
- Rachel Ashwell
- Department of Experimental Psychology, University of OxfordOxford, UK
| | - Rutsuko Ito
- Department of Experimental Psychology, University of OxfordOxford, UK
- Department of Psychology, University of Toronto ScarboroughToronto, ON, Canada
| |
Collapse
|
40
|
Kauser H, Sahu S, Kumar S, Panjwani U. Guanfacine ameliorates hypobaric hypoxia induced spatial working memory deficits. Physiol Behav 2014; 123:187-92. [DOI: 10.1016/j.physbeh.2013.10.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 05/14/2013] [Accepted: 10/22/2013] [Indexed: 11/30/2022]
|
41
|
Wass C, Pizzo A, Sauce B, Kawasumi Y, Sturzoiu T, Ree F, Otto T, Matzel LD. Dopamine D1 sensitivity in the prefrontal cortex predicts general cognitive abilities and is modulated by working memory training. Learn Mem 2013; 20:617-27. [PMID: 24129098 PMCID: PMC3799419 DOI: 10.1101/lm.031971.113] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A common source of variance (i.e., “general intelligence”) underlies an individual's performance across diverse tests of cognitive ability, and evidence indicates that the processing efficacy of working memory may serve as one such source of common variance. One component of working memory, selective attention, has been reported to co-vary with general intelligence, and dopamine D1 signaling in prefrontal cortex can modulate attentional abilities. Based on their aggregate performance across five diverse tests of learning, here we characterized the general cognitive ability (GCA) of CD-1 outbred mice. In response to a D1 agonist (SKF82958, 1 mg/kg), we then assessed the relationship between GCA and activation of D1 receptor (D1R)-containing neurons in the prelimbic region of the medial prefrontal cortex, the agranular insular cortex, and the dorsomedial striatum. Increased activation of D1R-containing neurons in the prelimbic cortex (but not the agranular insular cortex or dorsomedial striatum) was observed in animals of high GCA relative to those of low GCA (quantified by c-Fos activation in response to the D1 agonist). However, a Western blot analysis revealed no differences in the density of D1Rs in the prelimbic cortex between animals of high and low GCA. Last, it was observed that working memory training promoted an increase in animals’ GCA and enhanced D1R-mediated neuronal activation in the prelimbic cortex. These results suggest that the sensitivity (but not density) of D1Rs in the prelimbic cortex may both regulate GCA and be a target for working memory training.
Collapse
Affiliation(s)
- Christopher Wass
- Department of Psychology, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kauser H, Sahu S, Kumar S, Panjwani U. Guanfacine is an effective countermeasure for hypobaric hypoxia-induced cognitive decline. Neuroscience 2013; 254:110-9. [PMID: 24056194 DOI: 10.1016/j.neuroscience.2013.09.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/31/2013] [Accepted: 09/10/2013] [Indexed: 02/04/2023]
Abstract
Hypobaric hypoxia (HH), an environmental stress resulting from ascent to high altitude, affects perception, memory, judgment, and attention, resulting in degradation of many aspects of normal functioning. Alpha 2A adrenergic agonist, guanfacine proved to be beneficial in the amelioration of neurological outcomes of many neuropsychiatric disorders involving adrenergic imbalance and neurodegeneration. Adrenergic dysregulation and neuronal damage have been implicated in hypoxia-induced cognitive deficits, however, efficacy of guanfacine as a countermeasure for HH-induced cognitive decline remains to be evaluated. We, therefore, have studied the effect of this drug on the HH-induced cognitive deficits, adrenergic dysfunction and neuronal damage. Rats were exposed to HH at a simulated altitude of 25,000 feet for 7days and received an IM injection of either saline or guanfacine at a dose of 1mg/kg. Adrenergic transmission was evaluated by biomarkers i.e. norepinephrine (NE), dopamine (DA) and tyrosine hydroxylase (TH) in medial prefrontal cortex (PFC) by biochemical and immunohistochemical assays. Spine and dendritic morphology of pyramidal neurons in layer II of medial PFC was studied using Golgi-Cox staining and Neurolucida neuronal tracing. The cognitive performance was assessed by Delayed Alternation Task using a T-Maze. There was a significant reduction in HH-induced increases in NE, DA and TH levels with guanfacine treatment. Guanfacine rescued HH-induced dendritic atrophy and mushroom type spine loss. The spatial working memory deficits induced by HH were significantly ameliorated with guanfacine treatment. Furthermore, the cognitive performance showed a positive correlation with dendritic arbors and spine numbers. These results showed that the HH-induced cognitive decline is associated with adrenergic dysregulation and neuronal damage in layer II of medial PFC, and that guanfacine treatment during HH ameliorated these functional and morphological deficits. The study suggests a potential role of the alpha-2A adrenergic agonist, guanfacine, in amelioration of PFC dysfunction caused by high altitude exposure.
