1
|
Molitor L, Bacher S, Burczyk S, Niessing D. The Molecular Function of PURA and Its Implications in Neurological Diseases. Front Genet 2021; 12:638217. [PMID: 33777106 PMCID: PMC7990775 DOI: 10.3389/fgene.2021.638217] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
In recent years, genome-wide analyses of patients have resulted in the identification of a number of neurodevelopmental disorders. Several of them are caused by mutations in genes that encode for RNA-binding proteins. One of these genes is PURA, for which in 2014 mutations have been shown to cause the neurodevelopmental disorder PURA syndrome. Besides intellectual disability (ID), patients develop a variety of symptoms, including hypotonia, metabolic abnormalities as well as epileptic seizures. This review aims to provide a comprehensive assessment of research of the last 30 years on PURA and its recently discovered involvement in neuropathological abnormalities. Being a DNA- and RNA-binding protein, PURA has been implicated in transcriptional control as well as in cytoplasmic RNA localization. Molecular interactions are described and rated according to their validation state as physiological targets. This information will be put into perspective with available structural and biophysical insights on PURA’s molecular functions. Two different knock-out mouse models have been reported with partially contradicting observations. They are compared and put into context with cell biological observations and patient-derived information. In addition to PURA syndrome, the PURA protein has been found in pathological, RNA-containing foci of patients with the RNA-repeat expansion diseases such as fragile X-associated tremor ataxia syndrome (FXTAS) and amyotrophic lateral sclerosis (ALS)/fronto-temporal dementia (FTD) spectrum disorder. We discuss the potential role of PURA in these neurodegenerative disorders and existing evidence that PURA might act as a neuroprotective factor. In summary, this review aims at informing researchers as well as clinicians on our current knowledge of PURA’s molecular and cellular functions as well as its implications in very different neuronal disorders.
Collapse
Affiliation(s)
- Lena Molitor
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Sabrina Bacher
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Sandra Burczyk
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| |
Collapse
|
2
|
de Mendonça Amarante A, Jupatanakul N, de Abreu da Silva IC, Carneiro VC, Vicentino ARR, Dimopolous G, Talyuli OAC, Fantappié MR. The DNA chaperone HMGB1 potentiates the transcriptional activity of Rel1A in the mosquito Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 80:32-41. [PMID: 27867076 DOI: 10.1016/j.ibmb.2016.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 06/06/2023]
Abstract
High Mobility Group protein 1 (HMGB1) is a non-histone, chromatin-associated nuclear protein that functions in regulating eukaryotic gene expression. We investigated the influence and mechanism of action of Aedes aegypti HMGB1 (AaHMGB1) on mosquito Rel1A-mediated transcription from target gene promoters. The DNA-binding domain (RHD) of AaRel1A was bacterially expressed and purified, and AaHMGB1 dramatically enhanced RHD binding to consensus NF-kB/Rel DNA response elements. Luciferase reporter analyses using a cecropin gene promoter showed that AaHMGB1 potentiates the transcriptional activity of AaRel1A in Aag-2 cells. Moreover, overexpression of AaHMGB1 in Aag-2 cells led to an increase in mRNA levels of antimicrobial peptide genes. In vitro GST pull-down assays revealed that the presence of DNA is a pre-requisite for assembly of a possible ternary complex containing DNA, AaHMGB1 and AaRel1A. Notably, DNA bending by AaHMGB1 enhanced the binding of AaRel1A to a DNA fragment containing a putative NF-kB/Rel response element. Importantly, AaHMGB1 was identified as a potential immune modulator in A. aegypti through AaHMGB1 overexpression or RNAi silencing in Aag-2 cells followed by bacterial challenge or through AaHMGB1 RNAi knockdown in mosquitoes followed by Dengue virus (DENV) infection. We propose a model in which AaHMGB1 bends NF-kB/Rel target DNA to recruit and allow more efficient AaRel1A binding to activate transcription of effector genes, culminating in a stronger Toll pathway-mediated response against DENV infection.
