1
|
Nelson TS, Allen HN, Khanna R. Neuropeptide Y and Pain: Insights from Brain Research. ACS Pharmacol Transl Sci 2024; 7:3718-3728. [PMID: 39698268 PMCID: PMC11651174 DOI: 10.1021/acsptsci.4c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 12/20/2024]
Abstract
Neuropeptide Y (NPY) is a highly conserved neuropeptide with widespread distribution in the central nervous system and diverse physiological functions. While extensively studied for its inhibitory effects on pain at the spinal cord level, its role in pain modulation within the brain remains less clear. This review aims to summarize the complex landscape of supraspinal NPY signaling in pain processing. We discuss the expression and function of NPY receptors in key pain-related brain regions, including the parabrachial nucleus, periaqueductal gray, amygdala, and nucleus accumbens. Additionally, we highlight the potent efficacy of NPY in attenuating pain sensitivity and nociceptive processing throughout the central nervous system. NPY-based therapeutic interventions targeting the central nervous system represent a promising avenue for novel analgesic strategies and pain-associated comorbidities.
Collapse
Affiliation(s)
- Tyler S. Nelson
- Department
of Pharmacology and Therapeutics, McKnight Brain Institute, College
of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Heather N. Allen
- Department
of Pharmacology and Therapeutics, McKnight Brain Institute, College
of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Rajesh Khanna
- Department
of Pharmacology and Therapeutics, McKnight Brain Institute, College
of Medicine, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
2
|
Cellular Mechanisms for Antinociception Produced by Oxytocin and Orexins in the Rat Spinal Lamina II-Comparison with Those of Other Endogenous Pain Modulators. Pharmaceuticals (Basel) 2019; 12:ph12030136. [PMID: 31527474 PMCID: PMC6789548 DOI: 10.3390/ph12030136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/31/2019] [Accepted: 09/12/2019] [Indexed: 01/23/2023] Open
Abstract
Much evidence indicates that hypothalamus-derived neuropeptides, oxytocin, orexins A and B, inhibit nociceptive transmission in the rat spinal dorsal horn. In order to unveil cellular mechanisms for this antinociception, the effects of the neuropeptides on synaptic transmission were examined in spinal lamina II neurons that play a crucial role in antinociception produced by various analgesics by using the whole-cell patch-clamp technique and adult rat spinal cord slices. Oxytocin had no effect on glutamatergic excitatory transmission while producing a membrane depolarization, γ-aminobutyric acid (GABA)-ergic and glycinergic spontaneous inhibitory transmission enhancement. On the other hand, orexins A and B produced a membrane depolarization and/or a presynaptic spontaneous excitatory transmission enhancement. Like oxytocin, orexin A enhanced both GABAergic and glycinergic transmission, whereas orexin B facilitated glycinergic but not GABAergic transmission. These inhibitory transmission enhancements were due to action potential production. Oxytocin, orexins A and B activities were mediated by oxytocin, orexin-1 and orexin-2 receptors, respectively. This review article will mention cellular mechanisms for antinociception produced by oxytocin, orexins A and B, and discuss similarity and difference in antinociceptive mechanisms among the hypothalamic neuropeptides and other endogenous pain modulators (opioids, nociceptin, adenosine, adenosine 5’-triphosphate (ATP), noradrenaline, serotonin, dopamine, somatostatin, cannabinoids, galanin, substance P, bradykinin, neuropeptide Y and acetylcholine) exhibiting a change in membrane potential, excitatory or inhibitory transmission in the spinal lamina II neurons.
Collapse
|
3
|
Fan F, Yang M, Geng X, Ma X, Sun H. Effects of Restraint Water-Immersion Stress-Induced Gastric Mucosal Damage on Astrocytes and Neurons in the Nucleus Raphe Magnus of Rats via the ERK1/2 Signaling Pathway. Neurochem Res 2019; 44:1841-1850. [PMID: 31119435 DOI: 10.1007/s11064-019-02818-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/03/2019] [Accepted: 05/20/2019] [Indexed: 01/31/2023]
Abstract
Restraint water-immersion stress (RWIS) consists of psychological and physical stimulation, and it has been utilized in the research of gastric mucosal damage. It has been shown by previous studies that the nucleus raphe magnus (NRM) is closely involved in the gastrointestinal function, but its functions on the stress-induced gastric mucosal injury (SGMI) have not been thoroughly elucidated to date. Consequently, in this research, we aim to measure the expression of astrocytic glial fibrillary acidic protein (GFAP), neuronal c-Fos, and phosphorylation extracellular signal regulated kinase 1/2 (p-ERK1/2) in the process of RWIS with immunohistochemistry and western blot methods. What is more, we detect the relation between astrocytes and neurons throughout the stress procedure and explore the regulation of the ERK1/2 signaling pathway on the activity of astrocytes and neurons after RWIS. The results indicated that all three proteins expression multiplied following peaked 3 h substantially. The SMGI, astrocyte and neuron activity were affected after the astrocytotoxin L-A-aminohexanedioic acid (L-AA) and c-fos antisense oligonucleotide (ASO) injections. After the injection of PD98059, the gastric mucosal injury, astrocyte and neuron activity significantly fell off. These results suggested that RWIS-induced activity of astrocytes and neurons in the NRM may play a significant part in gastric mucosa damage via the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Fangcheng Fan
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Mengzhu Yang
- Qingdao No. 31 Middle School, Qingdao, 266041, China
| | - Xiwen Geng
- Shandong Traditional Chinese Medicine University, Jinan, 250014, China
| | - Xiaoli Ma
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013, China.