Collapse
Affiliation(s)
- H Kauser
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi 110 054, India
| | | | | | | |
Collapse
|
43
|
Portero-Tresserra M, Cristóbal-Narváez P, Martí-Nicolovius M, Guillazo-Blanch G, Vale-Martínez A. D-cycloserine in prelimbic cortex reverses scopolamine-induced deficits in olfactory memory in rats. PLoS One 2013; 8:e70584. [PMID: 23936452 PMCID: PMC3732227 DOI: 10.1371/journal.pone.0070584] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/19/2013] [Indexed: 12/02/2022] Open
Abstract
A significant interaction between N-methyl-D-aspartate (NMDA) and muscarinic receptors has been suggested in the modulation of learning and memory processes. The present study further investigates this issue and explores whether d-cycloserine (DCS), a partial agonist at the glycine binding site of the NMDA receptors that has been regarded as a cognitive enhancer, would reverse scopolamine (SCOP)-induced amnesia in two olfactory learning tasks when administered into the prelimbic cortex (PLC). Thus, in experiment 1, DCS (10 µg/site) was infused prior to acquisition of odor discrimination (ODT) and social transmission of food preference (STFP), which have been previously characterized as paradigms sensitive to PLC muscarinic blockade. Immediately after learning such tasks, SCOP was injected (20 µg/site) and the effects of both drugs (alone and combined) were tested in 24-h retention tests. To assess whether DCS effects may depend on the difficulty of the task, in the STFP the rats expressed their food preference either in a standard two-choice test (experiment 1) or a more challenging three-choice test (experiment 2). The results showed that bilateral intra-PLC infusions of SCOP markedly disrupted the ODT and STFP memory tests. Additionally, infusions of DCS alone into the PLC enhanced ODT but not STFP retention. However, the DCS treatment reversed SCOP-induced memory deficits in both tasks, and this effect seemed more apparent in ODT and 3-choice STFP. Such results support the interaction between the glutamatergic and the cholinergic systems in the PLC in such a way that positive modulation of the NMDA receptor/channel, through activation of the glycine binding site, may compensate dysfunction of muscarinic neurotransmission involved in stimulus-reward and relational learning tasks.
Collapse
Affiliation(s)
- Marta Portero-Tresserra
- Departament de Psicobiologia i Metodologia de les Ciencies de la Salut, Institut de Neurociencies, Universitat Autonoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Paula Cristóbal-Narváez
- Departament de Psicobiologia i Metodologia de les Ciencies de la Salut, Institut de Neurociencies, Universitat Autonoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Margarita Martí-Nicolovius
- Departament de Psicobiologia i Metodologia de les Ciencies de la Salut, Institut de Neurociencies, Universitat Autonoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Gemma Guillazo-Blanch
- Departament de Psicobiologia i Metodologia de les Ciencies de la Salut, Institut de Neurociencies, Universitat Autonoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Anna Vale-Martínez
- Departament de Psicobiologia i Metodologia de les Ciencies de la Salut, Institut de Neurociencies, Universitat Autonoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
44
|
Viemose I, Møller P, Laugesen JL, Schachtman TR, Manoharan T, Christoffersen GRJ. Appetitive long-term taste conditioning enhances human visually evoked EEG responses. Behav Brain Res 2013; 253:1-8. [PMID: 23827203 DOI: 10.1016/j.bbr.2013.06.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/24/2013] [Accepted: 06/27/2013] [Indexed: 11/29/2022]
Abstract
Long-term effects of learned associations between an image and a taste have not been studied with electromagnetic brain scanning techniques. The possibility that taste conditioning may change sensory image processing was investigated in young adult subjects. EEG-responses evoked by images were recorded before and after a training session using an image as conditioned stimulus and a pleasant taste as unconditioned stimulus. The results showed that in posterior electrodes placed over visual cortex areas, the following changes occurred after conditioning: (1) the amplitude and duration of the N2-P3 waves in the visual evoked potentials were enhanced; (2) the N2 and P3 peak delays were shortened; (3) power induced by image presentation was enhanced in the delta and theta frequency bands; (4) cross-hemispheric delta and theta coherences among the posterior electrodes were enhanced; (5) calculations of the underlying whole brain distribution of currents using swLORETA showed elevated current densities in posterior voxels. None of the above changes occurred in a sham-trained control group. In electrodes placed over the prefrontal cortex, delta and theta power also rose significantly. It is suggested that the appetitive taste conditioning potentiated synaptic activity in visual cortex networks and that this led to an increased speed of image processing.
