1
|
Danthanarayana AN, Nandy S, Kourentzi K, Vu B, Shelite TR, Travi BL, Brgoch J, Willson RC. Smartphone-readable RPA-LFA for the high-sensitivity detection of Leishmania kDNA using nanophosphor reporters. PLoS Negl Trop Dis 2023; 17:e0011436. [PMID: 37399214 PMCID: PMC10353800 DOI: 10.1371/journal.pntd.0011436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 06/05/2023] [Indexed: 07/05/2023] Open
Abstract
Early diagnosis of infectious diseases improves outcomes by enabling earlier delivery of effective treatment, and helps prevent further transmission by undiagnosed persons. We demonstrated a proof-of-concept assay combining isothermal amplification and lateral flow assay (LFA) for early diagnosis of cutaneous leishmaniasis, a vector-borne infectious disease that affects ca. 700,000 to 1.2 million people annually. Conventional molecular diagnostic techniques based on polymerase chain reaction (PCR) require complex apparatus for temperature cycling. Recombinase polymerase amplification (RPA) is an isothermal DNA amplification method that has shown promise for use in low-resource settings. Combined with lateral flow assay as the readout, RPA-LFA can be used as a point-of-care diagnostic tool with high sensitivity and specificity, but reagent costs can be problematic. In this work, we developed a highly-sensitive smartphone-based RPA-LFA for the detection of Leishmania panamensis DNA using blue-emitting [(Sr0.625Ba0.375)1.96Eu0.01Dy0.03]MgSi2O7 (SBMSO) persistent luminescent nanophosphors as LFA reporters. The greater detectability of nanophosphors allows the use of a reduced volume of RPA reagents, potentially reducing the cost of RPA-LFA. The limit of detection (LOD) of RPA with gold nanoparticle-based LFA readout is estimated at 1 parasite per reaction, but LOD can be 100-fold better, 0.01 parasites per reaction, for LFA based on SBMSO. This approach may be useful for sensitive and cost-effective point-of-care diagnosis and contribute to improved clinical and economic outcomes, especially in resource-limited settings.
Collapse
Affiliation(s)
| | - Suman Nandy
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
| | - Katerina Kourentzi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
| | - Binh Vu
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
| | - Thomas R Shelite
- Department of Biosafety, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bruno L Travi
- Department of Biosafety, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jakoah Brgoch
- Department of Chemistry, University of Houston, Houston, Texas, United States of America
| | - Richard C Willson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| |
Collapse
|
2
|
Lee Y, Cho CH, Noh C, Yang JH, Park SI, Lee YM, West JA, Bhattacharya D, Jo K, Yoon HS. Origin of minicircular mitochondrial genomes in red algae. Nat Commun 2023; 14:3363. [PMID: 37291154 PMCID: PMC10250338 DOI: 10.1038/s41467-023-39084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
Eukaryotic organelle genomes are generally of conserved size and gene content within phylogenetic groups. However, significant variation in genome structure may occur. Here, we report that the Stylonematophyceae red algae contain multipartite circular mitochondrial genomes (i.e., minicircles) which encode one or two genes bounded by a specific cassette and a conserved constant region. These minicircles are visualized using fluorescence microscope and scanning electron microscope, proving the circularity. Mitochondrial gene sets are reduced in these highly divergent mitogenomes. Newly generated chromosome-level nuclear genome assembly of Rhodosorus marinus reveals that most mitochondrial ribosomal subunit genes are transferred to the nuclear genome. Hetero-concatemers that resulted from recombination between minicircles and unique gene inventory that is responsible for mitochondrial genome stability may explain how the transition from typical mitochondrial genome to minicircles occurs. Our results offer inspiration on minicircular organelle genome formation and highlight an extreme case of mitochondrial gene inventory reduction.
Collapse
Affiliation(s)
- Yongsung Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Chung Hyun Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Chanyoung Noh
- Department of Chemistry, Sogang University, Seoul, 04107, Korea
| | - Ji Hyun Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Seung In Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Yu Min Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - John A West
- School of Biosciences 2, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, 08901, USA
| | - Kyubong Jo
- Department of Chemistry, Sogang University, Seoul, 04107, Korea.
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
3
|
Mitochondrial RNA editing in Trypanoplasma borreli: new tools, new revelations. Comput Struct Biotechnol J 2022; 20:6388-6402. [DOI: 10.1016/j.csbj.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
|
4
|
Dueñas E, Nakamoto JA, Cabrera-Sosa L, Huaihua P, Cruz M, Arévalo J, Milón P, Adaui V. Novel CRISPR-based detection of Leishmania species. Front Microbiol 2022; 13:958693. [PMID: 36187950 PMCID: PMC9520526 DOI: 10.3389/fmicb.2022.958693] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/06/2022] [Indexed: 12/26/2022] Open
Abstract
Tegumentary leishmaniasis, a disease caused by protozoan parasites of the genus Leishmania, is a major public health problem in many regions of Latin America. Its diagnosis is difficult given other conditions resembling leishmaniasis lesions and co-occurring in the same endemic areas. A combination of parasitological and molecular methods leads to accurate diagnosis, with the latter being traditionally performed in centralized reference and research laboratories as they require specialized infrastructure and operators. Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) systems have recently driven innovative tools for nucleic acid detection that combine high specificity, sensitivity and speed and are readily adaptable for point-of-care testing. Here, we harnessed the CRISPR-Cas12a system for molecular detection of Leishmania spp., emphasizing medically relevant parasite species circulating in Peru and other endemic areas in Latin America, with Leishmania (Viannia) braziliensis being the main etiologic agent of cutaneous and mucosal leishmaniasis. We developed two assays targeting multi-copy targets commonly used in the molecular diagnosis of leishmaniasis: the 18S ribosomal RNA gene (18S rDNA), highly conserved across Leishmania species, and a region of kinetoplast DNA (kDNA) minicircles conserved in the L. (Viannia) subgenus. Our CRISPR-based assays were capable of detecting down to 5 × 10-2 (kDNA) or 5 × 100 (18S rDNA) parasite genome equivalents/reaction with PCR preamplification. The 18S PCR/CRISPR assay achieved pan-Leishmania detection, whereas the kDNA PCR/CRISPR assay was specific for L. (Viannia) detection. No cross-reaction was observed with Trypanosoma cruzi strain Y or human DNA. We evaluated the performance of the assays using 49 clinical samples compared to a kDNA real-time PCR assay as the reference test. The kDNA PCR/CRISPR assay performed equally well as the reference test, with positive and negative percent agreement of 100%. The 18S PCR/CRISPR assay had high positive and negative percent agreement of 82.1% and 100%, respectively. The findings support the potential applicability of the newly developed CRISPR-based molecular tools for first-line diagnosis of Leishmania infections at the genus and L. (Viannia) subgenus levels.
Collapse
Affiliation(s)
- Eva Dueñas
- Laboratory of Biomolecules, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas (UPC), Lima, Peru
| | - Jose A. Nakamoto
- Laboratory of Biomolecules, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas (UPC), Lima, Peru
| | - Luis Cabrera-Sosa
- Laboratory of Biomolecules, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas (UPC), Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Percy Huaihua
- Laboratorio de Patho-antígenos, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - María Cruz
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Hospital Nacional Adolfo Guevara Velasco, Cusco, Peru
| | - Jorge Arévalo
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Patho-antígenos, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Pohl Milón
- Laboratory of Biomolecules, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas (UPC), Lima, Peru
| | - Vanessa Adaui
- Laboratory of Biomolecules, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas (UPC), Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
5
|
Li SJ, Zhang X, Lukeš J, Li BQ, Wang JF, Qu LH, Hide G, Lai DH, Lun ZR. Novel organization of mitochondrial minicircles and guide RNAs in the zoonotic pathogen Trypanosoma lewisi. Nucleic Acids Res 2020; 48:9747-9761. [PMID: 32853372 PMCID: PMC7515712 DOI: 10.1093/nar/gkaa700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 01/01/2023] Open
Abstract
Kinetoplastid flagellates are known for several unusual features, one of which is their complex mitochondrial genome, known as kinetoplast (k) DNA, composed of mutually catenated maxi- and minicircles. Trypanosoma lewisi is a member of the Stercorarian group of trypanosomes which is, based on human infections and experimental data, now considered a zoonotic pathogen. By assembling a total of 58 minicircle classes, which fall into two distinct categories, we describe a novel type of kDNA organization in T. lewisi. RNA-seq approaches allowed us to map the details of uridine insertion and deletion editing events upon the kDNA transcriptome. Moreover, sequencing of small RNA molecules enabled the identification of 169 unique guide (g) RNA genes, with two differently organized minicircle categories both encoding essential gRNAs. The unprecedented organization of minicircles and gRNAs in T. lewisi broadens our knowledge of the structure and expression of the mitochondrial genomes of these human and animal pathogens. Finally, a scenario describing the evolution of minicircles is presented.
