1
|
A Single Dose of Ginkgo biloba Extract Induces Gene Expression of Hypothalamic Anorexigenic Effectors in Male Rats. Brain Sci 2021; 11:brainsci11121602. [PMID: 34942904 PMCID: PMC8699374 DOI: 10.3390/brainsci11121602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
Previous studies have shown that Ginkgo biloba extract (GbE) reduces food intake and body mass gain and regulates proteins related to lipid metabolism in obese rats. In ovariectomized rats, GbE restored the hippocampal and hypothalamic serotonergic system activity, favoring the spontaneous feeding decrement. Considering the promising hypophagic effect of GbE, this study aimed to investigate the effect of a single acute dose on hypothalamic pathways that regulate feeding behavior in male rats. Four-month-old Wistar male rats received either a single acute oral GbE dose (500 mg/kg) or vehicle. Food intake and body mass were measured after 1, 4, 12, and 24 h. Rats were euthanized, and hypothalami were removed for mRNA quantification of anorexigenic (POMC/CART) and orexigenic (AgRP/NPY) neuropeptides, leptin/serotonin receptors (5HT1A, 5HT1B, 5HT2C), and serotonin transporters. We also investigated POMC, 5-HT1B, and 5-HT2C protein levels. A single acute GbE dose induced the hypothalamic POMC, CART, and 5-HT2C gene expression but failed to modify orexigenic effectors. No alterations in food intake, body mass, and hypothalamic protein levels were observed. In summary, the present findings demonstrate the rapid stimulation of pivotal hypothalamic anorexigenic pathways in response to a single GbE administration, reinforcing the GbE hypophagic activity. However, more studies are necessary to evaluate its potential as an appetite modulator.
Collapse
|
2
|
Machado MMF, Banin RM, Thomaz FM, de Andrade IS, Boldarine VT, de Souza Figueiredo J, Hirata BKS, Oyama LM, Lago JHG, Ribeiro EB, Telles MM. Ginkgo biloba Extract (GbE) Restores Serotonin and Leptin Receptor Levels and Plays an Antioxidative Role in the Hippocampus of Ovariectomized Rats. Mol Neurobiol 2021; 58:2692-2703. [PMID: 33492645 DOI: 10.1007/s12035-021-02281-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/05/2021] [Indexed: 01/09/2023]
Abstract
Since Ginkgo biloba extract (GbE) was reported to improve the hypothalamic serotonergic system of ovariectomized (OVX) rats, the present study aimed to verify the GbE effects on hippocampal oxidative stress, inflammation, and levels of the serotonin transporter (5-HTT), and both the serotonin (5-HT1A, 5-HT1B) and leptin receptors of OVX rats. Two-month-old female Wistar rats had their ovaries surgically removed (OVX) or not (SHAM). After 60 days, OVX rats were gavaged daily with GbE 500 mg kg-1 (OVX+GbE), while SHAM and OVX groups received saline 0.9% (vehicle) for 14 days. Rats were then euthanized, and hippocampi were collected. Both 5-HT1A and 5-HT1B levels were significantly reduced in OVX rats compared to SHAM rats, while 5-HT1A was higher in OVX+GbE rats in comparison to OVX rats. Similarly, LepR levels were increased in OVX+GbE rats compared to OVX rats, reaching similar levels to SHAM rats. Superoxide dismutase activity increased in OVX rats in relation to SHAM rats, which was restored to SHAM levels by GbE treatment. Additionally, GbE significantly increased the glutathione peroxidase activity in comparison to the SHAM group. No differences were observed either in catalase activity or in the levels of 5-HTT, PKCα, TLR-4, NF-κBp50, ERK, and CREB. In summary, our results show a potential effect of GbE on hippocampal pathways involved in feeding behavior, and thus, they suggest that GbE activity might improve menopausal-related hippocampal disorders, offering an alternative therapeutic tool particularly for women to whom hormone replacement therapy may be contraindicated.
