1
|
Paliwal S, Shanker D, Sudan V, Singh SK. Comprehensive genetic diversity and molecular evolutionary analysis of Theileria annulata isolates based on TAMS 1 gene. Ticks Tick Borne Dis 2023; 14:102241. [PMID: 37633222 DOI: 10.1016/j.ttbdis.2023.102241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/28/2023]
Abstract
Molecular epidemiological studies related to the phylogenetic characterization of Theileria annulata are important in delineating the evolutionary history of the parasite. In the current study, the Theileria annulata (T. annulata) merozoite surface antigen 1 (TAMS 1) gene from 14 bovine isolates of T. annulata originating from semi-arid zone of northern India were amplified and sequenced. TAMS 1 gene sequences (n= 337) reported from 16 countries were subsequently analyzed for haplotype network along with genetic diversity. A total of five haplotypes out of the 14 sequenced isolates and 92 haplotypes out of 337 worldwide sequences are documented in this study. Phylogenetic and molecular evolutionary analyses based on TAMS 1 gene sequences showed that T. annulata is dissipated across different countries and numerous strains are closely linked, even though they belong to different geographical locations. The nucleotide homology between 14 isolates from northern India varied between 91.3 and 100%, whereas it was between 31.5 and 100% when sequences across the globe were compared. Haplotype 14 was recognized as most widely distributed haplotype, with 46 isolates circulating in 10 countries. Globally, negligible genetic distance (FST˂0.15) and very high gene flow (Nm˃1) was found in the five populations of the world (South Asia, East Asia, West Asia, Europe and Africa), supporting the absence of clearly defined subgroups in the phylogenetic analysis. Significant negative values of neutrality tests; Tajima's D (D) and Fu and Li's F (F) provided evidence for recent population expansion through positive selection of advantageous variations.
Collapse
Affiliation(s)
- Sanjhi Paliwal
- College of Biotechnology, U. P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura 281001, India.
| | - Daya Shanker
- Department of Parasitology, U. P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura 281001, India
| | - Vikrant Sudan
- Department of Parasitology, U. P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura 281001, India
| | - Shanker Kumar Singh
- Department of Veterinary Clinical Medicine, U. P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura 281001, India
| |
Collapse
|
2
|
Molecular Epidemiology of Theileria annulata in Cattle from Two Districts in Punjab (Pakistan). Animals (Basel) 2021; 11:ani11123443. [PMID: 34944220 PMCID: PMC8697919 DOI: 10.3390/ani11123443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Pakistan is a tropical country where climate is favourable for tick growth and hence its incidence of tick-borne diseases is high, affecting the output of the livestock sector. In the present study the infection rate of Theileria annulata, the causative agent of bovine theileriosis, was compared in apparently healthy cattle enrolled from two different regions in Pakistan. Parasite prevalence was found to be higher in Dera Ghazi Khan District than in Lodhran. The infection rate was higher in cattle that were infested with ticks and in those animals that were housed indoors at dairy farms with other animals. This prophylactic detection of parasite will help to design strategies to control tick and tick-borne diseases in study areas. Abstract The present study was designed to report the molecular prevalence of T. annulata in cattle blood samples collected from Punjab in Pakistan. A total of 428 cattle blood samples were collected from Districts Lodhran (n = 218) and Dera Ghazi Khan (n = 210). The prevalence of T. annulata was determined by the amplification of a fragment from its cytochrome b gene and parasite prevalence was significantly higher (p = 0.03) in the blood samples of cattle collected from Dera Ghazi Khan (70/210; 33%) as compared to Lodhran (52/218; 24%). Presence of T. annulata was also confirmed by the amplification of a fragment from their 30 kDa gene. The amplified PCR products of both genes were confirmed by DNA sequencing and these partial DNA sequences were submitted to GenBank. Phylogenetic analysis revealed that amplified partial gene sequences resembled previously reported T. annulata sequences in cattle from India, China, Iran, Tunisia, Turkey and Egypt. The incidence of T. annulata infection was higher in Sahiwal cattle (p = 0.04) than the other enrolled cattle breed from Dera Ghazi Khan. Female cattle from Lodhran (p = 0.02), while males (p = 0.02), animals housed in close compounds (p = 0.04), animals with a tick burden (p = 0.005) and farms with only cattle (p = 0.01) in Dear Ghazi Khan were found to be more susceptible to T. annulata infection. We recommend that large-scale tick and tick-borne disease control strategies be implemented in both districts under investigation, especially in Dera Ghazi Khan.
