1
|
Prajapati SK, Ayanful-Torgby R, Pava Z, Barbeau MC, Acquah FK, Cudjoe E, Kakaney C, Amponsah JA, Obboh E, Ahmed AE, Abuaku BK, McCarthy JS, Amoah LE, Williamson KC. The transcriptome of circulating sexually committed Plasmodium falciparum ring stage parasites forecasts malaria transmission potential. Nat Commun 2020; 11:6159. [PMID: 33268801 PMCID: PMC7710746 DOI: 10.1038/s41467-020-19988-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 10/06/2020] [Indexed: 11/30/2022] Open
Abstract
Malaria is spread by the transmission of sexual stage parasites, called gametocytes. However, with Plasmodium falciparum, gametocytes can only be detected in peripheral blood when they are mature and transmissible to a mosquito, which complicates control efforts. Here, we identify the set of genes overexpressed in patient blood samples with high levels of gametocyte-committed ring stage parasites. Expression of all 18 genes is regulated by transcription factor AP2-G, which is required for gametocytogenesis. We select three genes, not expressed in mature gametocytes, to develop as biomarkers. All three biomarkers we validate in vitro using 6 different parasite lines and develop an algorithm that predicts gametocyte production in ex vivo samples and volunteer infection studies. The biomarkers are also sensitive enough to monitor gametocyte production in asymptomatic P. falciparum carriers allowing early detection and treatment of infectious reservoirs, as well as the in vivo analysis of factors that modulate sexual conversion. Malaria gametocytes are sexual-stage parasites transmitted from mammalian host’s blood back to their insect vector. Here, Prajapati et al. identify gametocyte-committed ring-stage biomarkers allowing to forecast malaria transmission potential.
Collapse
Affiliation(s)
- Surendra K Prajapati
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | - Ruth Ayanful-Torgby
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Zuleima Pava
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Michelle C Barbeau
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,University of Virginia, Charlottesville, VA, USA
| | - Festus K Acquah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Elizabeth Cudjoe
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Courage Kakaney
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Jones A Amponsah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | - Anwar E Ahmed
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Benjamin K Abuaku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Linda E Amoah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Kim C Williamson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
2
|
Soga A, Shirozu T, Ko-Ketsu M, Fukumoto S. Improvement of an in vitro drug selection method for generating transgenic Plasmodium berghei parasites. Malar J 2019; 18:215. [PMID: 31238932 PMCID: PMC6593524 DOI: 10.1186/s12936-019-2851-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/19/2019] [Indexed: 11/20/2022] Open
Abstract
Background Reverse genetics approaches have become powerful tools to dissect the biology of malaria parasites. In a previous study, development of an in vitro drug selection method for generating transgenic parasite of Plasmodium berghei was reported. Using this method, two novel and independent selection markers using the P. berghei heat shock protein 70 promoter was previously established. While the approach permits the easy and flexible genetic manipulation of P. berghei, shortcomings include a low variety in promoter options to drive marker gene expression and increased complexity of the selection procedure. In this study, addressing these issues was attempted. Methods To secure a variety of promoters, the use of a P. berghei elongation factor-1α promoter for marker gene expression was attempted. To simplify the procedure of in vitro selection, the establishment of a two cell-cycle culture method and its application for drug selection were attempted. Results The P. berghei elongation factor-1α (pbef-1α) promoter, which is commonly used to drive marker gene expression, was successfully applied as an alternative promoter model for marker gene expression, using the parasite’s codon-optimized marker sequence. To simplify the in vitro selection method, a two cell-cycle culture method in which the merozoite was released by filtration of the culture containing matured schizont-infected erythrocytes was also developed and successfully applied for drug selection. Conclusion The pbef-1α promoter was successfully applied in an in vitro selection system. The in vitro selection procedure also could be simplified for practical use using a two cell-cycle culture method. These improvements provide a more versatile platform for the genetic manipulation of P. berghei.