| | - Haiji Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
4
|
Balogh M, Varga BK, Karádi DÁ, Riba P, Puskár Z, Kozsurek M, Al-Khrasani M, Király K. Similarity and dissimilarity in antinociceptive effects of dipeptidyl-peptidase 4 inhibitors, Diprotin A and vildagliptin in rat inflammatory pain models following spinal administration. Brain Res Bull 2019; 147:78-85. [PMID: 30738866 DOI: 10.1016/j.brainresbull.2019.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/05/2019] [Indexed: 12/31/2022]
Abstract
Dipeptidyl-peptidase 4 (DPP4) enzyme is involved in the degradation of many biologically active peptides including opioids. Its role in pain transmission is poorly elucidated. Recently we reported on the spinal antihyperalgesic effects of DPP4 inhibitors, Ile-Pro-Ile (Diprotin A) and vildagliptin in carrageenan-evoked acute inflammatory pain in rats. The present study investigated the effects of intrathecal (it.) diprotin A and vildagliptin in Complete Freund's Adjuvant- (CFA) and formalin induced pain in rats. The former assay can model the subchronic inflammatory pain condition and the later one reflects both acute tonic and inflammatory pain conditions. The involvement of opioid receptor (OR) subtypes, Y1-, and GLP1 receptors were also investigated. In CFA pain model it. diprotin A or vildagliptin dose-dependently inhibits hyperalgesia in ipsilateral while has no effect in contralateral paws. The peak effect was achieved 30 min following drug administration which was used for further analysis. Both compounds showed naltrexone reversible antihyperalgesia. Co-administration of OR-subtype-selective antagonists with diprotin A and vildagliptin revealed involvement of μ and δ > μ opioid receptors, respectively. Co-administered Y1 but not GLP1 receptor antagonists reversed the antihyperalgesic action of both DPP4 inhibitors. In touch-hypersensitivity both compounds were ineffective. In formalin test only diprotin A showed μ and δ OR-mediated antinociception and only in the 2nd phase. This effect was Y1 or GLP-1 receptor antagonist insensitive. In conclusion, diprotin A and vildagliptin display antinociception of different mechanisms of action in subchronic inflammatory pain. Furthermore, the spinal pain relay points of inflammatory pain of acute or subchronic conditions were more effectively affected by diprotin A than vildagliptin which needs future elucidation.
Collapse
Affiliation(s)
- Mihály Balogh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445, Budapest, Hungary
| | - Bence Kálmán Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445, Budapest, Hungary
| | - Dávid Árpád Karádi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445, Budapest, Hungary
| | - Pál Riba
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445, Budapest, Hungary
| | - Zita Puskár
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Tűzoltó u. 58, P.O.Box 2, H-1428, Budapest, Hungary
| | - Márk Kozsurek
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Tűzoltó u. 58, P.O.Box 2, H-1428, Budapest, Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445, Budapest, Hungary
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445, Budapest, Hungary.
| |
Collapse
|
5
|
Vázquez-León P, Mendoza-Ruiz LG, Juan ERS, Chamorro-Cevallos GA, Miranda-Páez A. Analgesic and anxiolytic effects of [Leu 31,Pro 34]-neuropeptide Y microinjected into the periaqueductal gray in rats. Neuropeptides 2017; 66:81-89. [PMID: 29042065 DOI: 10.1016/j.npep.2017.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 11/17/2022]
Abstract
Several reports have demonstrated that neuropeptide Y (NPY) is involved in food intake, epilepsy, circadian rhythms, drug seeking, pain and anxiety, and other physiological or pathological conditions. On the other hand, periaqueductal gray (PAG) is a key brain center for modulating pain, anxiety and fear. It is the main structure implicated in integrated defensive behaviors. One such behavior, tonic immobility (TI), resembles fear and is able to induce analgesia. After microinjection of [Leu31,Pro34]-Neuropeptide Y ([Leu31,Pro34]-NPY) into the PAG dorsal (D) or ventrolateral (VL) of adult male Wistar rats, the following parameters were assessed: i) the analgesic effect by means of the tail-flick test (TF), ii) the duration of TI as a passive defensive behavioral response and as an anxiety/fear model (considering both TF and TI as single behaviors), iii) TI-induced analgesia by the combination of TF/TI, and iv) the anxious-like state through the elevated plus maze (EPM), and defensive burying behavior (DBB). The results show that the microinjection of [Leu31,Pro34]-NPY into the PAG produced an analgesic effect (increasing the TF latency); overall decreased the TI duration, which might represent an important anti-fear effect. Moreover, [Leu31,Pro34]-NPY microinjected into the PAG allows for a TI-induced analgesic effect, as well as, a substantial anxiolytic effect (evidenced by the EPM and DBB models). Hence, [Leu31,Pro34]-NPY microinjected into the PAG, especially at 0.47nmol/0.5μL produces both analgesic and anxiolytic effects, in a higher magnitude within ventrolateral area.
Collapse
Affiliation(s)
- Priscila Vázquez-León
- Departamento de Fisiología, Instituto Politécnico Nacional, Wilfrido Massieu esq. Manuel Stampa s/n Col. Nueva Industrial Vallejo, Del. Gustavo A. Madero, CP: 07738 Mexico City, Mexico
| | - Luis G Mendoza-Ruiz
- Departamento de Fisiología, Instituto Politécnico Nacional, Wilfrido Massieu esq. Manuel Stampa s/n Col. Nueva Industrial Vallejo, Del. Gustavo A. Madero, CP: 07738 Mexico City, Mexico
| | - Eduardo Ramírez-San Juan
- Departamento de Fisiología, Instituto Politécnico Nacional, Wilfrido Massieu esq. Manuel Stampa s/n Col. Nueva Industrial Vallejo, Del. Gustavo A. Madero, CP: 07738 Mexico City, Mexico
| | - German Alberto Chamorro-Cevallos
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Wilfrido Massieu esq. Manuel Stampa s/n Col. Nueva Industrial Vallejo, Del. Gustavo A. Madero, CP: 07738 Mexico City, Mexico
| | - Abraham Miranda-Páez
- Departamento de Fisiología, Instituto Politécnico Nacional, Wilfrido Massieu esq. Manuel Stampa s/n Col. Nueva Industrial Vallejo, Del. Gustavo A. Madero, CP: 07738 Mexico City, Mexico.