Collapse
Affiliation(s)
- Su-Jin Li
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Xuan Zhang
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, České Budějovice (Budweis) 37005, Czech Republic
| | - Bi-Qi Li
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Ju-Feng Wang
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Liang-Hu Qu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Geoff Hide
- Ecosystems and Environment Research Centre and Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - De-Hua Lai
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Zhao-Rong Lun
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
- Ecosystems and Environment Research Centre and Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, UK
| |
Collapse
|
6
|
Differentiation of Leishmania ( L.) infantum, Leishmania ( L.) amazonensis and Leishmania ( L.) mexicana Using Sequential qPCR Assays and High-Resolution Melt Analysis. Microorganisms 2020; 8:microorganisms8060818. [PMID: 32486117 PMCID: PMC7355826 DOI: 10.3390/microorganisms8060818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 12/31/2022] Open
Abstract
Leishmania protozoa are the etiological agents of visceral, cutaneous and mucocutaneous leishmaniasis. In specific geographical regions, such as Latin America, several Leishmania species are endemic and simultaneously present; therefore, a diagnostic method for species discrimination is warranted. In this attempt, many qPCR-based assays have been developed. Recently, we have shown that L. (L.) infantum and L. (L.) amazonensis can be distinguished through the comparison of the Cq values from two qPCR assays (qPCR-ML and qPCR-ama), designed to amplify kDNA minicircle subclasses more represented in L. (L.) infantum and L. (L.) amazonensis, respectively. This paper describes the application of this approach to L. (L.) mexicana and introduces a new qPCR-ITS1 assay followed by high-resolution melt (HRM) analysis to differentiate this species from L. (L.) amazonensis. We show that L. (L.) mexicana can be distinguished from L. (L.) infantum using the same approach we had previously validated for L. (L.) amazonensis. Moreover, it was also possible to reliably discriminate L. (L.) mexicana from L. (L.) amazonensis by using qPCR-ITS1 followed by an HRM analysis. Therefore, a diagnostic algorithm based on sequential qPCR assays coupled with HRM analysis was established to identify/differentiate L. (L.) infantum, L. (L.) amazonensis, L. (L.) mexicana and Viannia subgenus. These findings update and extend previous data published by our research group, providing an additional diagnostic tool in endemic areas with co-existing species.
Collapse
|
7
|
Klatt S, Simpson L, Maslov DA, Konthur Z. Leishmania tarentolae: Taxonomic classification and its application as a promising biotechnological expression host. PLoS Negl Trop Dis 2019; 13:e0007424. [PMID: 31344033 PMCID: PMC6657821 DOI: 10.1371/journal.pntd.0007424] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this review, we summarize the current knowledge concerning the eukaryotic protozoan parasite Leishmania tarentolae, with a main focus on its potential for biotechnological applications. We will also discuss the genus, subgenus, and species-level classification of this parasite, its life cycle and geographical distribution, and similarities and differences to human-pathogenic species, as these aspects are relevant for the evaluation of biosafety aspects of L. tarentolae as host for recombinant DNA/protein applications. Studies indicate that strain LEM-125 but not strain TARII/UC of L. tarentolae might also be capable of infecting mammals, at least transiently. This could raise the question of whether the current biosafety level of this strain should be reevaluated. In addition, we will summarize the current state of biotechnological research involving L. tarentolae and explain why this eukaryotic parasite is an advantageous and promising human recombinant protein expression host. This summary includes overall biotechnological applications, insights into its protein expression machinery (especially on glycoprotein and antibody fragment expression), available expression vectors, cell culture conditions, and its potential as an immunotherapy agent for human leishmaniasis treatment. Furthermore, we will highlight useful online tools and, finally, discuss possible future applications such as the humanization of the glycosylation profile of L. tarentolae or the expression of mammalian recombinant proteins in amastigote-like cells of this species or in amastigotes of avirulent human-pathogenic Leishmania species.
Collapse
Affiliation(s)
- Stephan Klatt
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- * E-mail: (SK); (ZK)
| | - Larry Simpson
- Department of Microbiology, Immunology and Molecular Genetics, Geffen School of Medicine at UCLA, University of California, Los Angeles, California, United States of America
| | - Dmitri A. Maslov
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California, United States of America
| | - Zoltán Konthur
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- * E-mail: (SK); (ZK)
| |
Collapse
|
8
|
Maslov DA. Separating the Wheat from the Chaff: RNA Editing and Selection of Translatable mRNA in Trypanosome Mitochondria. Pathogens 2019; 8:E105. [PMID: 31323762 PMCID: PMC6789859 DOI: 10.3390/pathogens8030105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/14/2019] [Accepted: 07/16/2019] [Indexed: 11/16/2022] Open
Abstract
In the mitochondria of trypanosomes and related kinetoplastid protists, most mRNAs undergo a long and sophisticated maturation pathway before they can be productively translated by mitochondrial ribosomes. Some of the aspects of this pathway (identity of the promotors, transcription initiation, and termination signals) remain obscure, and some (post-transcriptional modification by U-insertion/deletion, RNA editing, 3'-end maturation) have been illuminated by research during the last decades. The RNA editing creates an open reading frame for a productive translation, but the fully edited mRNA often represents a minor fraction in the pool of pre-edited and partially edited precursors. Therefore, it has been expected that the final stages of the mRNA processing generate molecular hallmarks, which allow for the efficient and selective recognition of translation-competent templates. The general contours and several important details of this process have become known only recently and represent the subject of this review.
Collapse
Affiliation(s)
- Dmitri A Maslov
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
9
|
Elucidating diversity in the class composition of the minicircle hypervariable region of Trypanosoma cruzi: New perspectives on typing and kDNA inheritance. PLoS Negl Trop Dis 2019; 13:e0007536. [PMID: 31247047 PMCID: PMC6619836 DOI: 10.1371/journal.pntd.0007536] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/10/2019] [Accepted: 06/10/2019] [Indexed: 12/18/2022] Open
Abstract
Background Trypanosoma cruzi, the protozoan causative of Chagas disease, is classified into six main Discrete Typing Units (DTUs): TcI-TcVI. This parasite has around 105 copies of the minicircle hypervariable region (mHVR) in their kinetoplastic DNA (kDNA). The genetic diversity of the mHVR is virtually unknown. However, cross-hybridization assays using mHVRs showed hybridization only between isolates belonging to the same genetic group. Nowadays there is no methodologic approach with a good sensibility, specificity and reproducibility for direct typing on biological samples. Due to its high copy number and apparently high diversity, mHVR becomes a good target for typing. Methodology/Principal findings Around 22 million reads, obtained by amplicon sequencing of the mHVR, were analyzed for nine strains belonging to six T. cruzi DTUs. The number and diversity of mHVR clusters was variable among DTUs and even within a DTU. However, strains of the same DTU shared more mHVR clusters than strains of different DTUs and clustered together. In addition, hybrid DTUs (TcV and TcVI) shared similar percentages (1.9–3.4%) of mHVR clusters with their parentals (TcII and TcIII). Conversely, just 0.2% of clusters were shared between TcII and TcIII suggesting biparental inheritance of the kDNA in hybrids. Sequencing at low depth (20,000–40,000 reads) also revealed 95% of the mHVR clusters for each of the analyzed strains. Finally, the method revealed good correlation in cluster identity and abundance between different replications of the experiment (r = 0.999). Conclusions/Significance Our work sheds light on the sequence diversity of mHVRs at intra and inter-DTU level. The mHVR amplicon sequencing workflow described here is a reproducible technique, that allows multiplexed analysis of hundreds of strains and results promissory for direct typing on biological samples in a future. In addition, such approach may help to gain knowledge on the mechanisms of the minicircle evolution and phylogenetic relationships among strains. Chagas disease is an important public health problem in Latin America showing a wide diversity of clinical manifestations and epidemiological patterns. It is caused by the parasite Trypanosoma cruzi. This parasite is genetically diverse and classified into six main lineages. However, the relationship between intra-specific genetic diversity and clinical or epidemiological features is not clear, mainly because low sensitivity for direct typing on biological samples. For this reason, genetic markers with high copy number are required to achieve sensitivity. Here, we deep sequenced and analyzed a DNA region present in the large mitochondria of the parasite (named as mHVR, 105 copies per parasite) from strains belonging to the six main lineages in order to analyze mHVR diversity and to evaluate its usefulness for typing. Despite the high sequence diversity, strains of the same lineage shared more sequences than strains of different lineages. Curiously, hybrid lineages shared mHVR sequences with both parents suggesting that mHVR (and DNA minicircles from the mitochondria) are inherited from both parentals. The mHVR amplicon sequencing workflow proposed here is reproducible and, potentially, it would be useful for typing hundreds of biological samples at time. It also provides a valuable approach to perform evolutionary and functional studies.
Collapse
|
10
|
Burger G, Valach M. Perfection of eccentricity: Mitochondrial genomes of diplonemids. IUBMB Life 2018; 70:1197-1206. [PMID: 30304578 DOI: 10.1002/iub.1927] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 01/14/2023]
Abstract
Mitochondria are the sandbox of evolution as exemplified most particularly by the diplonemids, a group of marine microeukaryotes. These protists are uniquely characterized by their highly multipartite mitochondrial genome and systematically fragmented genes whose pieces are spread out over several dozens of chromosomes. The type species Diplonema papillatum was the first member of this group in which the expression of fragmented mitochondrial genes was investigated experimentally. We now know that gene expression involves separate transcription of gene pieces (modules), RNA editing of module transcripts, and module joining to mature mRNAs and rRNAs. The mechanism of cognate module recognition and ligation is distinct from known intron splicing and remains to be uncovered. Here, we review the current status of research on mitochondrial genome architecture, as well as gene complement, structure, and expression modes in diplonemids. Further, we discuss the potential molecular mechanisms of posttranscriptional processing, and finally reflect on the evolutionary trajectories and trends of mtDNA evolution as seen in this protist group. © 2018 IUBMB Life, 70(12):1197-1206, 2018.