Collapse
Affiliation(s)
- Akira Soga
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Takahiro Shirozu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Mami Ko-Ketsu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Shinya Fukumoto
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
3
|
Sakamoto H, Hirakawa Y, Ishida KI, Keeling PJ, Kita K, Matsuzaki M. Puromycin selection for stable transfectants of the oyster-infecting parasite Perkinsus marinus. Parasitol Int 2018; 69:13-16. [PMID: 30389616 DOI: 10.1016/j.parint.2018.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 01/28/2023]
Abstract
Perkinsus marinus is a marine protozoan parasite that infects natural and farmed oysters, attracting attention from researchers in both fisheries and evolutionary biology. The functions of almost all cellular components and organelles are, however, poorly understood even though a draft genome sequence of P. marinus is publicly available. One of the major obstacles for a functional study of the parasite is limited experimental means for genetic manipulation: a transfection method was established in 2008, and the first drug selection system with bleomycin was reported in 2016. We here introduce the second drug-selectable marker for selection of P. marinus transfectants. The parasite growth is efficiently inhibited by puromycin (IC50 = 4.96 μg/mL), and transfection of its resistance gene, puromycin-N-acetyl-transferase (pac), confers resistance to the drug on the parasite. Stable transfectants can be obtained within 2 months by treating with puromycin at 100 μg/mL. Furthermore, combining puromycin and bleomycin treatment can select transfectants co-expressing two marker genes. This dual-transfection method raises the possibility of using co-localization to identify the cellular localization of novel proteins in P. marinus, thereby contributing to the understanding of cellular functions and pathogenesis.
Collapse
Affiliation(s)
- Hirokazu Sakamoto
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yoshihisa Hirakawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Ken-Ichiro Ishida
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Motomichi Matsuzaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| |
Collapse
|
4
|
Soga A, Ko‐ketsu M, Fukumoto S. Development of a
bsd
‐blasticidin selection system in
Plasmodium berghei. FEBS Lett 2018; 592:1847-1855. [DOI: 10.1002/1873-3468.13100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Akira Soga
- National Research Center for Protozoan Diseases Obihiro University of Agriculture and Veterinary Medicine Japan
| | - Mami Ko‐ketsu
- National Research Center for Protozoan Diseases Obihiro University of Agriculture and Veterinary Medicine Japan
| | - Shinya Fukumoto
- National Research Center for Protozoan Diseases Obihiro University of Agriculture and Veterinary Medicine Japan
| |
Collapse
|
5
|
Soga A, Bando H, Ko-Ketsu M, Masuda-Suganuma H, Kawazu SI, Fukumoto S. High efficacy in vitro selection procedure for generating transgenic parasites of Plasmodium berghei using an antibiotic toxic to rodent hosts. Sci Rep 2017. [PMID: 28638105 PMCID: PMC5479828 DOI: 10.1038/s41598-017-04244-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The malaria parasite Plasmodium berghei is one of the main rodent malaria models. A shortcoming of this model parasite is its low flexibility in genetic manipulation. As this parasite cannot be continuously propagated in cell cultures, in vivo drug selection procedures are necessary to isolate genetic mutants. Drugs harmful to rodents therefore cannot be used for drug selection, which restricts the range of genetic manipulation. In this study, we addressed this problem by establishing a novel in vitro culture drug selection method, which we used in combination with other established methods to successfully isolate genetically manipulated parasites. The target mutants were enriched to the desired level within two weeks. We show that our system can also be used for sequential genetic manipulation of parasites carrying the traditionally used selection markers, demonstrate the procedure’s versatility, and show its use in isolating specific genetically manipulated parasites. This novel in vitro selection method increases the number of available selection markers, allowing more extensive genetic manipulation in malaria parasite research.