| |
Collapse
|
6
|
Zhang J, Wang X, Lü R. Analgesic effect of acupuncture at Hegu (LI 4) on transvaginal oocyte retrieval with ultrasonography. J TRADIT CHIN MED 2013; 33:294-7. [DOI: 10.1016/s0254-6272(13)60167-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Desai SJ, Upadhya MA, Subhedar NK, Kokare DM. NPY mediates reward activity of morphine, via NPY Y1 receptors, in the nucleus accumbens shell. Behav Brain Res 2013; 247:79-91. [DOI: 10.1016/j.bbr.2013.03.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 03/05/2013] [Accepted: 03/09/2013] [Indexed: 10/27/2022]
|
8
|
Abstract
Dramatically up-regulated in the dorsal horn of the mammalian spinal cord following inflammation or nerve injury, neuropeptide Y (NPY) is poised to regulate the transmission of sensory signals. We found that doxycycline-induced conditional in vivo (Npy(tet/tet)) knockdown of NPY produced rapid, reversible, and repeatable increases in the intensity and duration of tactile and thermal hypersensitivity. Remarkably, when allowed to resolve for several weeks, behavioral hypersensitivity could be dramatically reinstated with NPY knockdown or intrathecal administration of Y1 or Y2 receptor antagonists. In addition, Y2 antagonism increased dorsal horn expression of Fos and phosphorylated form of extracellular signal-related kinase. Taken together, these data establish spinal NPY receptor systems as an endogenous braking mechanism that exerts a tonic, long-lasting, broad-spectrum inhibitory control of spinal nociceptive transmission, thus impeding the transition from acute to chronic pain. NPY and its receptors appear to be part of a mechanism whereby mammals naturally recover from the hyperalgesia associated with inflammation or nerve injury.
Collapse
|
9
|
Jung SJ, Chang JW, Won R, Cha MH, Nam TS, Lee HJ, Lee BH. Modulation of Neuropathic Pain by Galanin and Neuropeptide Y at the Level of the Medulla in Rats. Int J Neurosci 2009; 119:1941-55. [DOI: 10.1080/00207450903263661] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Upadhya MA, Dandekar MP, Kokare DM, Singru PS, Subhedar NK. Involvement of neuropeptide Y in the acute, chronic and withdrawal responses of morphine in nociception in neuropathic rats: behavioral and neuroanatomical correlates. Neuropeptides 2009; 43:303-14. [PMID: 19556004 DOI: 10.1016/j.npep.2009.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 05/14/2009] [Accepted: 05/20/2009] [Indexed: 10/20/2022]
Abstract
Although morphine is a potent antinociceptive agent, its chronic use developed tolerance in neuropathic pain (NP). Furthermore, opioid antagonist naloxone attenuated the antinociceptive effect of neuropeptide Y (NPY). The present study investigated the role of NPY and NPY Y1/Y5 receptors in acute and chronic actions of morphine in neuropathic rats using thermal paw withdrawal test and immunocytochemistry. In acute study, intracerebroventricular (icv) administration of morphine, NPY or NPY Y1/Y5 receptors agonist [Leu(31),Pro(34)]-NPY produced antinociception, whereas selective NPY Y1 receptors antagonist BIBP3226 caused hyperalgesia. While NPY or [Leu(31),Pro(34)]-NPY potentiated, BIBP3226 attenuated morphine induced antinociception. Chronic icv infusion of morphine via osmotic minipumps developed tolerance to its antinociceptive effect, and produced hyperalgesia following withdrawal. However, co-administration of NPY or [Leu(31),Pro(34)]-NPY prevented the development of tolerance and withdrawal hyperalgesia. Sciatic nerve ligation resulted in significant increase in the NPY-immunoreactive (NPY-ir) fibers in ventrolateral periaqueductal gray (VLPAG) and locus coeruleus (LC); fibers in the dorsal part of dorsal raphe nucleus (DRD) did not respond. While chronic morphine treatment significantly reduced NPY-ir fibers in VLPAG and DRD, morphine withdrawal triggered significant augmentation in NPY-immunoreactivity in the VLPAG. NPY-immunoreactivity profile of LC remained unchanged in all the morphine treatment conditions. Furthermore, removal of sciatic nerve ligation reversed the effects of NP, increased pain threshold and restored NPY-ir fiber population in VLPAG. NPY, perhaps acting via Y1/Y5 receptors, might profoundly influence the processing of NP information and interact with the endogenous opioid system primarily within the framework of the VLPAG.