Collapse
Affiliation(s)
- Meira Maria Forcelini Machado
- Post-graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Renata Mancini Banin
- Post-graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Fernanda Malanconi Thomaz
- Post-graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Iracema Senna de Andrade
- Discipline of Nutrition Physiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Valter Tadeu Boldarine
- Discipline of Nutrition Physiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Jéssica de Souza Figueiredo
- Post-graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Bruna Kelly Sousa Hirata
- Post-graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Lila Missae Oyama
- Discipline of Nutrition Physiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - João Henrique Ghilardi Lago
- Post-graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo, Diadema, SP, Brazil
- Center of Natural and Human Sciences, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Eliane Beraldi Ribeiro
- Discipline of Nutrition Physiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Mônica Marques Telles
- Post-graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo, Diadema, SP, Brazil.
- Discipline of Nutrition Physiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Banin RM, de Andrade IS, Cerutti SM, Oyama LM, Telles MM, Ribeiro EB. Ginkgo biloba Extract (GbE) Stimulates the Hypothalamic Serotonergic System and Attenuates Obesity in Ovariectomized Rats. Front Pharmacol 2017; 8:605. [PMID: 28928661 PMCID: PMC5591947 DOI: 10.3389/fphar.2017.00605] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/21/2017] [Indexed: 11/13/2022] Open
Abstract
Menopause is associated with increased risk to develop obesity but the mechanisms involved are not fully understood. We have shown that Ginkgo biloba extract (GbE) improved diet-induced obesity. Since GbE might be effective in the treatment of obesity related to menopause, avoiding the side effects of hormone replacement therapy, we investigated the effect of GbE on hypothalamic systems controlling energy homeostasis. Wistar rats were either ovariectomized (OVX) or Sham-operated. After 2 months, either 500 mg.kg-1 of GbE or vehicle were administered daily by gavage for 14 days. A subset of animals received an intracerebroventricular (i.c.v.) injection of serotonin (300 μg) or vehicle and food intake was measured after 12 and 24 h. Another subset was submitted to in vivo microdialysis and 5-HT levels of the medial hypothalamus were measured by high performance liquid chromatography, before and up to 2 h after the administration of 500 mg.kg-1 of GbE. Additional animals were used for quantification of 5-HT1A, 5-HT1B, 5-HT2C, 5-HTT, and pro-opiomelanocortin hypothalamic protein levels by Western blotting. OVX increased food intake and body weight and adiposity while GbE attenuated these alterations. i.c.v. serotonin significantly reduced food intake in Sham, Sham + GbE, and OVX + GbE groups while it failed to do so in the OVX group. In the OVX rats, GbE stimulated 5-HT microdialysate levels while it reduced hypothalamic 5-HTT protein levels. The results indicate that GbE improved the ovariectomy-induced resistance to serotonin hypophagia, at least in part through stimulation of the hypothalamic serotonergic activity. Since body weight gain is one of the most important consequences of menopause, the stimulation of the serotonergic transmission by GbE may represent a potential alternative therapy for menopause-related obesity.
Collapse
Affiliation(s)
- Renata M Banin
- Disciplina de Fisiologia da Nutrição, Departamento de Fisiologia, Universidade Federal de São PauloSão Paulo, Brazil.,Setor de Morfofisiologia e Patologia, Departamento de Ciências Biológicas, Universidade Federal de São PauloDiadema, Brazil
| | - Iracema S de Andrade
- Disciplina de Fisiologia da Nutrição, Departamento de Fisiologia, Universidade Federal de São PauloSão Paulo, Brazil
| | - Suzete M Cerutti
- Setor de Morfofisiologia e Patologia, Departamento de Ciências Biológicas, Universidade Federal de São PauloDiadema, Brazil
| | - Lila M Oyama
- Disciplina de Fisiologia da Nutrição, Departamento de Fisiologia, Universidade Federal de São PauloSão Paulo, Brazil
| | - Mônica M Telles