Collapse
Affiliation(s)
- Gertraud Burger
- Département de Biochimie, Robert Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montréal, Québec, Canada
| | - Matus Valach
- Département de Biochimie, Robert Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
11
|
Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology 2018; 146:1-27. [PMID: 29898792 DOI: 10.1017/s0031182018000951] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Unicellular flagellates of the family Trypanosomatidae are obligatory parasites of invertebrates, vertebrates and plants. Dixenous species are aetiological agents of a number of diseases in humans, domestic animals and plants. Their monoxenous relatives are restricted to insects. Because of the high biological diversity, adaptability to dramatically different environmental conditions, and omnipresence, these protists have major impact on all biotic communities that still needs to be fully elucidated. In addition, as these organisms represent a highly divergent evolutionary lineage, they are strikingly different from the common 'model system' eukaryotes, such as some mammals, plants or fungi. A number of excellent reviews, published over the past decade, were dedicated to specialized topics from the areas of trypanosomatid molecular and cell biology, biochemistry, host-parasite relationships or other aspects of these fascinating organisms. However, there is a need for a more comprehensive review that summarizing recent advances in the studies of trypanosomatids in the last 30 years, a task, which we tried to accomplish with the current paper.
Collapse
|
12
|
High-throughput sequencing of kDNA amplicons for the analysis of Leishmania minicircles and identification of Neotropical species. Parasitology 2017; 145:585-594. [PMID: 29144208 DOI: 10.1017/s0031182017002013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Leishmania kinetoplast DNA contains thousands of small circular molecules referred to as kinetoplast DNA (kDNA) minicercles. kDNA minicircles are the preferred targets for sensitive Leishmania detection, because they are present in high copy number and contain conserved sequence blocks in which polymerase chain reaction (PCR) primers can be designed. On the other hand, the heterogenic nature of minicircle networks has hampered the use of this peculiar genomic region for strain typing. The characterization of Leishmania minicirculomes used to require isolation and cloning steps prior to sequencing. Here, we show that high-throughput sequencing of single minicircle PCR products allows bypassing these laborious laboratory tasks. The 120 bp long minicircle conserved region was amplified by PCR from 18 Leishmania strains representative of the major species complexes found in the Neotropics. High-throughput sequencing of PCR products enabled recovering significant numbers of distinct minicircle sequences from each strain, reflecting minicircle class diversity. Minicircle sequence analysis revealed patterns that are congruent with current hypothesis of Leishmania relationships. Then, we show that a barcoding-like approach based on minicircle sequence comparisons may allow reliable identifications of Leishmania spp. This work opens up promising perspectives for the study of kDNA minicercles and a variety of applications in Leishmania research.
Collapse
|
13
|
The use of kDNA minicircle subclass relative abundance to differentiate between Leishmania (L.) infantum and Leishmania (L.) amazonensis. Parasit Vectors 2017; 10:239. [PMID: 28511704 PMCID: PMC5434583 DOI: 10.1186/s13071-017-2181-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/09/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leishmaniasis is a neglected disease caused by many Leishmania species, belonging to subgenera Leishmania (Leishmania) and Leishmania (Viannia). Several qPCR-based molecular diagnostic approaches have been reported for detection and quantification of Leishmania species. Many of these approaches use the kinetoplast DNA (kDNA) minicircles as the target sequence. These assays had potential cross-species amplification, due to sequence similarity between Leishmania species. Previous works demonstrated discrimination between L. (Leishmania) and L. (Viannia) by SYBR green-based qPCR assays designed on kDNA, followed by melting or high-resolution melt (HRM) analysis. Importantly, these approaches cannot fully distinguish L. (L.) infantum from L. (L.) amazonensis, which can coexist in the same geographical area. METHODS DNA from 18 strains/isolates of L. (L.) infantum, L. (L.) amazonensis, L. (V.) braziliensis, L. (V.) panamensis, L. (V.) guyanensis, and 62 clinical samples from L. (L.) infantum-infected dogs were amplified by a previously developed qPCR (qPCR-ML) and subjected to HRM analysis; selected PCR products were sequenced using an ABI PRISM 310 Genetic Analyzer. Based on the obtained sequences, a new SYBR-green qPCR assay (qPCR-ama) intended to amplify a minicircle subclass more abundant in L. (L.) amazonensis was designed. RESULTS The qPCR-ML followed by HRM analysis did not allow discrimination between L. (L.) amazonensis and L. (L.) infantum in 53.4% of cases. Hence, the novel SYBR green-based qPCR (qPCR-ama) has been tested. This assay achieved a detection limit of 0.1 pg of parasite DNA in samples spiked with host DNA and did not show cross amplification with Trypanosoma cruzi or host DNA. Although the qPCR-ama also amplified L. (L.) infantum strains, the Cq values were dramatically increased compared to qPCR-ML. Therefore, the combined analysis of Cq values from qPCR-ML and qPCR-ama allowed to distinguish L. (L.) infantum and L. (L.) amazonensis in 100% of tested samples. CONCLUSIONS A new and affordable SYBR-green qPCR-based approach to distinguish between L. (L.) infantum and L. (L.) amazonensis was developed exploiting the major abundance of a minicircle sequence rather than targeting a hypothetical species-specific sequence. The fast and accurate discrimination between these species can be useful to provide adequate prognosis and treatment.
Collapse
|
14
|
Stiles JK, Hicock PI, Shah PH, Meade JC. Genomic organization, transcription, splicing and gene regulation inLeishmania. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.1999.11813485] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Márquez ME, Concepción JL, González-Marcano E, Mondolfi AP. Detection of Trypanosoma cruzi by Polymerase Chain Reaction. Methods Mol Biol 2016; 1392:125-141. [PMID: 26843052 DOI: 10.1007/978-1-4939-3360-0_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
American Trypanosomiasis (Chagas disease) is an infectious disease caused by the hemoflagellate parasite Trypanosoma cruzi which is transmitted by reduviid bugs. T. cruzi infection occurs in a broad spectrum of reservoir animals throughout North, Central, and South America and usually evolves into an asymptomatic chronic clinical stage of the disease in which diagnosis is often challenging. This chapter describes the application of polymerase chain reaction (PCR) for the detection of Trypanosoma cruzi DNA including protocols for sample preparation, DNA extraction, and target amplification methods.
Collapse
Affiliation(s)
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Universidad de Los Andes, Mérida, Venezuela.
| | - Eglys González-Marcano
- Laboratorio de Enzimología de Parásitos, Universidad de Los Andes, Mérida, Venezuela.
- Fundación Jacinto Convit, Caracas, Venezuela.
| | - Alberto Paniz Mondolfi
- Microbiology Laboratory, Department of Laboratory Medicine, Yale University School of Medicine/Yale New Haven Hospital, New Haven, CT, USA.
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
16
|
Ceccarelli M, Galluzzi L, Migliazzo A, Magnani M. Detection and characterization of Leishmania (Leishmania) and Leishmania (Viannia) by SYBR green-based real-time PCR and high resolution melt analysis targeting kinetoplast minicircle DNA. PLoS One 2014; 9:e88845. [PMID: 24551178 PMCID: PMC3923818 DOI: 10.1371/journal.pone.0088845] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/11/2014] [Indexed: 11/25/2022] Open
Abstract
Leishmaniasis is a neglected disease with a broad clinical spectrum which includes asymptomatic infection. A thorough diagnosis, able to distinguish and quantify Leishmania parasites in a clinical sample, constitutes a key step in choosing an appropriate therapy, making an accurate prognosis and performing epidemiological studies. Several molecular techniques have been shown to be effective in the diagnosis of leishmaniasis. In particular, a number of PCR methods have been developed on various target DNA sequences including kinetoplast minicircle constant regions. The first aim of this study was to develop a SYBR green-based qPCR assay for Leishmania (Leishmania) infantum detection and quantification, using kinetoplast minicircle constant region as target. To this end, two assays were compared: the first used previously published primer pairs (qPCR1), whereas the second used a nested primer pairs generating a shorter PCR product (qPCR2). The second aim of this study was to evaluate the possibility to discriminate among subgenera Leishmania (Leishmania) and Leishmania (Viannia) using the qPCR2 assay followed by melting or High Resolution Melt (HRM) analysis. Both assays used in this study showed good sensitivity and specificity, and a good correlation with standard IFAT methods in 62 canine clinical samples. However, the qPCR2 assay allowed to discriminate between Leishmania (Leishmania) and Leishmania (Viannia) subgenera through melting or HRM analysis. In addition to developing assays, we investigated the number and genetic variability of kinetoplast minicircles in the Leishmania (L.) infantum WHO international reference strain (MHOM/TN/80/IPT1), highlighting the presence of minicircle subclasses and sequence heterogeneity. Specifically, the kinetoplast minicircle number per cell was estimated to be 26,566±1,192, while the subclass of minicircles amplifiable by qPCR2 was estimated to be 1,263±115. This heterogeneity, also observed in canine clinical samples, must be taken into account in quantitative PCR-based applications; however, it might also be used to differentiate between Leishmania subgenera.