Collapse
|
3
|
Evolution and diversity of the EMA families of the divergent equid parasites, Theileria equi and T. haneyi. INFECTION GENETICS AND EVOLUTION 2019; 68:153-160. [DOI: 10.1016/j.meegid.2018.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 11/30/2022]
|
4
|
Lempereur L, Larcombe SD, Durrani Z, Karagenc T, Bilgic HB, Bakirci S, Hacilarlioglu S, Kinnaird J, Thompson J, Weir W, Shiels B. Identification of candidate transmission-blocking antigen genes in Theileria annulata and related vector-borne apicomplexan parasites. BMC Genomics 2017; 18:438. [PMID: 28583072 PMCID: PMC5460460 DOI: 10.1186/s12864-017-3788-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/11/2017] [Indexed: 01/11/2023] Open
Abstract
Background Vector-borne apicomplexan parasites are a major cause of mortality and morbidity to humans and livestock globally. The most important disease syndromes caused by these parasites are malaria, babesiosis and theileriosis. Strategies for control often target parasite stages in the mammalian host that cause disease, but this can result in reservoir infections that promote pathogen transmission and generate economic loss. Optimal control strategies should protect against clinical disease, block transmission and be applicable across related genera of parasites. We have used bioinformatics and transcriptomics to screen for transmission-blocking candidate antigens in the tick-borne apicomplexan parasite, Theileria annulata. Results A number of candidate antigen genes were identified which encoded amino acid domains that are conserved across vector-borne Apicomplexa (Babesia, Plasmodium and Theileria), including the Pfs48/45 6-cys domain and a novel cysteine-rich domain. Expression profiling confirmed that selected candidate genes are expressed by life cycle stages within infected ticks. Additionally, putative B cell epitopes were identified in the T. annulata gene sequences encoding the 6-cys and cysteine rich domains, in a gene encoding a putative papain-family cysteine peptidase, with similarity to the Plasmodium SERA family, and the gene encoding the T. annulata major merozoite/piroplasm surface antigen, Tams1. Conclusions Candidate genes were identified that encode proteins with similarity to known transmission blocking candidates in related parasites, while one is a novel candidate conserved across vector-borne apicomplexans and has a potential role in the sexual phase of the life cycle. The results indicate that a ‘One Health’ approach could be utilised to develop a transmission-blocking strategy effective against vector-borne apicomplexan parasites of animals and humans. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3788-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laetitia Lempereur
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK.,Present address: Laboratory of Parasitology and Parasitic Diseases, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Stephen D Larcombe
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | - Zeeshan Durrani
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK.,Present address: School of Veterinary Science, University of Liverpool, Chester High Road, Neston, CH64 7TE,, UK
| | - Tulin Karagenc
- Faculty of Veterinary Medicine, Department of Parasitology, Adnan Menderes University, Batı Kampus, Işıklı, Aydın, Turkey
| | - Huseyin Bilgin Bilgic
- Faculty of Veterinary Medicine, Department of Parasitology, Adnan Menderes University, Batı Kampus, Işıklı, Aydın, Turkey
| | - Serkan Bakirci
- Faculty of Veterinary Medicine, Department of Parasitology, Adnan Menderes University, Batı Kampus, Işıklı, Aydın, Turkey
| | - Selin Hacilarlioglu
- Faculty of Veterinary Medicine, Department of Parasitology, Adnan Menderes University, Batı Kampus, Işıklı, Aydın, Turkey
| | - Jane Kinnaird
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | - Joanne Thompson
- Institute of Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FL, UK
| | - William Weir
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | - Brian Shiels
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK.
| |
Collapse
|
5
|
Wang J, Yang X, Wang Y, Jing Z, Meng K, Liu J, Guo H, Xu R, Cheng Z. Genetic diversity and phylogenetic analysis of Tams1 of Theileria annulata isolates from three continents between 2000 and 2012. Cent Eur J Immunol 2014; 39:476-484. [PMID: 26155166 PMCID: PMC4439959 DOI: 10.5114/ceji.2014.47732] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/24/2014] [Indexed: 11/17/2022] Open
Abstract
Theileria annulata, which is part of the Theileria sergenti/Theileria buffeli/Theileria orientalis group, preferentially infects cattle and results in high mortality and morbidity in the Mediterranean, Middle East, and Central Asia. The polypeptide Tams1 is an immunodominant major merozoite piroplasm surface antigen of T. annulata that could be used as a marker for epidemiological studies and phylogenetic analysis. In the present study, a total of 155 Tams1 sequences were investigated for genetic diversity and phylogenetic relationships through phylogenetic analysis. Results showed that the Tams1 sequences were divided into two major groups and that distribution for some isolates also exhibited geographic specificity. As targeting polymorphic genes for parasite detection may result in underestimation of infection, polymerase chain reaction (PCR) assay using two different probes targeting tams-1 genes of these two groups can be more credible. In addition, the direction of the spread of the disease was discovered to be from the Mediterranean or the tropical zone to the Eurasian peninsula, Middle East, Southern Asia, and Africa, particularly for Group 2. A similar occurrence was also found between the Ms1 gene of Theileria lestoquardi and the Tams1 gene of T. annulata, which explains cross-immunogenicity to a certain extent. However, no potential glycosylation site in the Tams1 of T. annulata was found in this study, which illustrated that instead of N-glycosylation, other modifications have more significant effects on the immunogenicity of the Tams1 protein.