Collapse
Affiliation(s)
- Akira Soga
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Hironori Bando
- Department of immunoparasitology, Research Institute for Microbial Disease, Osaka University, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Mami Ko-Ketsu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Hirono Masuda-Suganuma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Shin-Ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Shinya Fukumoto
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
6
|
Lu J, Tong Y, Pan J, Yang Y, Liu Q, Tan X, Zhao S, Qin L, Chen X. A redesigned CRISPR/Cas9 system for marker-free genome editing in Plasmodium falciparum. Parasit Vectors 2016; 9:198. [PMID: 27066899 PMCID: PMC4828878 DOI: 10.1186/s13071-016-1487-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/01/2016] [Indexed: 12/02/2022] Open
Abstract
Background A highly efficient CRISPR/Cas9-based marker-free genome editing system has been established in Plasmodium falciparum (Pf). However, with the current methods, two drug-selectable markers are needed for episome retention, which may present hurdles for consecutive genome manipulations due to the limited number of available selectable markers. The loading capacity of donor DNA is also unsatisfactory due to the large size of the Cas9 nuclease and sgRNA co-expression system, which limits the size of knock-in DNA fragments. Because of the inefficient end joining (EJ) DNA repair mechanism of Pf, a suicide-rescue approach could be used to address the challenges. Cas9 nuclease and sgRNA were co-expressed from a single plasmid (suicide vector) with one selectable marker, and the donor DNA was ligated into the other plasmid (rescue vector) containing only the ampicillin-resistance gene (AmpR) and a ColEl replication origin (ori). Nonetheless, whether this approach can mediate even the regular gene editing in Pf remains unknown. This study aimed to demonstrate the basic gene editing function of this Cas9-mediated suicide-rescue system. Findings The suicide and rescue vectors were constructed and co-transfected into Pf3D7. This system worked as expected when used to disrupt the Pfset2 gene and to insert a green fluorescent protein-renilla luciferase (gfp-ruc) fusion gene cassette of 3334 base pairs (bp) into the Pf47 locus, demonstrating that the suicide vector actually induced double-strand breaks (DSBs) and that the rescue vector functioned without maintenance via drug selection. Conclusions The adapted marker-free CRISPR/Cas9 system with only a single episome-selectable marker performs well as the current systems for general gene editing which lays a solid foundation for further studies including consecutive gene manipulations and large gene knock-ins. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1487-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junnan Lu
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou, 510530, Guangdong Province, China
| | - Ying Tong
- CAS Lamvac Biotech Co., Ltd, No. 3 Lanyue Road, Guangzhou Science Park, Guangzhou, 510530, Guangdong Province, China
| | - Jiaqiang Pan
- CAS Lamvac Biotech Co., Ltd, No. 3 Lanyue Road, Guangzhou Science Park, Guangzhou, 510530, Guangdong Province, China
| | - Yijun Yang
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou, 510530, Guangdong Province, China
| | - Quan Liu
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou, 510530, Guangdong Province, China
| | - Xuefang Tan
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou, 510530, Guangdong Province, China
| | - Siting Zhao
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou, 510530, Guangdong Province, China
| | - Li Qin
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou, 510530, Guangdong Province, China.
| | - Xiaoping Chen
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou, 510530, Guangdong Province, China.
| |
Collapse
|
7
|
de Koning-Ward TF, Gilson PR, Crabb BS. Advances in molecular genetic systems in malaria. Nat Rev Microbiol 2015; 13:373-87. [DOI: 10.1038/nrmicro3450] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Webster WAJ, McFadden GI. From the genome to the phenome: tools to understand the basic biology of Plasmodium falciparum. J Eukaryot Microbiol 2014; 61:655-71. [PMID: 25227912 DOI: 10.1111/jeu.12176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 11/30/2022]
Abstract
Malaria plagues one out of every 30 humans and contributes to almost a million deaths, and the problem could worsen. Our current therapeutic options are compromised by emerging resistance by the parasite to our front line drugs. It is thus imperative to better understand the basic biology of the parasite and develop novel drugs to stem this disease. The most facile approach to analyse a gene's function is to remove it from the genome or inhibit its activity. Although genetic manipulation of the human malaria parasite Plasmodium falciparum is a relatively standard procedure, there is no optimal method to perturb genes essential to the intraerythrocytic development cycle--the part of the life cycle that produces the clinical manifestation of malaria. This is a severe impediment to progress because the phenotype we wish to study is exactly the one that is so elusive. In the absence of any utilitarian way to conditionally delete essential genes, we are prevented from investigating the parasite's most vulnerable points. This review aims to focus on the development of tools identifying essential genes of P. falciparum and our ability to elicit phenotypic mutation.