- Disciplina de Fisiologia da Nutrição, Departamento de Fisiologia, Universidade Federal de São PauloSão Paulo, Brazil.,Setor de Morfofisiologia e Patologia, Departamento de Ciências Biológicas, Universidade Federal de São PauloDiadema, Brazil
| | - Eliane B Ribeiro
- Disciplina de Fisiologia da Nutrição, Departamento de Fisiologia, Universidade Federal de São PauloSão Paulo, Brazil
| |
Collapse
|
4
|
Voigt JP, Fink H. Serotonin controlling feeding and satiety. Behav Brain Res 2015; 277:14-31. [PMID: 25217810 DOI: 10.1016/j.bbr.2014.08.065] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/14/2014] [Accepted: 08/19/2014] [Indexed: 02/06/2023]
|
5
|
Iuras A, Telles MM, Andrade IS, Santos GMS, Oyama LM, Nascimento CMO, Silveira VLF, Ribeiro EB. L-arginine abolishes the hypothalamic serotonergic activation induced by central interleukin-1β administration to normal rats. J Neuroinflammation 2013; 10:147. [PMID: 24314273 PMCID: PMC3866599 DOI: 10.1186/1742-2094-10-147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 11/22/2013] [Indexed: 11/10/2022] Open
Abstract
IL-1β-induced anorexia may depend on interactions of the cytokine with neuropeptides and neurotransmitters of the central nervous system control of energy balance and serotonin is likely to be one catabolic mediator targeted by IL-1β. In the complex interplay involved in feeding modulation, nitric oxide has been ascribed a stimulatory action, which could be of significance in counteracting IL-1β effects. The present study aims to explore the participation of the nitric oxide and the serotonin systems on the central mechanisms induced by IL-1β and the relevance of their putative interactions to IL-1β hypophagia in normal rats. Serotonin levels were determined in microdialysates of the ventromedial hypothalamus after a single intracerebroventricular injection of 10 ng of IL-1β , with or without the pre-injection of 20 μg of the nitric oxide precursor L-arginine. IL-1β significantly stimulated hypothalamic serotonin extracellular levels, with a peak variation of 130 ±37% above baseline. IL- 1β also reduced the 4-h and the 24-h food intakes (by 23% and 58%, respectively). The IL-1β-induced serotonergic activation was abolished by the pre-injection of L-arginine while the hypophagic effect was unaffected. The data showed that one central effect of IL-1β is serotonergic stimulation in the ventromedial hypothalamus, an action inhibited by nitric oxide activity. It is suggested that, although serotonin participates in IL-1β anorexia, other mechanisms recruited by IL-1β in normal rats are able to override the absence of the serotonergic hypophagic influence.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Eliane B Ribeiro
- Department of Physiology, Universidade Federal de São Paulo, Rua Botucatu, 862 - 2º andar - Vila Clementino, São Paulo, SP 04023-060, Brazil.
| |
Collapse
|
6
|
Mori RCT, Telles MM, Guimarães RB, Novo NF, Juliano Y, Nascimento CMO, Ribeiro EB. Feeding Induced by Increasing Doses of Neuropeptide Y: Dual Effect on Hypothalamic Serotonin Release in Normal Rats. Nutr Neurosci 2013; 7:235-9. [PMID: 15682650 DOI: 10.1080/10284150400012794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Endogenous neuropeptide Y (NPY) levels increase during fasting and before dark onset in rats. The feeding that follows these states elicits the release of serotonin in the lateral hypothalamus (LH), as part of the physiological mechanisms controlling satiety. With the hypothesis that exogenous NPY-induced feeding should also stimulate serotonin, we measured its release in the LH of non-fasted rats, which received a single intracerebroventricular injection of either 1.0, 2.0, or 5.0 microg of NPY. After 1.0 microg, the cumulative 2-h intake was of 13 g and serotonin release significantly increased (54% peak). These feeding and serotonergic responses were highly similar to the ones we observed in a previous study, in which feeding followed an overnight fast. Thus, the 1.0 microg NPY dose stimulated intake while preserving the normal serotonergic activation. Contrarily, as the NPY dose was increased to either 2.0 or 5.0 microg, the cumulative 2-h intakes were of 18 g, but the serotonergic stimulation was absent. It is suggested that this dual NPY effect relies on a finely tuned control mechanism, reflecting the existence of a narrow range of NPY levels within which the serotonergic stimulation resembles those seen in physiological states.