Collapse
Affiliation(s)
- Marcello Ceccarelli
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Fano (PU), Italy
| | - Luca Galluzzi
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Fano (PU), Italy
- * E-mail:
| | | | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Urbino (PU), Italy
| |
Collapse
|
17
|
Porcel BM, Denoeud F, Opperdoes F, Noel B, Madoui MA, Hammarton TC, Field MC, Da Silva C, Couloux A, Poulain J, Katinka M, Jabbari K, Aury JM, Campbell DA, Cintron R, Dickens NJ, Docampo R, Sturm NR, Koumandou VL, Fabre S, Flegontov P, Lukeš J, Michaeli S, Mottram JC, Szöőr B, Zilberstein D, Bringaud F, Wincker P, Dollet M. The streamlined genome of Phytomonas spp. relative to human pathogenic kinetoplastids reveals a parasite tailored for plants. PLoS Genet 2014; 10:e1004007. [PMID: 24516393 PMCID: PMC3916237 DOI: 10.1371/journal.pgen.1004007] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 10/23/2013] [Indexed: 11/18/2022] Open
Abstract
Members of the family Trypanosomatidae infect many organisms, including animals, plants and humans. Plant-infecting trypanosomes are grouped under the single genus Phytomonas, failing to reflect the wide biological and pathological diversity of these protists. While some Phytomonas spp. multiply in the latex of plants, or in fruit or seeds without apparent pathogenicity, others colonize the phloem sap and afflict plants of substantial economic value, including the coffee tree, coconut and oil palms. Plant trypanosomes have not been studied extensively at the genome level, a major gap in understanding and controlling pathogenesis. We describe the genome sequences of two plant trypanosomatids, one pathogenic isolate from a Guianan coconut and one non-symptomatic isolate from Euphorbia collected in France. Although these parasites have extremely distinct pathogenic impacts, very few genes are unique to either, with the vast majority of genes shared by both isolates. Significantly, both Phytomonas spp. genomes consist essentially of single copy genes for the bulk of their metabolic enzymes, whereas other trypanosomatids e.g. Leishmania and Trypanosoma possess multiple paralogous genes or families. Indeed, comparison with other trypanosomatid genomes revealed a highly streamlined genome, encoding for a minimized metabolic system while conserving the major pathways, and with retention of a full complement of endomembrane organelles, but with no evidence for functional complexity. Identification of the metabolic genes of Phytomonas provides opportunities for establishing in vitro culturing of these fastidious parasites and new tools for the control of agricultural plant disease. Some plant trypanosomes, single-celled organisms living in phloem sap, are responsible for important palm diseases, inducing frequent expensive and toxic insecticide treatments against their insect vectors. Other trypanosomes multiply in latex tubes without detriment to their host. Despite the wide range of behaviors and impacts, these trypanosomes have been rather unceremoniously lumped into a single genus: Phytomonas. A battery of molecular probes has been used for their characterization but no clear phylogeny or classification has been established. We have sequenced the genomes of a pathogenic phloem-specific Phytomonas from a diseased South American coconut palm and a latex-specific isolate collected from an apparently healthy wild euphorb in the south of France. Upon comparison with each other and with human pathogenic trypanosomes, both Phytomonas revealed distinctive compact genomes, consisting essentially of single-copy genes, with the vast majority of genes shared by both isolates irrespective of their effect on the host. A strong cohort of enzymes in the sugar metabolism pathways was consistent with the nutritional environments found in plants. The genetic nuances may reveal the basis for the behavioral differences between these two unique plant parasites, and indicate the direction of our future studies in search of effective treatment of the crop disease parasites.
Collapse
Affiliation(s)
- Betina M. Porcel
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
- Université d'Evry, UMR 8030, Evry, France
- Centre National de Recherche Scientifique (CNRS), UMR 8030, Evry, France
- * E-mail: (BMP); (MD)
| | - France Denoeud
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
- Université d'Evry, UMR 8030, Evry, France
- Centre National de Recherche Scientifique (CNRS), UMR 8030, Evry, France
| | - Fred Opperdoes
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Benjamin Noel
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
| | - Mohammed-Amine Madoui
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
| | - Tansy C. Hammarton
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mark C. Field
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Corinne Da Silva
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
| | - Arnaud Couloux
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
| | - Julie Poulain
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
| | - Michael Katinka
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
| | - Kamel Jabbari
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
- Université d'Evry, UMR 8030, Evry, France
- Centre National de Recherche Scientifique (CNRS), UMR 8030, Evry, France
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
| | - David A. Campbell
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Roxana Cintron
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Nicholas J. Dickens
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Nancy R. Sturm
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | | | - Sandrine Fabre
- CIRAD, TA A-98/F, Campus International de Baillarguet, Montpellier, France
| | - Pavel Flegontov
- Institute of Parasitology, Biology Centre and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Shulamit Michaeli
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Jeremy C. Mottram
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Balázs Szöőr
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Dan Zilberstein
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Frédéric Bringaud
- Centre de Résonance Magnétique des Systèmes Biologiques, Université Bordeaux Segalen, CNRS UMR-5536, Bordeaux, France
| | - Patrick Wincker
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
- Université d'Evry, UMR 8030, Evry, France
- Centre National de Recherche Scientifique (CNRS), UMR 8030, Evry, France
| | - Michel Dollet
- CIRAD, TA A-98/F, Campus International de Baillarguet, Montpellier, France
- * E-mail: (BMP); (MD)
| |
Collapse
|
18
|
Koslowsky D, Sun Y, Hindenach J, Theisen T, Lucas J. The insect-phase gRNA transcriptome in Trypanosoma brucei. Nucleic Acids Res 2014; 42:1873-86. [PMID: 24174546 PMCID: PMC3919587 DOI: 10.1093/nar/gkt973] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 11/13/2022] Open
Abstract
One of the most striking examples of small RNA regulation of gene expression is the process of RNA editing in the mitochondria of trypanosomes. In these parasites, RNA editing involves extensive uridylate insertions and deletions within most of the mitochondrial messenger RNAs (mRNAs). Over 1200 small guide RNAs (gRNAs) are predicted to be responsible for directing the sequence changes that create start and stop codons, correct frameshifts and for many of the mRNAs generate most of the open reading frame. In addition, alternative editing creates the opportunity for unprecedented protein diversity. In Trypanosoma brucei, the vast majority of gRNAs are transcribed from minicircles, which are approximately one kilobase in size, and encode between three and four gRNAs. The large number (5000-10,000) and their concatenated structure make them difficult to sequence. To identify the complete set of gRNAs necessary for mRNA editing in T. brucei, we used Illumina deep sequencing of purified gRNAs from the procyclic stage. We report a near complete set of gRNAs needed to direct the editing of the mRNAs.
Collapse
Affiliation(s)
- Donna Koslowsky
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA, Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Yanni Sun
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA, Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Jordan Hindenach
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA, Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Terence Theisen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA, Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Jasmin Lucas
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA, Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
19
|
Rodrigues EHG, Soares FCDS, Werkhäuser RP, de Brito MEF, Fernandes O, Abath FGC, Brandão A. The compositional landscape of minicircle sequences isolated from active lesions and scars of American cutaneous leishmaniasis. Parasit Vectors 2013; 6:228. [PMID: 23924509 PMCID: PMC3750493 DOI: 10.1186/1756-3305-6-228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/02/2013] [Indexed: 11/15/2022] Open
Abstract
Background American cutaneous leishmaniasis (ACL) is characterized by cutaneous lesions that heal spontaneously or after specific treatment. This paper reports on the analysis of kDNA minicircle sequences from clinical samples (typical lesions and scars) that were PCR-amplified with specific primers for Leishmania species of the subgenus Viannia. Methods From 56 clinical isolates we obtained a single amplified fragment (ca. 790 bp), which after cloning and sequencing resulted in 290 minicircle sequences from both active lesions and scars. We aimed to get a compositional profile of these sequences in clinical samples and evaluate the corresponding compositional changes. Sequences were analyzed with the compseq and wordcount (Emboss package) to get the composition of di-, tri-, tetra-, penta- and hexanucleotides. Additionally, we built a nucleotide dictionary with words of 7, 8, 9 and 10 nucleotides. Results This compositional analysis showed that minicircles amplified from active cutaneous lesions and scars have a distinct compositional profile as viewed by nucleotide composition of words up to 10mer. With regard to the most frequent nucleotide words above length 6, there is also a distinct pattern for 7, 8, 9 and 10mer. Conclusion These results indicate that minicircle sequences can be monitored upon direct exposure to a selection/stressing environment (e.g. chemical action) by evaluating their nucleotide compositional profile. It might be useful as a molecular tool in research concerning the evolution of infecting Leishmania in both vector and vertebrate hosts.