Collapse
Affiliation(s)
- Wesley A J Webster
- Centre for Regional and Rural Futures, School of Life and Environmental Sciences, Deakin University, Burwood, 3125, Victoria, Australia; Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Melbourne, 3010, Victoria, Australia
| | | |
Collapse
|
9
|
Fontaine SD, Spangler B, Gut J, Lauterwasser EMW, Rosenthal PJ, Renslo AR. Drug delivery to the malaria parasite using an arterolane-like scaffold. ChemMedChem 2014; 10:47-51. [PMID: 25314098 DOI: 10.1002/cmdc.201402362] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Indexed: 11/06/2022]
Abstract
Antimalarial agents artemisinin and arterolane act via initial reduction of a peroxide bond in a process likely mediated by ferrous iron sources in the parasite. Here, we report the synthesis and antiplasmodial activity of arterolane-like 1,2,4-trioxolanes specifically designed to release a tethered drug species within the malaria parasite. Compared with our earlier drug delivery scaffolds, these new arterolane-inspired systems are of significantly decreased molecular weight and possess superior metabolic stability. We describe an efficient, concise and scalable synthesis of the new systems, and demonstrate the use of the aminonucleoside antibiotic puromycin as a chemo/biomarker to validate successful drug release in live Plasmodium falciparum parasites. Together, the improved drug-like properties, more efficient synthesis, and proof of concept using puromycin, suggests these new molecules as improved vehicles for targeted drug delivery to the malaria parasite.
Collapse
Affiliation(s)
- Shaun D Fontaine
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 1700 4th Street, San Francisco, CA 94158 (USA)
| | | | | | | | | | | |
Collapse
|
10
|
Iwamoto M, Mori C, Hiraoka Y, Haraguchi T. Puromycin resistance gene as an effective selection marker for ciliate Tetrahymena. Gene 2014; 534:249-55. [DOI: 10.1016/j.gene.2013.10.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/24/2013] [Accepted: 10/23/2013] [Indexed: 11/30/2022]
|
11
|
Abstract
Genetic manipulation of Plasmodium falciparum remains very challenging, mainly due to the parasite genome's high A/T-richness and low transfection efficiency. This chapter includes methods for generating transient and stable transfections by electroporation, allelic replacement with tagged genes, gene deletion, and the analysis of all the above.
Collapse
|
12
|
Anderson T, Nkhoma S, Ecker A, Fidock D. How can we identify parasite genes that underlie antimalarial drug resistance? Pharmacogenomics 2011; 12:59-85. [PMID: 21174623 PMCID: PMC3148835 DOI: 10.2217/pgs.10.165] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This article outlines genome-scale approaches that can be used to identify mutations in malaria (Plasmodium) parasites that underlie drug resistance and contribute to treatment failure. These approaches include genetic mapping by linkage or genome-wide association studies, drug selection and characterization of resistant mutants, and the identification of genome regions under strong recent selection. While these genomic approaches can identify candidate resistance loci, genetic manipulation is needed to demonstrate causality. We therefore also describe the growing arsenal of available transfection approaches for direct incrimination of mutations suspected to play a role in resistance. Our intention is both to review past progress and highlight promising approaches for future investigations.