Collapse
Affiliation(s)
- Ida Viemose
- Department of Food Science, University of Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
45
|
Conejo NM, Cimadevilla JM, González-Pardo H, Méndez-Couz M, Arias JL. Hippocampal inactivation with TTX impairs long-term spatial memory retrieval and modifies brain metabolic activity. PLoS One 2013; 8:e64749. [PMID: 23724089 PMCID: PMC3665627 DOI: 10.1371/journal.pone.0064749] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/16/2013] [Indexed: 01/16/2023] Open
Abstract
Functional inactivation techniques enable studying the hippocampal involvement in each phase of spatial memory formation in the rat. In this study, we applied tetrodotoxin unilaterally or bilaterally into the dorsal hippocampus to evaluate the role of this brain structure in retrieval of memories acquired 28 days before in the Morris water maze. We combined hippocampal inactivation with the assessment of brain metabolism using cytochrome oxidase histochemistry. Several brain regions were considered, including the hippocampus and other related structures. Results showed that both unilateral and bilateral hippocampal inactivation impaired spatial memory retrieval. Hence, whereas subjects with bilateral hippocampal inactivation showed a circular swim pattern at the side walls of the pool, unilateral inactivation favoured swimming in the quadrants adjacent to the target one. Analysis of cytochrome oxidase activity disclosed regional differences according to the degree of hippocampal functional blockade. In comparison to control group, animals with bilateral inactivation showed increased CO activity in CA1 and CA3 areas of the hippocampus during retrieval, while the activity of the dentate gyrus substantially decreased. However, unilateral inactivated animals showed decreased CO activity in Ammon's horn and the dentate gyrus. This study demonstrated that retrieval recruits differentially the hippocampal subregions and the balance between them is altered with hippocampal functional lesions.
Collapse
Affiliation(s)
- Nélida María Conejo
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Spain.
| | | | | | | | | |
Collapse
|
46
|
Mapping metabolic brain activity in three models of hepatic encephalopathy. Int J Hypertens 2013; 2013:390872. [PMID: 23573412 PMCID: PMC3612461 DOI: 10.1155/2013/390872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/19/2013] [Indexed: 11/17/2022] Open
Abstract
Cirrhosis is a common disease in Western countries. Liver failure, hyperammonemia, and portal hypertension are the main factors that contribute to human cirrhosis that frequently leads to a neuropsychiatric disorder known as hepatic encephalopathy (HE). In this study, we examined the differential contribution of these leading factors to the oxidative metabolism of diverse brain limbic system regions frequently involved in memory process by histochemical labelling of cytochrome oxidase (COx). We have analyzed cortical structures such as the infralimbic and prelimbic cotices, subcortical structures such as hippocampus and ventral striatum, at thalamic level like the anterodorsal, anteroventral, and mediodorsal thalamus, and, finally, the hypothalamus, where the mammillary nuclei (medial and lateral) were measured. The severest alteration is found in the model that mimics intoxication by ammonia, followed by the thioacetamide-treated group and the portal hypertension group. No changes were found at the mammillary bodies for any of the experimental groups.
Collapse
|
47
|
Bai W, Liu T, Yi H, Li S, Tian X. Anticipatory activity in rat medial prefrontal cortex during a working memory task. Neurosci Bull 2012; 28:693-703. [PMID: 23225312 DOI: 10.1007/s12264-012-1291-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 07/14/2012] [Indexed: 10/27/2022] Open
Abstract
OBJECTIVE Working memory is a key cognitive function in which the prefrontal cortex plays a crucial role. This study aimed to show the firing patterns of a neuronal population in the prefrontal cortex of the rat in a working memory task and to explore how a neuronal ensemble encodes a working memory event. METHODS Sprague-Dawley rats were trained in a Y-maze until they reached an 80% correct rate in a working memory task. Then a 16-channel microelectrode array was implanted in the prefrontal cortex. After recovery, neuronal population activity was recorded during the task, using the Cerebus data-acquisition system. Spatio-temporal trains of action potentials were obtained from the original neuronal population signals. RESULTS During the Y-maze working memory task, some neurons showed significantly increased firing rates and evident neuronal ensemble activity. Moreover, the anticipatory activity was associated with the delayed alternate choice of the upcoming movement. In correct trials, the averaged pre-event firing rate (10.86 ± 1.82 spikes/bin) was higher than the post-event rate (8.17 ± 1.15 spikes/bin) (P<0.05). However, in incorrect trials, the rates did not differ. CONCLUSION The results indicate that the anticipatory activity of a neuronal ensemble in the prefrontal cortex may play a role in encoding working memory events.