Collapse
Affiliation(s)
- Anderson de Mendonça Amarante
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Entomologia Molecular, Universidade Federal do Rio de Janeiro, Brazil
| | - Natapong Jupatanakul
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, United States
| | - Isabel Caetano de Abreu da Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Entomologia Molecular, Universidade Federal do Rio de Janeiro, Brazil
| | - Vitor Coutinho Carneiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Entomologia Molecular, Universidade Federal do Rio de Janeiro, Brazil
| | - Amanda Roberta Revoredo Vicentino
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Entomologia Molecular, Universidade Federal do Rio de Janeiro, Brazil
| | - George Dimopolous
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Entomologia Molecular, Universidade Federal do Rio de Janeiro, Brazil; W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, United States
| | - Octávio Augusto C Talyuli
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Entomologia Molecular, Universidade Federal do Rio de Janeiro, Brazil
| | - Marcelo Rosado Fantappié
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Entomologia Molecular, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Identification of a new Schistosoma mansoni SMYB1 partner: putative roles in RNA metabolism. Parasitology 2013; 140:1085-95. [PMID: 23673212 DOI: 10.1017/s0031182013000413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
SMYB1 is a Schistosoma mansoni protein highly similar to members of the Y-box binding protein family. Similar to other homologues, SMYB1 is able to bind double- and single-stranded DNA, as well as RNA molecules. The characterization of proteins involved in the regulation of gene expression in S. mansoni is of great importance for the understanding of molecular events that control morphological and physiological changes in this parasite. Here we demonstrate that SMYB1 is located in the cytoplasm of cells from different life-cycle stages of S. mansoni, suggesting that this protein is probably acting in mRNA metabolism in the cytoplasm and corroborating previous findings from our group that showed its ability to bind RNA. Protein-protein interactions are important events in all biological processes, since most proteins execute their functions through large supramolecular structures. Yeast two-hybrid screenings using SMYB1 as bait identified a partner in S. mansoni similar to the SmD3 protein of Drosophila melanogaster (SmRNP), which is important in the assembly of small nuclear ribonucleoprotein complexes. Also, pull-down assays were conducted using immobilized GST-SMYB1 proteins and confirmed the SMYB1-SmRNP interaction. The interaction of SMYB1 with a protein involved in mRNA processing suggests that it may act in processes such as turnover, transport and stabilization of RNA molecules.
Collapse
|
4
|
Fantappié MR, Furtado DR, Rumjanek FD, Loverde PT. A unique nuclear receptor direct repeat 17 (DR17) is present within the upstream region of Schistosoma mansoni female-specific p14 gene. Biochem Biophys Res Commun 2008; 371:689-93. [PMID: 18455507 DOI: 10.1016/j.bbrc.2008.04.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 04/19/2008] [Indexed: 10/22/2022]
Abstract
The eggs produced by sexually mature female Schistosma mansoni are responsible for the pathogenesis of the disease. The eggshell precursor gene p14 is expressed only in the vitelline cells of sexually mature female worms in response to a yet unidentified male stimulus. Herein, we report the identification of a novel nuclear receptor response element in the upstream region of the p14 gene. This element contains the canonical hexameric DNA core motif, 5'-PuGGTCA, composed of an atypically spaced direct repeat (DR17). Schistosome nuclear receptors SmRXR1 and SmNR1 specifically bound to the p14-DR17 element as a heterodimer. SmRXR1, but not SmNR1, bound to the motif as a monomer. Introduction of mutations in the TCA core sequence completely abolished the binding by SmRXR1/SmNR1 heterodimer. This finding supports our hypothesis that the expression of Schistosoma mansonip14 gene is regulated through the nuclear receptor signaling pathway.
Collapse
Affiliation(s)
- Marcelo Rosado Fantappié
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundão, Rio de Janeiro 21941-590, Brazil.