Collapse
|
20
|
Teixeira ARL, Nitz N, Bernal FM, Hecht MM. Parasite induced genetically driven autoimmune Chagas heart disease in the chicken model. J Vis Exp 2012:3716. [PMID: 22951533 PMCID: PMC3476407 DOI: 10.3791/3716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Trypanosoma cruzi acute infections acquired in infancy and childhood seem asymptomatic, but approximately one third of the chronically infected cases show Chagas disease up to three decades or later. Autoimmunity and parasite persistence are competing theories to explain the pathogenesis of Chagas disease. To separate roles played by parasite persistence and autoimmunity in Chagas disease we inoculate the T. cruzi in the air chamber of fertilized eggs. The mature chicken immune system is a tight biological barrier against T. cruzi and the infection is eradicated upon development of its immune system by the end of the first week of growth. The chicks are parasite-free at hatching, but they retain integrated parasite mitochondrial kinetoplast DNA (kDNA) minicircle within their genome that are transferred to their progeny. Documentation of the kDNA minicircle integration in the chicken genome was obtained by a targeted prime TAIL-PCR, Southern hybridizations, cloning, and sequencing. The kDNA minicircle integrations rupture open reading frames for transcription and immune system factors, phosphatase (GTPase), adenylate cyclase and phosphorylases (PKC, NF-Kappa B activator, PI-3K) associated with cell physiology, growth, and differentiation, and other gene functions. Severe myocarditis due to rejection of target heart fibers by effectors cytotoxic lymphocytes is seen in the kDNA mutated chickens, showing an inflammatory cardiomyopathy similar to that seen in human Chagas disease. Notably, heart failure and skeletal muscle weakness are present in adult chickens with kDNA rupture of the dystrophin gene in chromosome 1. Similar genotipic alterations are associated with tissue destruction carried out by effectors CD45+, CD8γδ+, CD8α lymphocytes. Thus this protozoan infection can induce genetically driven autoimmune disease.
Collapse
|
21
|
Vlcek C, Marande W, Teijeiro S, Lukes J, Burger G. Systematically fragmented genes in a multipartite mitochondrial genome. Nucleic Acids Res 2010; 39:979-88. [PMID: 20935050 PMCID: PMC3035467 DOI: 10.1093/nar/gkq883] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Arguably, the most bizarre mitochondrial DNA (mtDNA) is that of the euglenozoan eukaryote Diplonema papillatum. The genome consists of numerous small circular chromosomes none of which appears to encode a complete gene. For instance, the cox1 coding sequence is spread out over nine different chromosomes in non-overlapping pieces (modules), which are transcribed separately and joined to a contiguous mRNA by trans-splicing. Here, we examine how many genes are encoded by Diplonema mtDNA and whether all are fragmented and their transcripts trans-spliced. Module identification is challenging due to the sequence divergence of Diplonema mitochondrial genes. By employing most sensitive protein profile search algorithms and comparing genomic with cDNA sequence, we recognize a total of 11 typical mitochondrial genes. The 10 protein-coding genes are systematically chopped up into three to 12 modules of 60–350 bp length. The corresponding mRNAs are all trans-spliced. Identification of ribosomal RNAs is most difficult. So far, we only detect the 3′-module of the large subunit ribosomal RNA (rRNA); it does not trans-splice with other pieces. The small subunit rRNA gene remains elusive. Our results open new intriguing questions about the biochemistry and evolution of mitochondrial trans-splicing in Diplonema.
Collapse
Affiliation(s)
- Cestmir Vlcek
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Department of Genomics and Bioinformatics, 142 20 Prague, Czech Republic
| | | | | | | | | |
Collapse
|
22
|
Maslov DA. Complete set of mitochondrial pan-edited mRNAs in Leishmania mexicana amazonensis LV78. Mol Biochem Parasitol 2010; 173:107-14. [PMID: 20546801 DOI: 10.1016/j.molbiopara.2010.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 05/13/2010] [Accepted: 05/14/2010] [Indexed: 12/18/2022]
Abstract
Editing of mRNA transcribed from the mitochondrial cryptogenes ND8 (G1), ND9 (G2), G3, G4, ND3 (G5), RPS12 (G6) was investigated in Leishmania mexicana amazonensis, strain LV78, by amplification of the cDNA, cloning and sequencing. For each of these genes, extensively and partially edited transcripts were found to be relatively abundant compared to the respective pre-edited molecules. Moreover, the editing patterns observed in a majority of transcripts of each gene were consistent among themselves which allowed for inferring consensus editing sequences. The open reading frames contained in the consensus sequences were predicted to encode polypeptides that were highly similar to their counterparts in other species of Trypanosomatidae. Several kinetoplast DNA minicircles from this species available in the public domain were found to contain genes for guide RNAs which mediate editing of some of the mRNAs. The results indicate that the investigated strain of L. m. amazonensis has preserved its full editing capacity in spite of the long-term maintenance in culture. This property differs drastically from the other Leishmania species which lost some or all of the G1-G5 mRNA editing ability in culture.
Collapse
Affiliation(s)
- Dmitri A Maslov
- Department of Biology, University of California, Riverside, 900 University Avenue, Riverside, CA 92512, USA.
| |
Collapse
|
23
|
Koslowsky DJ. Complex interactions in the regulation of trypanosome mitochondrial gene expression. Trends Parasitol 2009; 25:252-5. [PMID: 19443271 DOI: 10.1016/j.pt.2009.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/13/2009] [Accepted: 03/19/2009] [Indexed: 02/04/2023]
Abstract
Trypanosomes undergo extreme physiological changes to adapt to different environments as they cycle between hosts. Adaptation to the different environments has evolved an energy metabolism involving a mitochondrion with an unusual genome. Recently, Aphasizhev and colleagues have identified two new protein complexes, a mitochondrial polyadenylation complex and a guide RNA stabilization complex, that provide novel insights into the coordinated expression of the mitochondrial genome.
Collapse
Affiliation(s)
- Donna J Koslowsky
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
24
|
Neboháčová M, Kim CE, Simpson L, Maslov DA. RNA editing and mitochondrial activity in promastigotes and amastigotes of Leishmania donovani. Int J Parasitol 2009; 39:635-44. [PMID: 19109964 PMCID: PMC2693023 DOI: 10.1016/j.ijpara.2008.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 10/29/2008] [Accepted: 10/30/2008] [Indexed: 11/30/2022]
Abstract
Kinetoplast maxicircle DNA sequence organisation was investigated in Leishmania donovani, strain 1S LdBob. Gene arrangement in the coding (conserved) region of the maxicircle is collinear with that of most trypanosomatids, with individual genes showing 80-90% nucleotide identity to Leishmania tarentolae, strain UC. The notable exception was an integration of a full-size minicircle sequence in the ND1 gene coding region found in L. donovani. Editing patterns of the mitochondrial mRNAs investigated also followed L. tarentolae UC patterns, including productive editing of the components of respiratory complexes III-V, and ribosomal protein S12 (RPS12), as well as the lack of productive editing in five out of six pan-edited cryptogenes (ND3, ND8, ND9, G3, G4) found in these species. Several guide RNAs for the editing events were localised in minicircles and maxicircles in the locations that are conserved between the species. Mitochondrial activity, including rates of oxygen consumption, the presence and the levels of respiratory complexes and their individual subunits and the steady-state levels of several mitochondrial-encoded mRNAs were essentially the same in axenically grown amastigotes and in promastigotes of L. donovani. However, some modulation of mitochondrial activity between these developmental stages was suggested by the finding of an amastigote-specific component in complex IV, a down-regulation of mitochondrial RNA-binding proteins (MRP) and MRP-associated protein (MRP-AP) in amastigotes, and by variations in the levels of RPS12, ND3, ND9, G3 and G4 pre-edited transcripts.
Collapse
Affiliation(s)
- Martina Neboháčová
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Christine E. Kim
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Larry Simpson
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Dmitri A. Maslov
- Department of Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
25
|
Abstract
The experimental approach to revealing the genetic information hidden in kinetoplastid cryptogenes and expressed through the posttranscriptional mRNA processing of U-insertion/deletion editing proceeds in reverse to the informational flow of the RNA editing process itself. While the editing integrates the informational content of maxicircle-encoded cryptogenes with that of minicircle-encoded gRNAs to produce functional edited mRNAs, the cryptogene analysis utilizes a comparison of the mature mRNA sequence with the cryptogene sequence to deduce the locations of edited sites and editing patterns, and a comparison of that mRNA sequence with the minicircle (or minicircle equivalent) sequences to identify the corresponding guide RNAs. Although a "direct" approach (prediction of a fully edited sequence pattern based on the analysis of cryptogene and minicircle sequences) seems to be theoretically possible, it proved to be not practically feasible. The major steps of the procedures utilized to decipher editing in a broad range of kinetoplastid species are presented in this chapter.