Collapse
Affiliation(s)
- Jiay Wang
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an 271018, China
- These authors contributed equally to the work
| | - Xianyong Yang
- Central Hospital of Tai'an City, Tai'an, Shandong, 271018, China
- These authors contributed equally to the work
| | - Yuge Wang
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an 271018, China
- These authors contributed equally to the work
| | - Zhihong Jing
- College of Foreign Languages, Shandong Agricultural University, Tai'an 271018, China
| | - Kai Meng
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an 271018, China
| | - Jianzhu Liu
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an 271018, China
| | - Huijun Guo
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an 271018, China
| | - Ruixue Xu
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an 271018, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
6
|
Roberts B, Antonopoulos A, Haslam SM, Dicker AJ, McNeilly TN, Johnston SL, Dell A, Knox DP, Britton C. Novel expression of Haemonchus contortus vaccine candidate aminopeptidase H11 using the free-living nematode Caenorhabditis elegans. Vet Res 2013; 44:111. [PMID: 24289031 PMCID: PMC4176091 DOI: 10.1186/1297-9716-44-111] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/19/2013] [Indexed: 11/28/2022] Open
Abstract
With the problem of parasitic nematode drug resistance increasing, vaccine development offers an alternative sustainable control approach. For some parasitic nematodes, native extracts enriched for specific proteins are highly protective. However, recombinant forms of these proteins have failed to replicate this protection. This is thought to be due to differences in glycosylation and/or conformation between native and recombinant proteins. We have exploited the free-living nematode Caenorhabditis elegans to examine its suitability as an alternative system for recombinant expression of parasitic nematode vaccine candidates. We focussed on Haemonchus contortus aminopeptidase H11 glycoprotein, which is enriched in a gut membrane fraction capable of inducing significant protection against this important ovine gastrointestinal nematode. We show that H. contortus H11 expressed in C. elegans is enzymatically active and MALDI mass spectrometry identifies similar di- and tri-fucosylated structures to those on native H11, with fucose at the 3- and/or 6-positions of the proximal GlcNAc. Some glycan structural differences were observed, such as lack of LDNF. Serum antibody to native H11 binds to C. elegans recombinant H11 and most of the antibody to rH11 or native H11 is directed to glycan moieties. Despite these similarities, no reduction in worm burden or faecal egg count was observed following immunisation of sheep with C. elegans-expressed recombinant H11 protein. The findings suggest that the di- and tri-fucosylated N-glycans expressed on rH11 do not contribute to the protective effect of H11 and that additional components present in native H11-enriched extract are likely required for enhancing the antibody response necessary for protection.
Collapse
Affiliation(s)
- Brett Roberts
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Mohammad Al-Saeed AT, Omer LT, Abdo J, Habibi G, Salih DA, Seitzer U, Ahmed J. Epidemiological studies on tropical theileriosis (Theileria annulata infection of cattle) in Kurdistan Region, Iraq. Parasitol Res 2010; 106:403-7. [PMID: 19911197 DOI: 10.1007/s00436-009-1675-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 10/23/2009] [Indexed: 11/28/2022]
Abstract
In an ad hoc survey conducted during 2006, the epidemiology of tropical theileriosis in Kurdistan Region, Iraq, was addressed. For this purpose, a total of 299 blood samples were collected from female cattle older than 1 year reared under open system management in Duhok (n = 99), Sulaimanyia (n = 100) and Erbil (n = 100) governorates. The samples were subjected to TaSP indirect ELISA as well as polymerase chain reaction (PCR) and nested PCR assays. The results indicated that the seroprevalence was 77.9%, and PCR reported an infection rate of 68.9% in the Kurdistan Region of Iraq. The implication of the results in the epidemiology of tropical theileriosis in the region is discussed with emphasis on comparisons between the two tests used and recommendations for the future work are outlined.