| | | | | | | |
Collapse
|
5
|
Calzavara-Silva CE, Prosdocimi F, Abath FGC, Pena SDJ, Franco GR. Nucleic acid binding properties of SmZF1, a zinc finger protein of Schistosoma mansoni. Int J Parasitol 2005; 34:1211-9. [PMID: 15491583 DOI: 10.1016/j.ijpara.2004.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 07/06/2004] [Accepted: 07/12/2004] [Indexed: 11/22/2022]
Abstract
During its life cycle, the flat worm Schistosoma mansoni is exposed to diverse environmental conditions and changes its morphological form. Each change calls for distinct patterns of gene expression. In order to understand the regulation of gene expression, it is necessary to identify regulatory elements in the promoter region of genes, and DNA transacting factors that control transcription. Zinc finger protein domains are responsible for transcription regulation of diverse genes in a wide range of organisms and are also involved in the promotion of protein-protein interactions. A transcript homologous to zinc finger gene sequences was isolated from a S. mansoni adult worm cDNA library and named SmZF1. It codes for a protein of 164 amino acids presenting three C(2)H(2) type zinc finger motifs. The recombinant SmZF1 protein was expressed and used on electrophoretic mobility shift assays to investigate the binding specificity of SmZF1 for DNA and RNA oligonucleotides. Our results demonstrated that SmZF1 binds both ds and ss DNA oligonucleotides, with an apparent preference for the specific D1-3DNA oligonucleotide, and also binds RNA oligonucleotides with lower affinity. Although we found that SmZF1 recognises DNA and RNA oligonucleotides not containing putative target sites, SmZF1 binds preferentially to sequence specific sites. Furthermore, unrelated oligonucleotides are not able to abolish this interaction. In silico studies identified putative SmZF1 binding sites in the complete genome of three model organisms and in partial genome sequences of S. mansoni. Six Drosophila genes presented these binding sites in their promoter region, indicating that they might be controlled by transcription factors containing zinc fingers motifs. Taken together, these results suggest that SmZF1 acts as a putative transcription factor of S. mansoni.
Collapse
Affiliation(s)
- C E Calzavara-Silva
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais-UFMG, Avenida Antônio Carlos 6627, Belo Horizonte, MG 31270-010, Brazil
| | | | | | | | | |
Collapse
|
6
|
de Oliveira FMB, da Silva ICDA, Rumjanek FD, Valadão AF, Franco GR, Mesquita RD, da Silva-Neto MAC, Fantappié MR. Functional properties of Schistosoma mansoni single-stranded DNA-binding protein SmPUR-alpha. Description of the interaction between SmPUR-alpha and SMYB1. Mol Biochem Parasitol 2005; 135:21-30. [PMID: 15287583 DOI: 10.1016/j.molbiopara.2003.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PUR-alpha is a highly conserved protein in eukaryotes belonging to the family of single-stranded DNA-binding proteins. Because PUR-alpha is a multifunctional protein that participates in several regulatory events at the level of gene transcription, it became relevant to investigate the structural features of Schistosoma mansoni PUR-alpha (SmPUR-alpha) that could be correlated to its mode of action. Using deletion constructs on a dot blot assay we mapped the domains of GST-SmPUR-alpha fusion protein involved in the interactions with DNA and RNA. Individually, the N-terminal amino acid residues 1-26 and the C-terminal residues 196-276 of GST-SmPUR-alpha which did not contain nucleic acid-binding domains, did not bind ssDNA or RNA. In contrast, domains encompassing the N-terminal and Class I and C-terminal plus Class I exhibited the highest binding affinity. Seemingly, the latter (GST-SmPUR-alpha 174-276) played a major role in nucleic acid interaction as judged by affinity alone. Other combinations of the deletion constructs displayed either intermediary or no binding affinity to the DNA or RNA probes. Gel shift competition assay showed that GST-SmPUR-alpha bound to ssDNA with higher affinity than to RNA. Because SmPUR-alpha contains two putative phosphorylation sites the protein was tested as a substrate to casein kinase II. GST-SmPUR-alpha could be phosphorylated in vitro by casein kinase II at both, the N- and C-terminus of the protein. The multifunctional nature of SmPUR-alpha was demonstrated by experiments measuring the physical interaction between SmPUR-alpha and the transcription factor SMYB1. This was determined in vivo (yeast two hybrid) and in vitro (GST-pull down). Furthermore, we showed that SmPUR-alpha and SMYB1 acted synergistically to bind preferentially to pyrimidine-rich sequences.