Collapse
Affiliation(s)
- Tim Anderson
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX 78245, USA.
| | | | | | | |
Collapse
|
13
|
Cui L, Miao J, Wang J, Li Q, Cui L. Plasmodium falciparum: development of a transgenic line for screening antimalarials using firefly luciferase as the reporter. Exp Parasitol 2008; 120:80-7. [PMID: 18579134 DOI: 10.1016/j.exppara.2008.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 05/20/2008] [Accepted: 05/22/2008] [Indexed: 10/22/2022]
Abstract
High-throughput screening (HTS) of small-molecule libraries against pharmacological targets is a key strategy of contemporary drug discovery. This study reports a simple, robust, and cell-based luminescent method for assaying antimalarial drugs. Using transfection technology, we generated a stable Plasmodium falciparum line with high levels of firefly luciferase expression. A luciferase assay based on this parasite line was optimized in a 96-well plate format and used to compare with the standard [(3)H] hypoxanthine radioisotope method. The 50% inhibitory concentrations (IC(50)s) of chloroquine, artesunate, artemether, dihydroartemisinin and curcumin obtained by these two methods were not significantly different (P>0.05, ANOVA). In addition, this assay could be performed conveniently with a luminescence plate reader using unsynchronized stages within as early as 12h. Furthermore, the luciferase assay is robust with a Z' score of 0.77-0.92, which suggests the feasibility for further miniaturization and automation.
Collapse
Affiliation(s)
- Long Cui
- Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
14
|
Garcia CRS, de Azevedo MF, Wunderlich G, Budu A, Young JA, Bannister L. Plasmodium in the postgenomic era: new insights into the molecular cell biology of malaria parasites. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 266:85-156. [PMID: 18544493 DOI: 10.1016/s1937-6448(07)66003-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this review, we bring together some of the approaches toward understanding the cellular and molecular biology of Plasmodium species and their interaction with their host red blood cells. Considerable impetus has come from the development of new methods of molecular genetics and bioinformatics, and it is important to evaluate the wealth of these novel data in the context of basic cell biology. We describe how these approaches are gaining valuable insights into the parasite-host cell interaction, including (1) the multistep process of red blood cell invasion by the merozoite; (2) the mechanisms by which the intracellular parasite feeds on the red blood cell and exports parasite proteins to modify its cytoadherent properties; (3) the modulation of the cell cycle by sensing the environmental tryptophan-related molecules; (4) the mechanism used to survive in a low Ca(2+) concentration inside red blood cells; (5) the activation of signal transduction machinery and the regulation of intracellular calcium; (6) transfection technology; and (7) transcriptional regulation and genome-wide mRNA studies in Plasmodium falciparum.
Collapse
Affiliation(s)
- Celia R S Garcia
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, CEP 05508-900, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
15
|
Balu B, Adams JH. Advancements in transfection technologies for Plasmodium. Int J Parasitol 2006; 37:1-10. [PMID: 17113093 DOI: 10.1016/j.ijpara.2006.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 10/03/2006] [Accepted: 10/04/2006] [Indexed: 11/20/2022]
Abstract
Malaria is a global problem that affects millions of people annually. A relatively poor understanding of the malaria parasite biology has hindered vaccine and drug development against this disease. Robust methods for genetic analyses in Plasmodium have been lacking due to the difficulties in its genetic manipulation. Introduction of transfection technologies laid the foundation for genetic dissection of Plasmodium and recent years have seen the development of novel tools for genetic manipulation that will help us delineate the intriguing biology of this parasite. This review focuses on such recent advances in transfection technologies for Plasmodium that have improved our ability to carry out more thorough genetic analyses of the biology of the malaria parasite.