Collapse
|
8
|
Casanova CL, Xue G, Taracha EL, Dobbelaere DA. Post-translational signal peptide cleavage controls differential epitope recognition in the QP-rich domain of recombinant Theileria parva PIM. Mol Biochem Parasitol 2006; 149:144-54. [PMID: 16806529 DOI: 10.1016/j.molbiopara.2006.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 05/09/2006] [Accepted: 05/10/2006] [Indexed: 11/21/2022]
Abstract
The presence of the schizont stage of the obligate intracellular parasites Theileria parva or T. annulata in the cytoplasm of an infected leukocyte results in host cell transformation via a mechanism that has not yet been elucidated. Proteins, secreted by the schizont, or expressed on its surface, are of interest as they can interact with host cell molecules that regulate host cell proliferation and/or survival. The major schizont surface protein is the polymorphic immunodominant molecule, PIM, which contains a large glutamine- and proline-rich domain (QP-rd) that protrudes into the host cell cytoplasm. Analyzing QP-rd generated by in vitro transcription/translation, we found that the signal peptide was efficiently cleaved post-translationally upon addition of T cell lysate or canine pancreatic microsomes, whereas signal peptide cleavage of a control protein only occurred cotranslationally and in the presence of microsomal membranes. The QP-rd of PIM migrated anomalously in SDS-PAGE and removal of the 19 amino acids corresponding to the predicted signal peptide caused a decrease in apparent molecular mass of 24kDa. The molecule was analyzed using monoclonal antibodies that recognize a set of previously defined PIM epitopes. Depending on the presence or the absence of the signal peptide, two conformational states could be demonstrated that are differentially recognized, with N-terminal epitopes becoming readily accessible upon signal peptide removal, and C-terminal epitopes becoming masked. Similar observations were made when the QP-rd of PIM was expressed in bacteria. Our observations could also be of relevance to other schizont proteins. A recent analysis of the proteomes of T. parva and T. annulata revealed the presence of a large family of potentially secreted proteins, characterized by the presence of large stretches of amino acids that are also particularly rich in QP-residues.
Collapse
Affiliation(s)
- Carlo L Casanova
- Molecular Pathology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| | | | | | | |
Collapse
|
9
|
Leroith T, Brayton KA, Molloy JB, Bock RE, Hines SA, Lew AE, McElwain TF. Sequence variation and immunologic cross-reactivity among Babesia bovis merozoite surface antigen 1 proteins from vaccine strains and vaccine breakthrough isolates. Infect Immun 2005; 73:5388-94. [PMID: 16113254 PMCID: PMC1231062 DOI: 10.1128/iai.73.9.5388-5394.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Babesia bovis merozoite surface antigen 1 (MSA-1) is an immunodominant membrane glycoprotein that is the target of invasion-blocking antibodies. While antigenic variation has been demonstrated in MSA-1 among strains from distinct geographical areas, the extent of sequence variation within a region where it is endemic and the effect of variation on immunologic cross-reactivity have not been assessed. In this study, sequencing of MSA-1 from two Australian B. bovis vaccine strains and 14 breakthrough isolates from vaccinated animals demonstrated low sequence identity in the extracellular region of the molecule, ranging from 19.8 to 46.7% between the T vaccine strain and eight T vaccine breakthrough isolates, and from 18.7 to 99% between the K vaccine strain and six K vaccine breakthrough isolates. Although MSA-1 amino acid sequence varied substantially among strains, overall predicted regions of hydrophilicity and hydrophobicity in the extracellular domain were conserved in all strains examined, suggesting a conserved functional role for MSA-1 despite sequence polymorphism. Importantly, the antigenic variation created by sequence differences resulted in a lack of immunologic cross-reactivity among outbreak strains using sera from animals infected with the B. bovis vaccine strains. Additionally, sera from cattle hyperinfected with the Mexico strain of B. bovis and shown to be clinically immune did not cross-react with MSA-1 from any other isolate tested. The results indicate that isolates of B. bovis capable of evading vaccine-induced immunity contain an msa-1 gene that is significantly different from the msa-1 of the vaccine strain, and that the difference can result in a complete lack of cross-reactivity between MSA-1 from vaccine and breakthrough strains in immunized animals.
Collapse
Affiliation(s)
- Tanya Leroith
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | | | | | | | |
Collapse
|