Collapse
Affiliation(s)
- Manoj A Upadhya
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Campus, Nagpur 440 033, India
| | | | | | | | | |
Collapse
|
11
|
Yang J, Yuan H, Chu J, Yang Y, Xu H, Wang G, Liu WY, Lin BC. Arginine vasopressin antinociception in the rat nucleus raphe magnus is involved in the endogenous opiate peptide and serotonin system. Peptides 2009; 30:1355-61. [PMID: 19540433 DOI: 10.1016/j.peptides.2009.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Revised: 03/21/2009] [Accepted: 03/23/2009] [Indexed: 10/21/2022]
Abstract
Arginine vasopressin (AVP) in the nucleus raphe magnus (NRM) has been implicated in antinociception. This communication was designed to investigate which neuropeptide and neurotransmitter are involved in AVP antinociception in the rat NRM. The results showed that (1) in the NRM perfuse liquid, pain stimulation could increase the concentrations of AVP, leucine-enkephalin (L-Ek), methionine-enkephalin (M-Ek), beta-endorphin (beta-Ep), serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA), but not change the concentrations of dynorphinA(1-13) (DynA(1-13)), oxytocin, achetylcholine, choline, gamma-aminobutyric acid, glutamate, dopamine, 3,4-dihydroxyphenylacetic acid, homovanilic acid, norepinephrine and epinephrine; (2) in the NRM perfuse liquid, AVP increased the concentrations of L-Ek, M-Ek, beta-Ep, DynA(1-13), 5-HT and 5-HIAA, but did not change the concentrations of oxytocin and the other studied neurotransmitters; (3) AVP antinociception in the NRM was attenuated by cypoheptadine (a 5-HT-receptor antagonist) or naloxone (an opiate receptor antagonist), but was not influenced by the other studied receptor antagonists. The data suggested that AVP antinociception in the NRM might be involved in endogenous opiate peptide and 5-HT system.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory of New Technology for Pharmaceuticals, Jiangsu Provincial Institute for Novel Pharmaceuticals at Taizhou, Yangtze River Pharmaceutical Group, Taizhou, Jiangsu 225321, China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kuphal KE, Solway B, Pedrazzini T, Taylor BK. Y1 receptor knockout increases nociception and prevents the anti-allodynic actions of NPY. Nutrition 2009; 24:885-91. [PMID: 18725085 DOI: 10.1016/j.nut.2008.06.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 06/13/2007] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Recent pharmacologic studies in our laboratory have suggested that the spinal neuropeptide Y (NPY) Y1 receptor contributes to pain inhibition and to the analgesic effects of NPY. To rule out off-target effects, the present study used Y1-receptor-deficient (-/-) mice to further explore the contribution of Y1 receptors to pain modulation. METHODS AND RESULTS Y1(-/-) mice exhibited reduced latency in the hotplate test of acute pain and a longer-lasting heat allodynia in the complete Freund's adjuvant (CFA) model of inflammatory pain. Y1 deletion did not change CFA-induced inflammation. Upon targeting the spinal NPY systems with intrathecal drug delivery, NPY reduced tactile and heat allodynia in the CFA model and the partial sciatic nerve ligation model of neuropathic pain. Importantly, we show for the first time that NPY does not exert these anti-allodynic effects in Y1(-/-) mice. Furthermore, in nerve-injured CD1 mice, concomitant injection of the potent Y1 antagonist BIBO3304 prevented the anti-allodynic actions of NPY. Neither NPY nor BIBO3304 altered performance on the Rotorod test, arguing against an indirect effect of motor function. CONCLUSION The Y1 receptor contributes to pain inhibition and to the analgesic effects of NPY.
Collapse
Affiliation(s)
- K E Kuphal
- Division of Pharmacology, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | | | | | | |
Collapse
|
13
|
El Karim IA, Lamey PJ, Linden GJ, Lundy FT. Neuropeptide Y Y1 receptor in human dental pulp cells of noncarious and carious teeth. Int Endod J 2008; 41:850-5. [PMID: 18699789 DOI: 10.1111/j.1365-2591.2008.01436.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To determine the distribution of the NPY Y1 receptor in carious and noncarious human dental pulp tissue using immunohistochemistry. A subsidiary aim was to confirm the presence of the NPY Y1 protein product in membrane fractions of dental pulp tissue from carious and noncarious teeth using western blotting. METHODOLOGY Twenty two dental pulp samples were collected from carious and noncarious extracted teeth. Ten samples were processed for immunohistochemistry using a specific antibody to the NPY Y1 receptor. Twelve samples were used to obtain membrane extracts which were electrophoresed, blotted onto nitrocellulose and probed with NPY Y1 receptor antibody. Kruskal-Wallis one-way analysis of variance was employed to test for overall statistical differences between NPY Y1 levels in noncarious, moderately carious and grossly carious teeth. RESULTS Neuropeptide Y Y1 receptor immunoreactivity was detected on the walls of blood vessels in pulp tissue from noncarious teeth. In carious teeth NPY Y1 immunoreactivity was observed on nerve fibres, blood vessels and inflammatory cells. Western blotting indicated the presence and confirmed the variability of NPY Y1 receptor protein expression in solubilised membrane preparations of human dental pulp tissue from carious and noncarious teeth. CONCLUSIONS Neuropeptide Y Y1 is expressed in human dental pulp tissue with evidence of increased expression in carious compared with noncarious teeth, suggesting a role for NPY Y1 in modulation of caries induced pulpal inflammation.
Collapse
Affiliation(s)
- I A El Karim
- Oral Science Research Centre, School of Medicine and Dentistry, Queen's University, Belfast, Northern Ireland, UK
| | | | | | | |
Collapse
|
14
|
Thomsen M, Wörtwein G, Olesen MV, Begtrup M, Havez S, Bolwig TG, Woldbye DPD. Involvement of Y5 receptors in neuropeptide Y agonist-induced analgesic-like effect in the rat hot plate test. Brain Res 2007; 1155:49-55. [PMID: 17498669 DOI: 10.1016/j.brainres.2007.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 04/07/2007] [Accepted: 04/10/2007] [Indexed: 10/23/2022]
Abstract
Neuropeptide Y (NPY) induces analgesic-like effects after central administration across diverse pain models in rodents. In spinal pain models, previous studies indicate a prominent role for Y(1) receptors at mediating this effect of NPY. In supraspinal pain models like the hot plate test, the NPY receptors involved have not been thoroughly explored. By intracerebroventricular (i.c.v.) administration of selective NPY receptor ligands, the possible involvement of Y(5) receptors in analgesic-like mechanisms was investigated using the hot plate test in rats. Both NPY and selective Y(5) agonists induced analgesic-like effects as revealed by prolonged hot plate latencies. Further consistent with a role for Y(5) receptors, pretreatment with a selective Y(5) receptor antagonist blocked the Y(5) agonist-induced analgesic-like effect. The present study indicates involvement of Y(5) receptors probably at the supraspinal level in mediation of NPY agonist-induced analgesic-like effects in the hot plate test.