Collapse
Affiliation(s)
- Bharath Balu
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
16
|
Braks JAM, Franke-Fayard B, Kroeze H, Janse CJ, Waters AP. Development and application of a positive-negative selectable marker system for use in reverse genetics in Plasmodium. Nucleic Acids Res 2006; 34:e39. [PMID: 16537837 PMCID: PMC1401515 DOI: 10.1093/nar/gnj033] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A limitation of transfection of malaria parasites is the availability of only a low number of positive selectable markers for selection of transformed mutants. This is exacerbated for the rodent parasite Plasmodium berghei as selection of mutants is performed in vivo in laboratory rodents. We here report the development and application of a negative selection system based upon transgenic expression of a bifunctional protein (yFCU) combining yeast cytosine deaminase and uridyl phosphoribosyl transferase (UPRT) activity in P.berghei followed by in vivo selection with the prodrug 5-fluorocytosine (5-FC). The combination of yfcu and a positive selectable marker was used to first achieve positive selection of mutant parasites with a disrupted gene in a conventional manner. Thereafter through negative selection using 5-FC, mutants were selected where the disrupted gene had been restored to its original configuration as a result of the excision of the selectable markers from the genome through homologous recombination. This procedure was carried out for a Plasmodium gene (p48/45) encoding a protein involved in fertilization, the function of which had been previously implied through gene disruption alone. Such reversible recombination can therefore be employed for both the rapid analysis of the phenotype by targeted disruption of a gene and further associate phenotype and function by genotype restoration through the use of a single plasmid and a single positive selectable marker. Furthermore the negative selection system may also be adapted to facilitate other procedures such as ‘Hit and Run’ and ‘vector recycling’ which in principle will allow unlimited manipulation of a single parasite clone. This is the first demonstration of the general use of yFCU in combination with a positive selectable marker in reverse genetics approaches and it should be possible to adapt its use to many other biological systems.
Collapse
Affiliation(s)
| | | | | | | | - Andrew P. Waters
- To whom correspondence should be addressed. Tel: +31 71 5265069; Fax: +31 71 5266907;
| |
Collapse
|
17
|
Voss TS, Healer J, Marty AJ, Duffy MF, Thompson JK, Beeson JG, Reeder JC, Crabb BS, Cowman AF. A var gene promoter controls allelic exclusion of virulence genes in Plasmodium falciparum malaria. Nature 2005; 439:1004-8. [PMID: 16382237 DOI: 10.1038/nature04407] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 11/04/2005] [Indexed: 11/09/2022]
Abstract
Mono-allelic expression of gene families is used by many organisms to mediate phenotypic variation of surface proteins. In the apicomplexan parasite Plasmodium falciparum, responsible for the severe form of malaria in humans, this is exemplified by antigenic variation of the highly polymorphic P. falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1, encoded by the 60-member var gene family, represents a major virulence factor due to its central role in immune evasion and intravascular parasite sequestration. Mutually exclusive expression of PfEMP1 is controlled by epigenetic mechanisms involving chromatin modification and perinuclear var locus repositioning. Here we show that a var promoter mediates the nucleation and spreading of stably inherited silenced chromatin. Transcriptional activation of this promoter occurs at the nuclear periphery in association with chromosome-end clusters. Additionally, the var promoter sequence is sufficient to infiltrate a transgene into the allelic exclusion programme of var gene expression, as transcriptional activation of this transgene results in silencing of endogenous var gene transcription. These results show that a var promoter is sufficient for epigenetic silencing and mono-allelic transcription of this virulence gene family, and are fundamental for our understanding of antigenic variation in P. falciparum. Furthermore, the PfEMP1 knockdown parasites obtained in this study will be important tools to increase our understanding of P. falciparum-mediated virulence and immune evasion.
Collapse
Affiliation(s)
- Till S Voss
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3050, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kim K, Weiss LM. Toxoplasma gondii: the model apicomplexan. Int J Parasitol 2004; 34:423-32. [PMID: 15003501 PMCID: PMC3086386 DOI: 10.1016/j.ijpara.2003.12.009] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 12/22/2003] [Accepted: 12/22/2003] [Indexed: 10/26/2022]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite which is a significant human and veterinary pathogen. Other members of the phylum Apicomplexa are also important pathogens including Plasmodium species (i.e. malaria), Eimeria species, Neospora, Babesia, Theileria and Cryptosporidium. Unlike most of these organisms, T. gondii is readily amenable to genetic manipulation in the laboratory. Cell biology studies are more readily performed in T. gondii due to the high efficiency of transient and stable transfection, the availability of many cell markers, and the relative ease with which the parasite can be studied using advanced microscopic techniques. Thus, for many experimental questions, T. gondii remains the best model system to study the biology of the Apicomplexa. Our understanding of the mechanisms of drug resistance, the biology of the apicoplast, and the process of host cell invasion has been advanced by studies in T. gondii. Heterologous expression of apicomplexan proteins in T. gondii has frequently facilitated further characterisation of proteins that could not be easily studied. Recent studies of Apicomplexa have been complemented by genome sequencing projects that have facilitated discovery of surprising differences in cell biology and metabolism between Apicomplexa. While results in T. gondii will not always be applicable to other Apicomplexa, T. gondii remains an important model system for understanding the biology of apicomplexan parasites.