Collapse
Affiliation(s)
- Rosana C T Mori
- Department of Physiology, Federal University of São Paulo, São Paulo, SP 04023-062, Brazil
| | | | | | | | | | | | | |
Collapse
|
7
|
Telles MM, da Silva TG, Watanabe RLH, de Andrade IS, Estadella D, Nascimento CMO, Oyama LM, Ribeiro EB. Lateral hypothalamic serotonin is not stimulated during central leptin hypophagia. REGULATORY PEPTIDES 2013; 184:75-80. [PMID: 23518461 DOI: 10.1016/j.regpep.2013.03.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 09/12/2012] [Accepted: 03/03/2013] [Indexed: 10/27/2022]
Abstract
Whether leptin targets the hypothalamic serotonergic system to inhibit food intake is not established. We examined the effect of a short-term i.c.v. leptin treatment on serotonin microdialysate levels in rat lateral hypothalamus. Adipose tissue gene expression was also evaluated. Male rats received four daily injections of leptin (5 μg) or vehicle (with pair-feeding to leptin-induced intake) and a fifth injection during collection of LH microdialysates. We found that serotonin and 5-HIAA levels were not affected by the leptin pre-treatment, as basal levels were similar between the leptin and the pair-fed group. These levels remained unaltered after the acute leptin injection. For gene expression studies, rats were pre-treated with five daily injections of either leptin (5 μg) or vehicle (with either pair-feeding or ad libitum intake). mRNA levels of resistin, adiponectin, lipoprotein lipase, and PPAR-gamma were unaltered by either leptin or pair-feeding. Leptin gene expression was significantly reduced by leptin but not by pair-feeding, in both the retroperitoneal (-74%) and the epididymal (-99%) depots while no differences were observed in the subcutaneous depot. The observations confirmed the absence of an acute stimulatory effect of central leptin on serotonin release in the lateral hypothalamus and showed that the pre-treatment with leptin failed to modify this pattern. This indicates that components of the serotonergic system are probably not directly affected by leptin. Additionally, the central effect of leptin was able to downregulate its own adipose tissue gene expression in a depot-specific manner while other adipokine genes were not affected.
Collapse
Affiliation(s)
- Mônica Marques Telles
- Departamento de Fisiologia, Disciplina de Fisiologia da Nutrição, Universidade Federal de São Paulo (UNIFESP), São Paulo/SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Oliveira M, Assis DM, Paschoalin T, Miranda A, Ribeiro EB, Juliano MA, Brömme D, Christoffolete MA, Barros NMT, Carmona AK. Cysteine cathepsin S processes leptin, inactivating its biological activity. J Endocrinol 2012; 214:217-24. [PMID: 22653842 DOI: 10.1530/joe-12-0108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Leptin is a 16 kDa hormone mainly produced by adipocytes that plays an important role in many biological events including the regulation of appetite and energy balance, atherosclerosis, osteogenesis, angiogenesis, the immune response, and inflammation. The search for proteolytic enzymes capable of processing leptin prompted us to investigate the action of cysteine cathepsins on human leptin degradation. In this study, we observed high cysteine peptidase expression and hydrolytic activity in white adipose tissue (WAT), which was capable of degrading leptin. Considering these results, we investigated whether recombinant human cysteine cathepsins B, K, L, and S were able to degrade human leptin. Mass spectrometry analysis revealed that among the tested enzymes, cathepsin S exhibited the highest catalytic activity on leptin. Furthermore, using a Matrigel assay, we observed that the leptin fragments generated by cathepsin S digestion did not exhibit angiogenic action on endothelial cells and were unable to inhibit food intake in Wistar rats after intracerebroventricular administration. Taken together, these results suggest that cysteine cathepsins may be putative leptin activity regulators in WAT.