Collapse
Affiliation(s)
- Wenwen Bai
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | | | | | | | | |
Collapse
|
48
|
Laatikainen LM, Sharp T, Bannerman DM, Harrison PJ, Tunbridge EM. Modulation of hippocampal dopamine metabolism and hippocampal-dependent cognitive function by catechol-O-methyltransferase inhibition. J Psychopharmacol 2012; 26:1561-8. [PMID: 22815336 PMCID: PMC3546629 DOI: 10.1177/0269881112454228] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Catechol-O-methyltransferase (COMT) catabolises the catecholamine neurotransmitters and influences cognitive function. COMT modulates dopamine levels in the prefrontal cortex and its action in this region is generally invoked to explain its effects on cognition. However, its role in other brain regions important for cognitive function remains largely unexplored. Here, we investigated COMT's impact on dopamine metabolism in the hippocampus and hippocampal-dependent behaviour. We examined the acute effects of a centrally-acting COMT inhibitor, tolcapone (30 mg/kg i.p.), on dopamine metabolism in the rat dorsal hippocampus, assessed both in tissue homogenates and extracellularly, using in vivo microdialysis. Additionally, we investigated the effect of tolcapone on delayed-rewarded alternation and spatial novelty preference, behavioural tasks which are dependent on the dorsal hippocampus. Tolcapone significantly modulated dopamine metabolism in the dorsal hippocampus, as indexed by the depletion of extracellular homovanillic acid (HVA) and the accumulation of dihydroxyphenylacetic acid (DOPAC). Tolcapone also improved performance on the delayed-rewarded alternation and spatial novelty preference tasks, compared to vehicle-treated rats. Our findings suggest that COMT regulates dorsal hippocampal neurochemistry and modulates hippocampus-dependent behaviours. These findings support the therapeutic candidacy of COMT inhibition as a cognitive enhancer, and suggest that, in addition to the prefrontal cortex, the hippocampus might be a key region for mediating these effects.
Collapse
|
49
|
Hernan AE, Holmes GL, Isaev D, Scott RC, Isaeva E. Altered short-term plasticity in the prefrontal cortex after early life seizures. Neurobiol Dis 2012; 50:120-6. [PMID: 23064435 DOI: 10.1016/j.nbd.2012.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/30/2012] [Accepted: 10/03/2012] [Indexed: 01/31/2023] Open
Abstract
Seizures during development are a relatively common occurrence and are often associated with poor cognitive outcomes. Recent studies show that early life seizures alter the function of various brain structures and have long-term consequences on seizure susceptibility and behavioral regulation. While many neocortical functions could be disrupted by epileptic seizures, we have concentrated on studying the prefrontal cortex (PFC) as disturbance of PFC functions is involved in numerous co-morbid disorders associated with epilepsy. In the present work we report an alteration of short-term plasticity in the PFC in rats that have experienced early life seizures. The most robust alteration occurs in the layer II/III to layer V network of neurons. However short-term plasticity of layer V to layer V network was also affected, indicating that the PFC function is broadly influenced by early life seizures. These data strongly suggest that repetitive seizures early in development cause substantial alteration in PFC function, which may be an important component underlying cognitive deficits in individuals with a history of seizures during development.
Collapse
Affiliation(s)
- A E Hernan
- Department of Neurology, Neuroscience Center at Dartmouth, Geisel School of Medicine at Dartmouth, Lebanon, NH 03766, USA.
| | | | | | | | | |
Collapse
|
50
|
Hernández-González M, Almanza-Sepúlveda ML, Olvera-Cortés ME, Gutiérrez-Guzmán BE, Guevara MA. Prefrontal electroencephalographic activity during the working memory processes involved in a sexually motivated task in male rats. Exp Brain Res 2012; 221:143-53. [PMID: 22766846 DOI: 10.1007/s00221-012-3155-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
Abstract
The prefrontal cortex is involved in working memory functions, and several studies using food or drink as rewards have demonstrated that the rat is capable of performing tasks that involve working memory. Sexual activity is another highly-rewarding, motivated behaviour that has proven to be an efficient incentive in classical operant tasks. The objective of this study was to determine whether the functional activity of the medial prefrontal cortex (mPFC) changes in relation to the working memory processes involved in a sexually motivated task performed in male rats. Thus, male Wistar rats implanted in the mPFC were subjected to a nonmatching-to-sample task in a T-maze using sexual interaction as a reinforcer during a 4-day training period. On the basis of their performance during training, the rats were classified as 'good-learners' or 'bad-learners'. Only the good-learner rats showed an increase in the absolute power of the 8-13 Hz band during both the sample and test runs; a finding that could be related to learning of the working memory elements entailed in the task. During the maintenance phase only (i.e., once the rule had been learned well), the good-learner rats also showed an increased correlation of the 8-13 Hz band during the sample run, indicating that a high degree of coupling between the prefrontal cortices is necessary for the processing required to allow the rats to make correct decisions in the maintenance phase. Taken together, these data show that mPFC activity changes in relation to the working memory processes involved in a sexually motivated task in male rats.
Collapse
Affiliation(s)
- Marisela Hernández-González
- Instituto de Neurociencias, Universidad de Guadalajara, Francisco de Quevedo 180, Col. Arcos Vallarta, 44130 Guadalajara, Jalisco, Mexico.
| | | | | | | | | |
Collapse
|