Collapse
Affiliation(s)
- Kami Kim
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
19
|
Wel AVD, Kocken CHM, Pronk TC, Franke-Fayard B, Thomas AW. New selectable markers and single crossover integration for the highly versatile Plasmodium knowlesi transfection system. Mol Biochem Parasitol 2004; 134:97-104. [PMID: 14747147 DOI: 10.1016/j.molbiopara.2003.10.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Plasmodium knowlesi provides a highly versatile transfection system for malaria, since it enables rapid genetic modification of the parasite both in vivo as well as in vitro. However, it is not possible to perform multiple genetic manipulations within one parasite line because of a lack of selectable markers. In an effort to develop additional selectable markers for this parasite, positive and negative selectable markers that have recently been successfully used in Plasmodium falciparum were tested. It was shown that the positive selectable markers human dihydrofolate reductase (hdhfr), blasticidin S deaminase (bsd) and neomycin phosphotransferase II (neo) all conferred drug resistance to P. knowlesi when introduced as episomes. The plasmid containing the hdhfr selectable marker was not only successfully introduced as circular form, but also as linear fragment, demonstrating for the first time single crossover integration in P. knowlesi. Thymidine kinase was tested for its potential as negative selectable marker and it was shown that recombinant P. knowlesi parasites expressing thymidine kinase from episomes were highly sensitive to ganciclovir compared to wild-type P. knowlesi. The availability of new positive selectable markers and a strong candidate for a negative selectable marker for P. knowlesi, in combination with the opportunity to perform targeted single crossover integration in P. knowlesi, significantly increases the flexibility of this transfection system, making it one of the most versatile systems available for Plasmodium.
Collapse
Affiliation(s)
- Annemarie v d Wel
- Department of Parasitology, Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands
| | | | | | | | | |
Collapse
|
20
|
Gardiner DL, Skinner-Adams TS, Spielmann T, Trenholme KR. Malaria transfection and transfection vectors. Trends Parasitol 2003; 19:381-3. [PMID: 12957510 DOI: 10.1016/s1471-4922(03)00187-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Malaria remains a leading cause of death due to infectious disease. The completion of the Plasmodium falciparum genome sequencing project and release of preliminary proteomics data have significantly increased our understanding of the biology of this organism. Nonetheless, additional tools for functional analysis of this massive amount of information are now indispensable to further understand the basic biology of this parasite. The genetic manipulation of specific genes via the use of plasmid constructs and transfection represents one such tool.
Collapse
Affiliation(s)
- Donald L Gardiner
- Malaria Biology Laboratory, The Australian Centre for International and Tropical Health and Nutrition, a joint program of the Queensland Institute of Medical Research and the School of Population Health, University of Queensland, Herston.
| | | | | | | |
Collapse
|
21
|
Skinner-Adams TS, Lawrie PM, Hawthorne PL, Gardiner DL, Trenholme KR. Comparison of Plasmodium falciparum transfection methods. Malar J 2003; 2:19. [PMID: 12869208 PMCID: PMC166142 DOI: 10.1186/1475-2875-2-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Accepted: 06/27/2003] [Indexed: 11/16/2022] Open
Abstract
The development of an electroporation based transfection method for Plasmodium falciparum has been very successful for the study of some genes but its efficiency remains very low. While alternative approaches have been documented, electroporation of infected red blood cells generally remains the method of choice for introducing DNA into P. falciparum. In this paper we compare four published transfection techniques in their ability to achieve stable transfections.