Collapse
Affiliation(s)
- Morgane Thomsen
- Laboratory of Neuropsychiatry, Rigshospitalet University Hospital O-6102 and Department of Neuroscience and Pharmacology, University of Copenhagen, 9 Blegdamsvej, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
15
|
Fichna J, Janecka A, Costentin J, Do Rego JC. The endomorphin system and its evolving neurophysiological role. Pharmacol Rev 2007; 59:88-123. [PMID: 17329549 DOI: 10.1124/pr.59.1.3] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endomorphin-1 (Tyr-Pro-Trp-Phe-NH2) and endomorphin-2 (Tyr-Pro-Phe-Phe-NH2) are two endogenous opioid peptides with high affinity and remarkable selectivity for the mu-opioid receptor. The neuroanatomical distribution of endomorphins reflects their potential endogenous role in many major physiological processes, which include perception of pain, responses related to stress, and complex functions such as reward, arousal, and vigilance, as well as autonomic, cognitive, neuroendocrine, and limbic homeostasis. In this review we discuss the biological effects of endomorphin-1 and endomorphin-2 in relation to their distribution in the central and peripheral nervous systems. We describe the relationship between these two mu-opioid receptor-selective peptides and endogenous neurohormones and neurotransmitters. We also evaluate the role of endomorphins from the physiological point of view and report selectively on the most important findings in their pharmacology.
Collapse
Affiliation(s)
- Jakub Fichna
- Laboratory of Experimental Neuropsychopharmacology, CNRS FRE 2735, IFRMP 23, Faculty of Medicine & Pharmacy, University of Rouen, 22, Boulevard Gambetta, 76183 Rouen cedex, France
| | | | | | | |
Collapse
|
16
|
Taylor BK, Abhyankar SS, Vo NTT, Kriedt CL, Churi SB, Urban JH. Neuropeptide Y acts at Y1 receptors in the rostral ventral medulla to inhibit neuropathic pain. Pain 2007; 131:83-95. [PMID: 17276005 PMCID: PMC2077302 DOI: 10.1016/j.pain.2006.12.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 11/05/2006] [Accepted: 12/19/2006] [Indexed: 10/23/2022]
Abstract
Brain microinjection studies in the rat using local anesthetics suggest that the rostral ventral medulla (RVM) contributes to the facilitation of neuropathic pain. However, these studies were restricted to a single model of neuropathic pain (the spinal nerve ligation model) and to just two stimulus modalities (non-noxious tactile stimulus and heat). Also, few neurotransmitter systems have been shown to modulate descending facilitation. After either partial sciatic nerve ligation (PSNL) or spared nerve injury (SNI), we found that unilateral or bilateral microinjection of lidocaine into the RVM reduced not only mechanical allodynia (decreased threshold to von Frey hairs and/or an automated device) and mechanical hyperalgesia (increased paw lifting in response to a noxious pin), but also cold hypersensitivity (increased lifting in response to the hindpaw application of a drop of acetone). Application of a drop of water did not elicit paw withdrawal, indicating that the acetone test is indeed a measure of cold hypersensitivity. We found significant neuropeptide Y Y1-like immunoreactivity within, and lateral to, the midline RVM. Intra-RVM injection of neuropeptide Y (NPY) dose-dependently inhibited the mechanical and cold hypersensitivity associated with PSNL or SNI, an effect that could be blocked by the Y1 receptor antagonist BIBO 3304. We conclude that medullary facilitation spans multiple behavioral signs of allodynia and hyperalgesia in multiple models of neuropathic pain. Furthermore, NPY inhibits behavioral signs of neuropathic pain, possibly by acting at Y1 receptors in the RVM.
Collapse
Affiliation(s)
- Bradley K Taylor
- Department of Pharmacology, School of Medicine, Tulane University, New Orleans, LA 70112, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Fang Q, Guo J, He F, Peng YL, Chang M, Wang R. In vivo inhibition of neuropeptide FF agonism by BIBP3226, an NPY Y1 receptor antagonist. Peptides 2006; 27:2207-13. [PMID: 16762456 DOI: 10.1016/j.peptides.2006.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 04/03/2006] [Accepted: 04/04/2006] [Indexed: 12/21/2022]
Abstract
BIBP3226 {(R)-N2-(diphenylacetyl)-N-[(4-hydroxyphenyl)-methyl]-argininamide} was recently shown to display relatively high affinities for neuropeptide FF (NPFF) receptors and exhibit antagonist activities towards NPFF receptors in vitro. The present study was undertaken to investigate the antagonistic effects of BIBP3226 on several in vivo pharmacologic profiles induced by exogenous NPFF and NPVF. (1) BIBP3226 (5 nmol) injected into the third ventricle completely antagonized the hypothermic effects of NPFF (30 nmol) and NPVF (30 nmol) after cerebral administration in mice; (2) BIBP3226 (5 nmol, i.c.v.) prevented the anti-morphine actions of NPFF (10 nmol, i.c.v.) in the mouse tail-flick assay; (3) in urethane-anaesthetized rats, both NPFF (200 nmol/kg, i.v.) and NPVF (200 nmol/kg, i.v.) increased the mean arterial blood pressure, which were significantly reduced by pretreatment with BIBP3226 (500 nmol/kg, i.v.). Collectively, these data suggest that BIBP3226, a mixed antagonist of NPY Y1 and NPFF receptors, shows in vivo antagonistic effects on NPFF receptors. In addition, it seems to be clear that the in vivo pharmacological profiles of NPFF are mediated directly by NPFF receptors.