Collapse
Affiliation(s)
- Dmitri A Maslov
- Department of Biology, University of California, Riverside, California, USA
| | | |
Collapse
|
26
|
Madej MJ, Alfonzo JD, Hüttenhofer A. Small ncRNA transcriptome analysis from kinetoplast mitochondria of Leishmania tarentolae. Nucleic Acids Res 2007; 35:1544-54. [PMID: 17287292 PMCID: PMC1865066 DOI: 10.1093/nar/gkm004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 12/21/2006] [Accepted: 12/22/2006] [Indexed: 11/12/2022] Open
Abstract
Gene expression in mitochondria of kinetoplastid protozoa requires RNA editing, a post-transcriptional process which involves insertion or deletion of uridine residues at specific sites within mitochondrial pre-mRNAs. Sequence specificity of the RNA editing process is mediated by oligo-uridylated small, non-coding RNAs, designated as guide RNAs (gRNAs). In this study, we have analyzed the small ncRNA transcriptome from kinetoplast mitochondria of Leishmania tarentolae by generating specialized cDNA libraries encoding size-selected RNA species. Through this screen, a significant number of novel oligo-uridylated RNA species, which we have termed oU-RNAs, has been identified. Most novel oU-RNAs are present as stable RNA species in mitochondria as assessed by northern blot analysis. Thereby, novel oU-RNAs show similar expression levels and sizes as previously reported for canonical gRNAs. Several oU-RNAs are transcribed from both strands of the maxicircle and minicircles components of the mitochondrial genome, from regions where up till now no transcription has been reported. Two stable oU-RNAs exhibit an anchor sequence in antisense orientation to known gRNAs and thus might regulate editing of respective pre-mRNAs. A number of oU-RNAs map in antisense orientation to non-edited protein-coding genes suggesting that they might function by a different mechanism. In addition, our screen shows that all kinetoplast-derived RNAs are prone to some degree of uridylation.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- DNA, Circular/chemistry
- Gene Library
- Leishmania/genetics
- Leishmania/metabolism
- Mitochondria/genetics
- Mitochondria/metabolism
- Oligoribonucleotides/analysis
- Protozoan Proteins/genetics
- RNA/biosynthesis
- RNA/chemistry
- RNA/genetics
- RNA, Antisense/genetics
- RNA, Guide, Kinetoplastida/biosynthesis
- RNA, Guide, Kinetoplastida/chemistry
- RNA, Guide, Kinetoplastida/genetics
- RNA, Mitochondrial
- RNA, Untranslated/genetics
- Sequence Analysis, DNA
- Transcription, Genetic
- Uracil Nucleotides/analysis
Collapse
Affiliation(s)
- Monika J. Madej
- Innsbruck Biocenter, Division of Genomics and RNomics, Innsbruck Medical University, Fritz-Pregl-Strasse. 3, 6020 Innsbruck, Austria and Department of Microbiology, Ohio State Biochemistry Program and The RNA Group, The Ohio State University, 484 West 12th Ave., Columbus, OH 43210, USA
| | - Juan D. Alfonzo
- Innsbruck Biocenter, Division of Genomics and RNomics, Innsbruck Medical University, Fritz-Pregl-Strasse. 3, 6020 Innsbruck, Austria and Department of Microbiology, Ohio State Biochemistry Program and The RNA Group, The Ohio State University, 484 West 12th Ave., Columbus, OH 43210, USA
| | - Alexander Hüttenhofer
- Innsbruck Biocenter, Division of Genomics and RNomics, Innsbruck Medical University, Fritz-Pregl-Strasse. 3, 6020 Innsbruck, Austria and Department of Microbiology, Ohio State Biochemistry Program and The RNA Group, The Ohio State University, 484 West 12th Ave., Columbus, OH 43210, USA
| |
Collapse
|
27
|
Ochsenreiter T, Cipriano M, Hajduk SL. KISS: the kinetoplastid RNA editing sequence search tool. RNA (NEW YORK, N.Y.) 2007; 13:1-4. [PMID: 17123956 PMCID: PMC1705751 DOI: 10.1261/rna.232907] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 10/02/2006] [Indexed: 05/08/2023]
Abstract
Kinetoplastid mitochondrial mRNA editing is a post-transcriptional process of uridine insertion and deletion. Editing is mediated by small RNA molecules termed guide RNAs (gRNAs). Most gRNAs are encoded by numerous small circular DNA minicircles, while the protein coding mitochondrial genes are encoded on a separate, larger genome called the maxicircle. In order to provide a workbench for the analysis of RNA editing in kinetoplastids and a well-annotated set of guide RNAs for Trypanosoma brucei, we generated the kinetoplastid RNA editing sequence search tool (KISS) (http://gmod.mbl.edu/kiss/). KISS is a pipeline and database that uses BLAST comparisons and minicircle sequence motifs to annotate potential gRNAs and cognate mRNA editing sequence. KISS 1.0 contains all previously known minicircle and maxicircle data from Trypanosoma brucei plus >400 new minicircle sequences. Using an online format, KISS 1.0 allows the mapping and visualization of all known T. brucei gRNAs to minicircle genes and to potential mRNA substrates for RNA editing.
Collapse
Affiliation(s)
- Torsten Ochsenreiter
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| | | | | |
Collapse
|
28
|
Telleria J, Lafay B, Virreira M, Barnabé C, Tibayrenc M, Svoboda M. Trypanosoma cruzi: sequence analysis of the variable region of kinetoplast minicircles. Exp Parasitol 2006; 114:279-88. [PMID: 16730709 DOI: 10.1016/j.exppara.2006.04.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 04/11/2006] [Accepted: 04/11/2006] [Indexed: 11/16/2022]
Abstract
The comparisons of 170 sequences of kinetoplast DNA minicircle hypervariable region obtained from 19 stocks of Trypanosoma cruzi and 2 stocks of Trypanosoma cruzi marenkellei showed that only 56% exhibited a significant homology one with other sequences. These sequences could be grouped into homology classes showing no significant sequence similarity with any other homology group. The 44% remaining sequences thus corresponded to unique sequences in our data set. In the DTU I ("Discrete Typing Units") 51% of the sequences were unique. In contrast, in the DTU IId, 87.5% of sequences were distributed into three classes. The results obtained for T. cruzi marinkellei, showed that all sequences were unique, without any similarity between them and T. cruzi sequences. Analysis of palindromes in all sequence sets show high frequency of the EcoRI site. Analysis of repetitive sequences suggested a common ancestral origin of the kDNA. The editing mechanism that occurs in kinetoplastidae is discussed.
Collapse
Affiliation(s)
- Jenny Telleria
- Laboratoire de Génétique et Evolution des Maladies Infectieuses, UMR CNRS-IRD 2724 and UR IRD 165, Centre IRD, 911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France.
| | | | | | | | | | | |
Collapse
|
29
|
Junqueira ACV, Degrave W, Brandão A. Minicircle organization and diversity in Trypanosoma cruzi populations. Trends Parasitol 2005; 21:270-2. [PMID: 15922247 DOI: 10.1016/j.pt.2005.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Revised: 02/01/2005] [Accepted: 04/11/2005] [Indexed: 10/25/2022]
Abstract
Trypanosoma cruzi strains and isolates can be divided into at least two groups using biochemical and molecular markers such as isoenzymes, ribosomal DNA, mini-exon gene spacers and some maxicircle genes. Despite the accumulating evidence that these major groups are phylogenetically distinct, their kinetoplast minicircle overall organization (i.e. number of conserved regions per length of minicircle molecule) remains conserved in all T. cruzi isolates studied so far, including the two T. cruzi major lineages -T. cruzi I and T. cruzi II - and a third group of uncertain taxonomic status, T. cruzi ZIII. Thus far, despite the extensive intra- and inter-minicircle sequence polymorphism, no group clustering has been observed.
Collapse
Affiliation(s)
- Angela C V Junqueira
- Departamento Medicina Tropical, Instituto Oswaldo Cruz-Fiocruz, Avenida Brasil 4365, 21045-900 Rio de Janeiro, Brasil
| | | | | |
Collapse
|
30
|
Abstract
Despite extensive phylogenetic analysis of small subunit ribosomal RNA (SSUrRNA) genes, the deep-level relationships among kinetoplastids remain poorly understood, limiting our grasp of their evolutionary history, especially the origins of their bizarre mitochondrial genome organizations. In this study we examine the SSUrRNA data in the light of a new marker--cytoplasmic heat shock protein 90 (hsp90) sequences. Our phylogenetic analyses divide kinetoplastids into four main clades. Clades 1-3 include the various bodonid kinetoplastids. Trypanosomatids comprise the fourth clade. SSUrRNA analyses give vastly different and poorly supported positions for the root of the kinetoplastid tree, depending on the out-group and analysis method. This is probably due to the extraordinary length of the branch between kinetoplastids and any out-group. In contrast, almost all hsp90 analyses place the root between clade 1 (including Dimastigella, Rhynchomonas, several Bodo spp., and probably Rhynchobodo) and all other kinetoplastids. Maximum likelihood and maximum likelihood distance analyses of hsp90 protein and second codon-position nucleotides place trypanosomatids adjacent to Bodo saltans and Bodo cf. uncinatus (clade 3), as (weakly) do SSUrRNA analyses. Hsp90 first codon- plus second codon-position nucleotide analyses return a slightly different topology. We show that this may be an artifact caused, in part, by the different evolutionary behavior of first- and second-codon positions. This study provides the most robust evidence to date that trypanosomatids are descended from within bodonids and that B. saltans is a close relative of trypanosomatids. A total reevaluation of the high-level systematics within kinetoplastids is needed. We confirm that the interlocking network organization of kinetoplast DNA seen in trypanosomatids is a derived condition within kinetoplastids but suggest that open-conformation minicircles may have arisen early in kinetoplastid evolution. Further understanding of the evolution of kinetoplast structure and RNA editing is hampered by a paucity of data from basal (i.e., clade 1) bodonids.