Collapse
Affiliation(s)
- Tina S Skinner-Adams
- Malaria Biology Laboratory, The Australian Centre for International and Tropical Health and Nutrition, a joint program of the Queensland Institute of Medical Research and the School of Population Health, University of Queensland, Australia
| | - Paula M Lawrie
- Malaria Biology Laboratory, The Australian Centre for International and Tropical Health and Nutrition, a joint program of the Queensland Institute of Medical Research and the School of Population Health, University of Queensland, Australia
| | - Paula L Hawthorne
- Malaria Biology Laboratory, The Australian Centre for International and Tropical Health and Nutrition, a joint program of the Queensland Institute of Medical Research and the School of Population Health, University of Queensland, Australia
| | - Donald L Gardiner
- Malaria Biology Laboratory, The Australian Centre for International and Tropical Health and Nutrition, a joint program of the Queensland Institute of Medical Research and the School of Population Health, University of Queensland, Australia
| | - Katharine R Trenholme
- Malaria Biology Laboratory, The Australian Centre for International and Tropical Health and Nutrition, a joint program of the Queensland Institute of Medical Research and the School of Population Health, University of Queensland, Australia
| |
Collapse
|
22
|
Fernandez-Becerra C, de Azevedo MF, Yamamoto MM, del Portillo HA. Plasmodium falciparum: new vector with bi-directional promoter activity to stably express transgenes. Exp Parasitol 2003; 103:88-91. [PMID: 12810052 DOI: 10.1016/s0014-4894(03)00065-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Carmen Fernandez-Becerra
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo, SP 05508-900, Brazil
| | | | | | | |
Collapse
|
23
|
Crabb BS. Transfection technology and the study of drug resistance in the malaria parasite Plasmodium falciparum. Drug Resist Updat 2002; 5:126-30. [PMID: 12237080 DOI: 10.1016/s1368-7646(02)00085-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Numerous approaches have been employed to identify the molecules responsible for drug resistance in the human malaria parasite Plasmodium falciparum. However, it was not until the recent development of stable transfection in this parasite that it became possible to prove the role of particular genes in drug resistance and, perhaps more importantly, to characterise the nature of the specific mutations that contribute the resistance phenotype. In this review, the contribution of various molecular genetic approaches to the dissection of drug resistance in P. falciparum is described. Future possibilities in this field are also outlined in the light of recent technological advances.
Collapse
Affiliation(s)
- Brendan S Crabb
- The Walter and Eliza Hall Institute of Medical Research, PO Royal Melbourne Hospital, Vic., Australia.
| |
Collapse
|
24
|
Silva LHPD, Oliveira VEGD. O desafio da malária: o caso brasileiro e o que se pode esperar dos progressos da era genômica. CIENCIA & SAUDE COLETIVA 2002. [DOI: 10.1590/s1413-81232002000100005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A área endêmica de malária no Brasil se estende atualmente à totalidade da região amazônica, com cerca de 500 mil casos anuais, em geral com situações de baixa e média endemicidade mas ainda apresentando focos de alto risco. Fatores demográficos e socioeconômicos são dominantes nos desafios que enfrentam os Serviços de Saúde Pública no controle da malária. No presente artigo são discutidos fatores determinantes da instabilidade da situação endêmica bem como a necessidade de ações permanentes de vigilância e de intervenção dos Serviços de Saúde para que se evitem surtos epidêmicos e alastramento das áreas endêmicas. No artigo, em seguida, apresenta-se uma síntese de progressos recentes nos estudos da era genômica e pós-genômica sobre o parasita, o vetor e o hospedeiro humano que podem favorecer, no futuro, o desenvolvimento e a melhoria dos métodos de controle da malária.
Collapse
|
25
|
Functional analysis of the Plasmodium falciparum genome using transfection. METHODS IN MICROBIOLOGY 2002. [DOI: 10.1016/s0580-9517(02)33021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|