Collapse
Affiliation(s)
- Quan Fang
- Department of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tian Shui South Road, Lanzhou 730000, PR China
| | | | | | | | | | | |
Collapse
|
18
|
Gibbs JL, Flores CM, Hargreaves KM. Attenuation of capsaicin-evoked mechanical allodynia by peripheral neuropeptide Y Y1 receptors. Pain 2006; 124:167-74. [PMID: 16714086 DOI: 10.1016/j.pain.2006.04.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 03/21/2006] [Accepted: 04/03/2006] [Indexed: 11/27/2022]
Abstract
Neuropeptide Y (NPY) and its cognate receptors are important modulators of nociception and their expression is significantly altered following injury. In particular, previous studies have demonstrated that the Y1 subtype of NPY receptors inhibits nociceptive transmission from capsaicin-sensitive terminals in the dorsal horn of the spinal cord. The present study evaluated the function of the Y1 receptor on peripheral terminals of primary afferent neurons by testing whether peripherally administered Y1 agonists and antagonists alter capsaicin-evoked mechanical allodynia in rats and capsaicin-evoked immunoreactive calcitonin gene-related peptide (iCGRP) release from isolated superfused rat skin. Treatment with the Y1 agonist [Leu31,Pro34]-NPY (0.5, 1, or 10 nmol) significantly inhibited capsaicin-evoked mechanical allodynia in a dose-dependent manner. This effect was reversible by pretreatment with the Y1 antagonist BIBO3304 (10 nmol). The anti-allodynia produced by the Y1 agonist occurred at a peripheral site of action, because injection into the paw contralateral to the site of the capsaicin injection had no effect on paw withdrawal latencies. In isolated skin, application of [Leu31,Pro34]-NPY (300 nM) significantly inhibited capsaicin-evoked CGRP release. BIBO3304 reversed this inhibition, having itself no effect on capsaicin-evoked iCGRP release. These studies indicate that the activation of peripheral Y1 receptors produces anti-allodynia, possibly via the direct inhibition of capsaicin-sensitive fibers.
Collapse
Affiliation(s)
- Jennifer L Gibbs
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | |
Collapse
|
19
|
Shi TJS, Li J, Dahlström A, Theodorsson E, Ceccatelli S, Decosterd I, Pedrazzini T, Hökfelt T. Deletion of the neuropeptide Y Y1 receptor affects pain sensitivity, neuropeptide transport and expression, and dorsal root ganglion neuron numbers. Neuroscience 2006; 140:293-304. [PMID: 16564642 DOI: 10.1016/j.neuroscience.2006.02.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 02/03/2006] [Accepted: 02/04/2006] [Indexed: 01/05/2023]
Abstract
Neuropeptide Y has been implicated in pain modulation and is substantially up-regulated in dorsal root ganglia after peripheral nerve injury. To identify the role of neuropeptide Y after axotomy, we investigated the behavioral and neurochemical phenotype of neuropeptide Y Y1 receptor knockout mice with focus on dorsal root ganglion neurons and spinal cord. Using a specific antibody Y1 receptor immunoreactivity was found in dorsal root ganglia and in dorsal horn neurons of wild-type, but not knockout mice. The Y1 receptor knockout mice exhibited a pronounced mechanical hypersensitivity. After sciatic nerve axotomy, the deletion of Y1 receptor protected knockout mice from the axotomy-induced loss of dorsal root ganglion neurons seen in wild-type mice. Lower levels of calcitonin gene-related peptide and substance P were identified by immunohistochemistry in dorsal root ganglia and dorsal horn of knockout mice, and the axotomy-induced down-regulation of both calcitonin gene-related peptide and substance P was accentuated in Y1 receptor knockout. However, the transcript levels for calcitonin gene-related peptide and substance P were significantly higher in knockout than in wild-type dorsal root ganglia ipsilateral to the axotomy, while more calcitonin gene-related peptide- and substance P-like immunoreactivity accumulated proximal and distal to a crush of the sciatic nerve. These results indicate that the deletion of the Y1 receptor causes increased release and compensatory increased synthesis of calcitonin gene-related peptide and substance P in dorsal root ganglion neurons. Together, these findings suggest that, after peripheral nerve injury, neuropeptide Y, via its Y1 receptor receptor, plays a key role in cell survival as well as in transport and synthesis of the excitatory dorsal horn messengers calcitonin gene-related peptide and substance P and thus may contribute to pain hypersensitivity.
Collapse
Affiliation(s)
- T-J S Shi
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Merten N, Beck-Sickinger AG. Molecular ligand-receptor interaction of the NPY/PP peptide family. EXS 2006:35-62. [PMID: 16382996 DOI: 10.1007/3-7643-7417-9_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Nicole Merten
- Institute of Biochemistry, Brüderstr. 34, 04103 Leipzig, Germany
| | | |
Collapse
|
21
|
Miyakawa A, Furue H, Katafuchi T, Jiang N, Yasaka T, Kato G, Yoshimura M. Action of neuropeptide Y on nociceptive transmission in substantia gelatinosa of the adult rat spinal dorsal horn. Neuroscience 2005; 134:595-604. [PMID: 15975724 DOI: 10.1016/j.neuroscience.2005.04.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 04/22/2005] [Accepted: 04/23/2005] [Indexed: 12/29/2022]
Abstract
Effects of neuropeptide Y (NPY) on substantia gelatinosa neurons were investigated in adult rat spinal cord slices using blind whole-cell patch-clamp technique. Bath application of NPY (1 microM) induced a membrane hyperpolarization, resulting in a suppression of the dorsal root stimulation-induced action potentials in 24% of the substantia gelatinosa neurons tested. In voltage clamp mode, NPY produced an outward current dose-dependently in about one third of substantia gelatinosa neurons at the holding potential of -60 mV, which was not affected by tetrodotoxin (1 microM). The NPY-induced current was suppressed by perfusion with a Ba2+-containing external solution and a Cs2SO4 or tetraethylammonium-containing pipette solution. In addition, The NPY-induced outward currents reversed its polarity near the equilibrium potential of K+ ions (-93 mV). The response to NPY recorded with guanosine-5'-O-(2-thiodiphosphate)-beta-S (GDP-beta-S) containing pipette solution was abolished 30 min after patch formation, suggesting that the response was mediated by the G-protein-coupled receptors. Application of an NPY-Y1 selective agonist, [Leu(31), Pro(-34)]-NPY (1 microM), for 30 s also induced an outward current with a similar time course and amplitude to that induced by NPY. On the other hand, the NPY response was blocked by a simultaneous application of NPY-Y1 selective antagonist, BIBP 3226 (1 microM). No significant changes were found in amplitude and frequency of miniature excitatory postsynaptic currents and dorsal root evoked excitatory postsynaptic currents by NPY. In addition, NPY did not affect both of the miniature inhibitory postsynaptic currents and evoked inhibitory postsynaptic currents, mediated by either the GABA or glycine receptor. These findings, taken together, suggest that NPY produces an outward current in substantia gelatinosa neurons through G-protein coupled, and NPY-Y1 receptor-mediated activation of K+ channels without affecting presynaptic components. The inhibition of the synaptic transmission from the primary fibers to the substantia gelatinosa neurons is considered to contribute to the antinociceptive effects of NPY.