Collapse
Affiliation(s)
- Marcela Oliveira
- Departamento de Biofísica, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, São Paulo, São Paulo 04039-032, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Stunes AK, Reseland JE, Hauso O, Kidd M, Tømmerås K, Waldum HL, Syversen U, Gustafsson BI. Adipocytes express a functional system for serotonin synthesis, reuptake and receptor activation. Diabetes Obes Metab 2011; 13:551-8. [PMID: 21320265 DOI: 10.1111/j.1463-1326.2011.01378.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Serotonergic pathways in the central nervous system (CNS) are activated in the regulation of food intake and body weight. We hypothesized that adipocytes, like other cells of mesenchymal origin, possess serotonin receptors and thus could be regulated by peripherally circulating serotonin. METHODS In vivo studies: four Sprague-Dawley rats were given daily serotonin (5HT) injections subcutaneously (s.c., 25 mg/kg) for 5 days; four controls received saline. In a long-term study, 12 rats were given serotonin s.c. for 4 months, 10 controls received saline. Body weight was registered throughout the studies, and visceral adipose tissue and plasma were collected and analysed. Adipocytes were isolated from normal rat visceral abdominal adipose tissue and analysed for the expression of serotonin receptors, the serotonin transporter (5HTT/SERT), activation of serotonin synthesis (tryptophan hydroxylase 1, Tph1) and secretion and serotonin-induced leptin regulation by RT-PCR and protein analyses. RESULTS Hyperserotoninergic rats had significantly lower body weight (-7.4 and -6.8%) and plasma leptin levels (-44 and -38%) than controls, after both short- and long-term serotonin treatment, respectively, whereas plasma ghrelin levels were unaffected. Compared to controls, serotonin induced a 40-fold upregulation of 5HTT mRNA in visceral adipose tissue after 5 days of treatment. In vitro experiments showed that adipocytes express serotonin receptors, Tph1 and 5HTT, synthesize and secrete serotonin and that serotonin regulates leptin in mature adipocytes. CONCLUSIONS These findings show that serotonin may regulate adipocyte function in a direct manner via the blood circulation and/or paracrine and autocrine mechanisms, and not only indirectly via the CNS as previously assumed.
Collapse
Affiliation(s)
- A K Stunes
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Hernández L, Paredes D, Rada P. Feeding behavior as seen through the prism of brain microdialysis. Physiol Behav 2011; 104:47-56. [PMID: 21549733 DOI: 10.1016/j.physbeh.2011.04.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 04/22/2011] [Indexed: 11/28/2022]
Abstract
The knowledge of feeding behavior mechanisms gained through brain microdialysis is reviewed. Most of the chemical changes so far reported concern to the limbic system in rodents. A picture showing increases and decreases of extracellular neurotransmitters correlating to different aspects of feeding behavior is gradually emerging. Depending on the region, the same neurotransmitter may signal opposite aspects of feeding. Dopamine (DA) in the nucleus accumbens (NAC) correlates with food reward, stimulus saliency, and goal directed hyperlocomotion but in the ventromedial hypothalamus DA correlates with satiety and hypolocomotion. The findings accumulated in the last 25 years suggest that the control of a particular function relies on the interaction of several neurotransmitters rather than on a single neurotransmitter. The poor sensitivity of most analytical techniques hinders time and spatial resolution of microdialysis. Therefore, neurochemical correlates of short lasting behaviors are hard to figure out. As new and more sensitive analytical techniques are applied, new neurochemical correlates of feeding show up. Sometimes the proper analytical techniques are simply not available. As a consequence, critical signals such as neuropeptides are not yet completely placed in the puzzle. Despite such limitations, brain microdialysis has yielded a great deal of knowledge on the neurochemical basis of feeding.