Collapse
|
7
|
Abstract
Schistosome parasites are muticellular eucaryotic organisms with a complex life cycle that involves mammalian and snail hosts. Unlike other trematode parasites, schistosomes (along with the Didymozoidae) have evolved separate sexes or dioecy. Sex is determined by a chromosomal mechanism. The dioecious state created an opportunity for the sexes to play a role in schistosome evolution that has resulted in an interesting interplay between the sexes. The classical observation, made more than 50 years ago, is that female schistosomes do not develop unless a male worm is present. Studies up through the 1990s focused on dissecting the role of the sexes in mate attraction, mate choice, mating behavior, female growth, female reproductive development, egg production, and other sex-evolved functions. In the mid-1980s, studies began to address the molecular events of male–female interactions. The classic morphological observation that female schistosomes do not complete reproductive development unless a male worm is present has been redefined in molecular terms. The male by an unknown mechanism transduces a signal that regulates female gene expression in a stage-, tissue-, and temporal-specific manner. A number of female-specific genes have been identified, along with signaling pathways and nuclear receptors, that play a role in female reproductive development. In addition, a number of host factors such as cytokines have also been demonstrated to affect adult male and female development and egg production. This review focuses on the biological interactions of the male and female schistosome and the role of parasite and host factors in these interactions as they contribute to the life cycle of Schistosoma mansoni.
Collapse
|
8
|
Limesand SW, Jeckel KM, Anthony RV. Puralpha, a single-stranded deoxyribonucleic acid binding protein, augments placental lactogen gene transcription. Mol Endocrinol 2003; 18:447-57. [PMID: 14645500 DOI: 10.1210/me.2003-0392] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Placental lactogen (PL) is thought to alter maternal metabolism to increase the pool of nutrients available for the fetus and to stimulate fetal nutrient uptake. The ovine (o) PL gene is expressed in chorionic binucleate cells (oBNC) and cis-elements located within the proximal promoter (-124 to +16 bp) are capable of trophoblast-specific expression in human (BeWo) and rat (Rcho-1) choriocarcinoma cells. Protein-DNA interactions were identified with oBNC nuclear extracts, and mutational analysis of these regions revealed a previously undefined cis-element from -102/-123 bp that enhances promoter activity in BeWo cells but not Rcho-1 cells. Characterization of this region identified the nucleotide sequence CCAGCA (-105/-110; o110) as the responsible cis-acting element. Southwestern analysis with this element identified a binding protein with an apparent M(r) of approximately 41,000. Expression screening of an ovine placental cDNA library identified six homologous cDNAs, which shared identity with human (97%) and mouse (95%) Pur alpha, a single-stranded DNA binding protein. The Pur alpha-o110 interaction was confirmed by electrophoretic mobility-supershift assays with oBNC and BeWo extracts but was absent with Rcho-1 extracts. Furthermore, overexpression of ovine Pur alpha enhanced transactivation of the oPL gene proximal promoter in both choriocarcinoma cell lines through this novel cis-element. This study identified a previously undefined cis-element, which interacts with Pur alpha to augment PL gene transcription.
Collapse
Affiliation(s)
- Sean W Limesand
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523-1683, USA
| | | | | |
Collapse
|
9
|
LoVerde PT. Presidential address. Sex and schistosomes: an interesting biological interplay with control implications. J Parasitol 2002; 88:3-13. [PMID: 12053976 DOI: 10.1645/0022-3395(2002)088[0003:pasasa]2.0.co;2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Philip T LoVerde
- Department of Microbiology, School of Medicine and Biomedical Sciences, State University of New York, Buffalo 14214, USA.
| |
Collapse
|
10
|
Abstract
Schistosoma mansoni genomic DNA from male and female adult worms was subjected to restriction by the isoschizomeric endonucleases HpaII and MspI, which display different sensitivities with respect to cytosine methylation. The digested DNA was hybridized with 13 S. mansoni probes. Southern blot analysis showed that there were no observable differences in the restriction patterns of the two isoschizomers and that the patterns were identical in male and female parasites. Adenine methylation was also ruled out since no differences were observed with DpnI, Sau3A1, or MboI restriction enzymes. The methylation-dependent restriction endonuclease McrBC, which cleaves DNA containing methylcytosine and will not cleave unmethylated DNA, did not digest S. mansoni genomic DNA. These results demonstrate that the genome of adult S. mansoni is not methylated.
Collapse
Affiliation(s)
- M R Fantappié
- Departamento de Bioquímica Médica ICB/CCS, Universidade Federal do Rio de Janeiro, Ilha do Fundão CEP 21941-590, Rio de Janeiro, Brazil
| | | | | |
Collapse
|