Collapse
Affiliation(s)
- Alastair G B Simpson
- Department of Biochemistry, Canadian Institute for Advanced Research, Program in Evolutionary Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7.
| | | | | |
Collapse
|
31
|
Abstract
Leishmania minicircular deoxyribonucleic acid (DNA) is arranged into different classes according to sequence. These classes differ substantially in sequence, despite species- and genus-specific regions, and are present in widely different copy numbers within and between Leishmania strains. Homologous minicircles have been identified in different species of Leishmania by comparing sequences of known minicircles. However, it is possible to select for minicircles of the same class by amplifying Leishmania DNA with polymerase chain reaction primers from the conserved and variable regions. This approach was used with 2 different minicircle classes in the L. donovani complex. In all isolates tested it was possible to amplify minicircles of the selected class.
Collapse
Affiliation(s)
- Bronwen Lambson
- Molteno Laboratories, Department of Pathology, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
32
|
Brewster S, Barker DC. Analysis of minicircle classes in Leishmania (Viannia) species. Trans R Soc Trop Med Hyg 2002; 96 Suppl 1:S55-63. [PMID: 12055852 DOI: 10.1016/s0035-9203(02)90052-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
This paper reports the analysis of minicircle sequence classes from 4 Leishmania species, all belonging to the 'New World' species of the subgenus Viannia: Leishmania braziliensis, L. guyanensis, L. panamensis and L. peruviana. A minicircle library was constructed for each species, and clones were analysed by restriction enzyme digest and sequence analysis. 319 minicircles from the 4 species were examined and 96 of these were wholly or partially sequenced. The sequences of 41 whole minicircles--21 from L. panamensis, 8 from L. guyanensis and 6 each from L. braziliensis and L. peruviana are presented. Sequence classes were identified within which sequences were highly conserved, with only a small number of single base pair changes between them. In contrast, minicircles from different classes differed significantly, displaying sequence homology only over the minicircle conserved region. Some minicircle classes were identified which were shared between species. These minicircles displayed sequence variation which was potentially species-specific, and were analysed phylogenetically. These results question the hypothesis that minicircle sequence is rapidly evolving and also suggest that an as yet unknown selective pressure maintains sequence class conservation over the entire minicircle molecule even in different species, not only over the conserved region and the guide ribonucleic acid gene. A novel hypothesis is proposed to explain these results.
Collapse
Affiliation(s)
- S Brewster
- Molteno Laboratories, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | | |
Collapse
|
33
|
Savill NJ, Higgs PG. Redundant and non-functional guide RNA genes in Trypanosoma brucei are a consequence of multiple genes per minicircle. Gene 2000; 256:245-52. [PMID: 11054554 DOI: 10.1016/s0378-1119(00)00345-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mitochondrial mRNA of the parasitic protozoa Trypanosoma brucei is extensively edited by the insertion, and occasional deletion, of uridine residues. The editing is mediated by over 200 guide RNAs (gRNAs) that are encoded in circular DNA molecules called minicircles. There are some 250 different types of minicircle, called classes, with each encoding several gRNAs. Sequencing of gRNAs and minicircles has revealed a surprising amount of both redundancy, where gRNAs from different minicircle classes edit exactly the same part of an mRNA, and non-functionality, where partial or no complementarity is found between gRNA and mRNA. How does this redundancy and non-functionality arise and persist? We propose the following. Minicircle classes that contain several functional gRNA genes can be lost from the population via drift and replaced by more minicircle classes that contain fewer functional gRNA genes, on the condition that the cells keep a full complement of functional gRNAs. We demonstrate this hypothesis in a computer simulation of a model of minicircle evolution. We show that this process leads to an increasing number of minicircle classes and inevitably to only one functional gRNA per minicircle. Moreover, we show that the genome contains more minicircle classes than is actually necessary for cell survival. We also analyse the available minicircle sequence data and conclude that T. brucei is at a transient stage in this process. In addition, ten new putative gRNAs have been discovered.
Collapse
Affiliation(s)
- N J Savill
- School of Biological Sciences, Manchester University, 2.205 Stopford Building, Oxford Road, M13 9PT, Manchester, UK.
| | | |
Collapse
|
34
|
Abstract
Mitochondrial genomes have been sequenced from a wide variety of organisms, including an increasing number of parasites. They maintain some characteristics in common across the spectrum of life-a common core of genes related to mitochondrial respiration being most prominent-but have also developed a great diversity of gene content, organisation, and expression machineries. The characteristics of mitochondrial genomes vary widely among the different groups of protozoan parasites, from the minute genomes of the apicomplexans to amoebae with 20 times as many genes. Kinetoplastid protozoa have a similar number of genes to metazoans, but the details of gene organisation and expression in kinetoplastids require extraordinary mechanisms. Mitochondrial genes in nematodes and trematodes appear quite sedate in comparison, but a closer look shows a strong tendency to unusual tRNA structure and alternative initiation codons among these groups. Mitochondrial genes are increasingly coming into play as aids to phylogenetic and epidemiologic analyses, and mitochondrial functions are being recognised as potential drug targets. In addition, examination of mitochondrial genomes is producing further insights into the diversity of the wide-ranging group of organisms comprising the general category of parasites.
Collapse
Affiliation(s)
- J E Feagin
- Seattle Biomedical Research Institute, 4 Nickerson St., Seattle, WA 98109-1651, USA.
| |
Collapse
|
35
|
Singh N, Curran MD, Middleton D, Rastogi AK. Characterization of kinetoplast DNA minicircles of an Indian isolate of Leishmania donovani. Acta Trop 1999; 73:313-9. [PMID: 10546849 DOI: 10.1016/s0001-706x(99)00036-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Characterization of the kinetoplast DNA minicircles in a human pathogenic Indian isolate of Leishmania donovani has not been reported previously. Using inverse PCR, we constructed a library of PCR-amplified minicircle variable region from the kinetoplast DNA of this isolate. A combination of restriction enzyme digestion and nucleotide sequence analysis revealed five minicircle DNA sequence classes within the library, one of which was predominant, representing 75% of the kDNA network. Another distinct sequence class represented 15% of the minicircle network. Other minor sequence classes collectively constituted the remaining 10% of the network. Apart from generating basic information on the organisation and distribution of the different sequence classes within the minicircles, the DNA sequence analysis also revealed unique attributes to our minicircles. One was the surprising homology of our isolate (an Old World sp.) with distantly related New World Leishmania species. Secondly, open reading frames were also identified, indicating the possibility that these minicircles may have more than a structural role to play within the kinetoplast network.
Collapse
Affiliation(s)
- N Singh
- Department of Biochemistry, Central Drug Research Institute, Lucknow, India.
| | | | | | | |
Collapse
|
36
|
Lambson B, Smyth A, Barker D. Sequence homology within a minicircle class of the Leishmania donovani complex. Mol Biochem Parasitol 1999; 101:229-32. [PMID: 10413058 DOI: 10.1016/s0166-6851(99)00077-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- B Lambson
- Department of Pathology, University of Cambridge, UK.
| | | | | |
Collapse
|
37
|
Yurchenko VY, Merzlyak EM, Kolesnikov AA, Martinkina LP, Vengerov YY. Structure of Leishmania minicircle kinetoplast DNA classes. J Clin Microbiol 1999; 37:1656-7. [PMID: 10328690 PMCID: PMC84871 DOI: 10.1128/jcm.37.5.1656-1657.1999] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
38
|
Savill NJ, Higgs PG. A theoretical study of random segregation of minicircles in trypanosomatids. Proc Biol Sci 1999; 266:611-20. [PMID: 10212451 PMCID: PMC1689810 DOI: 10.1098/rspb.1999.0680] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The kinetoplast (k) DNA network of trypanosomatids is made up of approximately 50 maxicircles and the order of 10(4) minicircles. It has been proposed, based on various observations and experiments, that the minicircles are randomly segregated between daughter cells when the parent cell divides. In this paper, this random segregation hypothesis is theoretically tested in a population dynamics model to see if it can account for the observed phenomena. The hypothesis is shown to successfully explain, in Leishmania tarentolae, the observation that there are a few major and many minor minicircle classes, the fluctuations of minicircle class copy numbers over time, the loss of non-essential minicircle classes, the long survival times of a few of these classes and that these classes are likely to be the major classes within the population. Implications of the model are examined for trypanosomatids in general, leading to several predictions. The model predicts variation in network size within a population, variation in the average network size and large-scale changes in class copy number over long time-scales, an evolutionary pressure towards larger network sizes, the selective advantage of non-random over random segregation, very strong selection for the amplified class in Crithidia fasciculata if its minicircles undergo random segregation and that Trypanosoma brucei may use sexual reproduction to maintain its viability.