Collapse
Affiliation(s)
- A Miyakawa
- Department of Integrative Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Li JJ, Zhou X, Yu LC. Involvement of neuropeptide Y and Y1 receptor in antinociception in the arcuate nucleus of hypothalamus, an immunohistochemical and pharmacological study in intact rats and rats with inflammation. Pain 2005; 118:232-42. [PMID: 16216414 DOI: 10.1016/j.pain.2005.08.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 08/04/2005] [Accepted: 08/18/2005] [Indexed: 01/31/2023]
Abstract
Neuropeptide Y (NPY) plays an important role in pain modulation at different levels in the central nervous system. In the brain, NPY and NPY receptors distribute abundantly in the arcuate nucleus of hypothalamus (ARC), a structure involved in pain processing. The present study was undertaken to investigate the role of NPY in nociceptive modulation in the ARC of intact rats and rats with carrageenan-induced inflammation. Intra-ARC administration of NPY induced dose-dependent increases in hindpaw withdrawal latencies (HWLs) to thermal and mechanical stimulation in intact rats, which was attenuated by the Y1 receptor antagonist NPY28-36. Intra-ARC administration of NPY also induced dose-dependent increases in HWLs to noxious stimulation in rats with inflammation. Furthermore, intra-ARC injection of either the antiserum against NPY or NPY28-36 induced decreases in HWLs in rats with inflammation, while both of them produced no effects in intact ones. Additionally, there were marked increases of Y1 receptor in the bilateral ARC of rats with inflammation tested by immunohistochemistry, while no significant changes of NPY were observed, implicating that the increased Y1 receptor has an important effect in the NPY-induced antinociception. We also found that intra-ARC injection of Y2 receptor agonist NPY3-36 produced no significant antinociception in either intact rats or rats with inflammation. Together, we demonstrate that NPY exerts an antinociceptive effect in the ARC of intact rats and rats with inflammation. Both Y1 receptor and endogenous released NPY in the ARC are involved in the nociceptive modulation during inflammation.
Collapse
Affiliation(s)
- Jin-Ju Li
- Neurobiology Laboratory and National Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | | | | |
Collapse
|
23
|
Yoo JH, Cho JH, Lee SY, Loh HH, Ho IK, Jang CG. A lack of μ-opioid receptors modulates the expressions of neuropeptide Y and substance P mRNA. Neurosci Lett 2005; 384:29-32. [PMID: 15885902 DOI: 10.1016/j.neulet.2005.04.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 04/12/2005] [Accepted: 04/14/2005] [Indexed: 11/23/2022]
Abstract
The present study was undertaken to investigate changes in the expressions of neuropeptide Y (NPY) and substance P (SP) in mice lacking mu-opioid receptors. In an in situ hybridization study, in which we compared wild type and mu-opioid receptor knockout mice, NPY mRNA levels were found to be lower in the caudate-putamen and nucleus accumbens of mu-opioid receptor knockout mice. In addition, SP mRNA levels were lower in the ventromedial hypothalamic nucleus of mu-opioid receptor knockout mice. Our findings suggest that a lack of mu-opioid receptors modulates basal NPY mRNA levels in striatal regions and SP mRNA levels in the ventromedial hypothalamic nucleus of the mouse, and that these changes are due to compensatory modulation in the brain.
Collapse
Affiliation(s)
- Ji-Hoon Yoo
- Department of Pharmacology, College of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea
| | | | | | | | | | | |
Collapse
|
24
|
Wang JW, Lundeberg T, Yu LC. Antinociceptive role of oxytocin in the nucleus raphe magnus of rats, an involvement of μ-opioid receptor. ACTA ACUST UNITED AC 2003; 115:153-9. [PMID: 14556956 DOI: 10.1016/s0167-0115(03)00152-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recent studies showed that oxytocin plays an important role in nociceptive modulation in the central nervous system. The present study was undertaken to investigate the role of oxytocin in antinociception in the nucleus raphe magnus (NRM) of rats and the possible interaction between oxytocin and the opioid systems. Intra-NRM injection of oxytocin induced dose-dependent increases in hindpaw withdrawal latencies (HWLs) to noxious thermal and mechanical stimulation in rats. The antinociceptive effect of oxytocin was significantly attenuated by subsequent intra-NRM injection of the oxytocin antagonist 1-deamino-2-D-Tyr-(Oet)-4-Thr-8-Orn-oxytocin. Intra-NRM injection of naloxone dose-dependently antagonized the increased HWLs induced by preceding intra-NRM injection of oxytocin, indicating an involvement of opioid receptors in oxytocin-induced antinociception in the NRM of rats. Furthermore, the antinociceptive effect of oxytocin was dose-dependently attenuated by subsequent intra-NRM injection of the mu-opioid antagonist beta-funaltrexamine (beta-FNA), but not by the kappa-opioid antagonist nor-binaltorphimine (nor-BNI) or the delta-opioid antagonist naltrindole. The results demonstrated that oxytocin plays an antinociceptive role in the NRM of rats through activating the oxytocin receptor. Moreover, mu-opioid receptors, not kappa and delta receptors, are involved in the oxytocin-induced antinociception in the NRM of rats.