Collapse
Affiliation(s)
- N J Savill
- School of Biological Sciences, Manchester University, UK.
| | | |
Collapse
|
39
|
Fu G, Lambson B, Barker D. Characterisation of kinetoplast DNA minicircles from Herpetomonas samuelpessoai. FEMS Microbiol Lett 1999; 172:65-71. [PMID: 10079529 DOI: 10.1111/j.1574-6968.1999.tb13451.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In this study, we have sequenced more than 100 clones of minicircle DNA from Herpetomonas samuelpessoai. An unusual amplification approach was developed to amplify minicircle DNA by using a pair of complementary primers designed from a universal stretch of minicircle sequence. Sequence analysis shows that the kinetoplast minicircles in Herpetomonas with a size of 1.3 kb are organised into two conserved regions and two variable regions which are located 180 degrees apart. The potential gRNA genes are encoded in variable regions of minicircle approximately 360 bp from CSB-3 (conserved sequence block 3). A conserved upstream sequence located 30 nt before the gRNA genes was identified and is related to the gRNA genes in sequence organisation. A potential role(s) of this sequence in gRNA transcription is discussed.
Collapse
Affiliation(s)
- G Fu
- Department of Pathology, University of Cambridge, UK
| | | | | |
Collapse
|
40
|
Maslov DA, Hollar L, Haghighat P, Nawathean P. Demonstration of mRNA editing and localization of guide RNA genes in kinetoplast-mitochondria of the plant trypanosomatid Phytomonas serpens. Mol Biochem Parasitol 1998; 93:225-36. [PMID: 9662707 DOI: 10.1016/s0166-6851(98)00028-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Maxicircle molecules of kDNA in several isolates of Phytomonas were detected by hybridization with the 12S rRNA gene probe from Leishmania tarentolae. The estimated size of maxicircles is isolate-specific and varies from 27 to 36 kb. Fully edited and polyadenylated mRNA for kinetoplast-encoded ribosomal protein S12 (RPS12) was found in the steady-state kinetoplast RNA isolated from Phytomonas serpens strain 1G. Two minicircles (1.45 kb) from this strain were also sequenced. Each minicircle contains two 120 bp conserved regions positioned 180 degrees apart, a region enriched with G and T bases and a variable region. One minicircle encodes a gRNA for the first block of editing of RPSl2 mRNA, and the other encodes a gRNA with unknown function. A gRNA gene for the second block of RPSl2 was found on a minicircle sequenced previously. On each minicircle, a gRNA gene is located in the variable region in a similar position and orientation with respect to the conserved regions.
Collapse
Affiliation(s)
- D A Maslov
- Department of Biology, University of California, Riverside 92521, USA.
| | | | | | | |
Collapse
|
41
|
Affiliation(s)
- L Simpson
- Howard Hughes Medical Institute and Department of Cell, Molecular, and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
42
|
Blom D, de Haan A, van den Berg M, Sloof P, Jirku M, Lukes J, Benne R. RNA editing in the free-living bodonid Bodo saltans. Nucleic Acids Res 1998; 26:1205-13. [PMID: 9469817 PMCID: PMC147379 DOI: 10.1093/nar/26.5.1205] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In parasitic kinetoplastid protozoa, mitochondrial (mt) mRNAs are post-transcriptionally edited by insertion and deletion of uridylate residues, the information being provided by guide (g) RNAs. In order to further explore the role and evolutionary history of this process, we searched for editing in mt RNAs of the free-living bodonid Bodo saltans. We found extensive editing in the transcript for NADH dehydrogenase (ND) subunit 5, which is unedited in trypanosomatids. In contrast, B.saltans cytochrome c oxidase (cox) subunit 2 and maxicircle unidentified reading frame (MURF) 2 RNAs display limited editing in the same regions as their trypanosomatid counterparts. A putative intramolecular cox2 gRNA and the gene for gMURF2-I directing the insertion of only one U in the 5' editing domain of MURF2 RNA, are conserved in B.saltans. This lends (further) evolutionary support to the proposed role of these sequences as gRNAs. Phylogenetic analysis showed that B.saltans is more closely related to trypanosomatids than the cryptobiids Trypanoplasma borreli and Cryptobia helicis, in line with the trypanosomatid-like cox2 and MURF2 RNA editing patterns. Nevertheless, other features like the apparent absence of a catenated mtDNA network, are shared with bodonid and cryptobiid species. ND5 RNA editing may represent yet another example of editing 'on the way out' during kinetoplastid evolution, but in view of the fact that cox2 RNA is unedited in T. borreli and C.helicis, we infer that the editing of this RNA may have arisen relatively recently. Our results provide the first examples of RNA editing in a free-living kinetoplastid, indicating that there is no direct link between U-insertion/deletion editing and a parasitic lifestyle.
Collapse
Affiliation(s)
- D Blom
- Department of Biochemistry/AMC, University of Amsterdam, Academic Medical Centre, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
43
|
Lukescaron J, Jirkû M, Avliyakulov N, Benada O. Pankinetoplast DNA structure in a primitive bodonid flagellate, Cryptobia helicis. EMBO J 1998; 17:838-46. [PMID: 9451008 PMCID: PMC1170432 DOI: 10.1093/emboj/17.3.838] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial DNA (mtDNA) of a primitive kinetoplastid flagellate Cryptobia helicis is composed of 4.2 kb minicircles and 43 kb maxicircles. 85% and 6% of the minicircles are in the form of supercoiled (SC) and relaxed (OC) monomers, respectively. The remaining minicircles (9%) constitute catenated oligomers composed of both the SC and OC molecules. Minicircles contain bent helix and sequences homologous to the minicircle conserved sequence blocks. Maxicircles encode typical mitochondrial genes and are not catenated. The mtDNA, which we describe with the term 'pankinetoplast DNA', is spread throughout the mitochondrial lumen, where it is associated with multiple electron-lucent loci. There are approximately 8400 minicircles per pankinetoplast-mitochondrion, with the pan-kDNA representing approximately 36% of the total cellular DNA. Based on the similarity of the C.helicis minicircles to plasmids, we present a theory on the formation of the kDNA network.
Collapse
Affiliation(s)
- J Lukescaron
- Institute of Parasitology, Czech Academy of Sciences, Czech Republic.
| | | | | | | |
Collapse
|
44
|
Simpson L, Wang SH, Thiemann OH, Alfonzo JD, Maslov DA, Avila HA. U-insertion/deletion Edited Sequence Database. Nucleic Acids Res 1998; 26:170-6. [PMID: 9399827 PMCID: PMC147258 DOI: 10.1093/nar/26.1.170] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Uridine insertion/deletion RNA editing is a post-transcriptional RNA modification occurring in the mitochondria of kinetoplastid protozoa. The U-insertion/deletion Edited Sequence Database is a compilation of mitochondrial genes and edited mRNAs from five kinetoplastid species. It contains separate files with the DNA, mRNA (both unedited and edited) and predicted protein sequences, as well as alignments of the Leishmania tarentolae and Trypanosoma brucei protein sequences from edited and unedited genes. The sequence files are in GCG format. A 'map' sequence file showing the location of U-deletions, U-insertions and the translated amino acid sequences is also provided for each gene. Genomic maps for each species are also provided with clickable genes, including maxicircle-encoded gRNAs. Sets of aligned nuclear rRNA sequences from kinetoplastid protozoa are also provided, which were used for phylogenetic reconstructions in an analysis of the origin of RNA editing. The database is available through the World Wide Web as an HTML document at the URLhttp://www.lifesci.ucla.edu/RNA/trypanosome/ database.html
Collapse
Affiliation(s)
- L Simpson
- Howard Hughes Medical Institute, Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, CA 90095-1662, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Alfonzo JD, Thiemann O, Simpson L. The Mechanism of U Insertion/Deletion RNA Editing in Kinetoplastid Mitochondria. Nucleic Acids Res 1997. [DOI: 10.1093/nar/25.19.3571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
46
|
Alfonzo JD, Thiemann O, Simpson L. The mechanism of U insertion/deletion RNA editing in kinetoplastid mitochondria. Nucleic Acids Res 1997; 25:3751-9. [PMID: 9380494 PMCID: PMC146959 DOI: 10.1093/nar/25.19.3751] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Recent advances in in vitrosystems and identification of putative enzymatic activities have led to the acceptance of a modified 'enzyme cascade' model for U insertion/deletion RNA editing in kinetoplastid mitochondria. Models involving the transfer of uridines (Us) from the 3'-end of gRNA to the editing site appear to be untenable. Two types of in vitrosystems have been reported: (i) a gRNA-independent U insertion activity that is dependent on the secondary structure of the mRNA; (ii) a gRNA-dependent U insertion activity that requires addition of a gRNA that can form an anchor duplex with the pre-edited mRNA and which contains guiding A and G nucleotides to base pair with the added Us. In the case of the gRNA-mediated reaction, the precise site of cleavage is at the end of the gRNA-mRNA anchor duplex, as predicted by the original model. The model has been modified to include the addition of multiple Us to the 3'-end of the 5'-cleavage fragment, followed by the formation of base pairs with the guiding nucleotides and trimming back of the single-stranded oligo(U) 3'-overhang. The two fragments, which are held together by the gRNA 'splint', are then ligated. Circumstantial in vitroevidence for involvement of an RNA ligase and an endoribonuclease, which are components of a 20S complex, was obtained. Efforts are underway in several laboratories to isolate and characterize specific components of the editing machinery.
Collapse
Affiliation(s)
- J D Alfonzo
- Howard Hughes Medical Institute and Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095-1662, USA
| | | | | |
Collapse
|