Collapse
MESH Headings
- Analgesics/administration & dosage
- Analgesics/pharmacology
- Animals
- Dose-Response Relationship, Drug
- Hot Temperature
- Male
- Naltrexone/pharmacology
- Oxytocin/administration & dosage
- Oxytocin/antagonists & inhibitors
- Oxytocin/pharmacology
- Physical Stimulation
- Raphe Nuclei/drug effects
- Raphe Nuclei/physiology
- Rats
- Rats, Wistar
- Reaction Time/drug effects
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, delta/physiology
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, kappa/physiology
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/physiology
Collapse
Affiliation(s)
- Jing-Wen Wang
- Laboratory of Neurobiology, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | |
Collapse
|
25
|
Berglund MM, Hipskind PA, Gehlert DR. Recent developments in our understanding of the physiological role of PP-fold peptide receptor subtypes. Exp Biol Med (Maywood) 2003; 228:217-44. [PMID: 12626767 DOI: 10.1177/153537020322800301] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The three peptides pancreatic polypeptide (PP), peptide YY (PYY), and neuropeptide Y (NPY) share a similar structure known as the PP-fold. There are four known human G-protein coupled receptors for the PP-fold peptides, namely Y1, Y2, Y4, and Y5, each of them being able to bind at least two of the three endogenous ligands. All three peptides are found in the circulation acting as hormones. Although NPY is only released from neurons, PYY and PP are primarily found in endocrine cells in the gut, where they exert such effects as inhibition of gall bladder secretion, gut motility, and pancreatic secretion. However, when PYY is administered in an experimental setting to animals, cloned receptors, or tissue preparations, it can mimic the effects of NPY in essentially all studies, making it difficult to study the effects of PP-fold peptides and to delineate what receptor and peptide accounts for a particular effect. Initial studies with transgenic animals confirmed the well-established action of NPY on metabolism, food-intake, vascular systems, memory, mood, neuronal excitability, and reproduction. More recently, using transgenic techniques and novel antagonists for the Y1, Y2, and Y5 receptors, NPY has been found to be a key player in the regulation of ethanol consumption and neuronal development.
Collapse
Affiliation(s)
- Magnus M Berglund
- Eli Lilly and Company, Lilly Research Laboratories, Indianapolis, Indiana 46285, USA
| | | | | |
Collapse
|
26
|
Silva AP, Cavadas C, Grouzmann E. Neuropeptide Y and its receptors as potential therapeutic drug targets. Clin Chim Acta 2002; 326:3-25. [PMID: 12417094 DOI: 10.1016/s0009-8981(02)00301-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Neuropeptide Y (NPY) is a 36-amino-acid peptide that exhibits a large number of physiological activities in the central and peripheral nervous systems. NPY mediates its effects through the activation of six G-protein-coupled receptor subtypes named Y(1), Y(2), Y(3), Y(4), Y(5), and y(6). Evidence suggests that NPY is involved in the pathophysiology of several disorders, such as the control of food intake, metabolic disorders, anxiety, seizures, memory, circadian rhythm, drug addiction, pain, cardiovascular diseases, rhinitis, and endothelial cell dysfunctions. The synthesis of agonists and antagonists for these receptors could be useful to treat several of these diseases.
Collapse
Affiliation(s)
- Antonio P Silva
- Division of Hypertension and Vascular Medicine, Centre Hospitalier Universitaire Vaudois, Av. Pierre Decker, 1011 Lausanne, Switzerland
| | | | | |
Collapse
|
27
|
Li Y, Li JJ, Yu LC. Anti-nociceptive effect of neuropeptide Y in the nucleus accumbens of rats: an involvement of opioid receptors in the effect. Brain Res 2002; 940:69-78. [PMID: 12020877 DOI: 10.1016/s0006-8993(02)02594-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The present study investigated the effect of neuropeptide Y on nociception in the nucleus accumbens of rats. Intra-nucleus accumbens administration of neuropeptide Y induced dose-dependent increases in the hindpaw withdrawal latency (HWL) to thermal and mechanical stimulation in rats. There were no significant changes in the HWL to both stimulation during 60 min after the administration of NPY to outside of the nucleus accumbens. The anti-nociceptive effect of NPY was blocked by subsequent intra-nucleus accumbens injection of the Y1 receptor antagonist neuropeptide Y 28-36, indicating that Y1 receptor is involved in the neuropeptide Y-induced anti-nociception in the nucleus accumbens. Furthermore, the anti-nociceptive effect of neuropeptide Y was attenuated by intra-nucleus accumbens administration of the opioid antagonist naloxone, suggesting an involvement of the endogenous opioid system in the neuropeptide Y-induced anti-nociception in the nucleus accumbens of rats. Moreover, the neuropeptide Y-induced anti-nociception was attenuated by following intra-nucleus accumbens injection of the selective opioid antagonists nor-binaltorphimine and beta-funaltrexamine, but not by naltrindole, illustrating that mu- and kappa-opioid receptors, not the delta-opioid receptor, were involved in the neuropeptide Y-induced anti-nociception in the nucleus accumbens of rats.
Collapse
Affiliation(s)
- Ying Li
- Department of Physiology, College of Life Science, Peking University, 100871, Beijing, China
| | | | | |
Collapse
|