Collapse
Affiliation(s)
- Luis Hernández
- Laboratory of Behavioral Physiology, School of Medicine, Universidad de los Andes, Mérida, Venezuela
| | | | | |
Collapse
|
11
|
The Brain-insulin Connection, Metabolic Diseases and Related Pathologies. DIABETES, INSULIN AND ALZHEIMER'S DISEASE 2010. [DOI: 10.1007/978-3-642-04300-0_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Banas SM, Rouch C, Kassis N, Markaki EM, Gerozissis K. A dietary fat excess alters metabolic and neuroendocrine responses before the onset of metabolic diseases. Cell Mol Neurobiol 2009; 29:157-68. [PMID: 18773289 PMCID: PMC11505761 DOI: 10.1007/s10571-008-9307-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 08/11/2008] [Indexed: 11/29/2022]
Abstract
Early changes in neuroendocrine pathways are essential in the development of metabolic pathologies. Thus, it is important to have a better understanding of the signals involved in their initiation. Long-term consumption of high-fat diets induces insulin resistance, obesity, diabetes. Here, we have investigated early neural and endocrine events in the hypothalamus and hippocampus induced by a short-term high fat, low carbohydrate diet in adult male Wistar rats. The release of serotonin, which is closely associated with the actions of insulin and leptin, was measured, by electrochemical detection following reverse-phase liquid chromatography (HPLC), in the extracellular space of the medial hypothalamus and the dorsal hippocampus in samples obtained from non-anesthetized animals, by microdialysis. The high-fat diet had a specific effect on the hypothalamus. Serotonin release induced by food intake was reduced after 1 week, and effectively ceased after 6 weeks of the diet. After 1 week, there was an increased gene expression of the insulin receptor and the insulin receptor substrates IRS1 and IRS2, as measured by real-time PCR. After 6 weeks of diet, insulin gene expression increased. Leptinemia increased in all cases. This new data support the concept that high-fat diets, in addition to have peripheral effects, cause a rapid alteration in specific central mechanisms involved in energy and glucose homeostasis. The changes in the gene expression of insulin and signaling elements represent possible adaptations aimed at counterbalancing the reduced responsiveness of the serotonergic system to nutritional signals and maintaining homeostasis.
Collapse
Affiliation(s)
- Sophie M. Banas
- CNRS UMR 7059, University Paris 7, 2 place Jussieu, case 7126, 75251 Paris, France
| | - Claude Rouch
- CNRS UMR 7059, University Paris 7, 2 place Jussieu, case 7126, 75251 Paris, France
| | - Nadim Kassis
- CNRS UMR 7059, University Paris 7, 2 place Jussieu, case 7126, 75251 Paris, France
| | - Eirini M. Markaki
- CNRS UMR 7059, University Paris 7, 2 place Jussieu, case 7126, 75251 Paris, France
| | - Kyriaki Gerozissis
- CNRS UMR 7059, University Paris 7, 2 place Jussieu, case 7126, 75251 Paris, France
| |
Collapse
|
13
|
Abstract
The central nervous system regulates energy intake and expenditure through a complex network of neurotransmitters and neuromodulators. It is of great interest to understand the relevance of these systems to the physiological control of energy balance and to the disturbances of obesity. The present paper discusses some of the methods to address this field used at the laboratory of Endocrine Physiology of Universidade Federal de São Paulo. Initially, different experimental models of rat obesity are presented, namely the hypothalamic induced monosodium glutamate model, the Zucker genetic model, and the dietary model. The principles of brain microdialysis are also presented, the technique applied to obtain representative samples of the extracellular fluid of brain sites involved in feeding control. The microdialysate levels of serotonin, an important anorexigenic neurotransmitter, are determined by HPLC with electrochemical detection. The immunoblot technique (Western blot) is used to determine hypothalamic levels of proteins relevant to the anorexigenic effect of serotonin and to analyze the acute activation of the insulin signaling cascade in the hypothalamus. The final section addresses the potential applications of proteomics in the study of the central control of feeding.
Collapse
|
14
|
Rosenbaum M, Sy M, Pavlovich K, Leibel RL, Hirsch J. Leptin reverses weight loss-induced changes in regional neural activity responses to visual food stimuli. J Clin Invest 2008; 118:2583-91. [PMID: 18568078 DOI: 10.1172/jci35055] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 04/23/2008] [Indexed: 01/22/2023] Open
Abstract
Increased hunger and food intake during attempts to maintain weight loss are a critical problem in clinical management of obesity. To determine whether reduced body weight maintenance is accompanied by leptin-sensitive changes in neural activity in brain regions affecting regulatory and hedonic aspects of energy homeostasis, we examined brain region-specific neural activity elicited by food-related visual cues using functional MRI in 6 inpatient obese subjects. Subjects were assessed at their usual weight and, following stabilization at a 10% reduced body weight, while receiving either twice daily subcutaneous injections of leptin or placebo. Following weight loss, there were predictable changes in neural activity, many of which were reversed by leptin, in brain areas known to be involved in the regulatory, emotional, and cognitive control of food intake. Specifically, following weight loss there were leptin-reversible increases in neural activity in response to visual food cues in the brainstem, culmen, parahippocampal gyrus, inferior and middle frontal gyri, middle temporal gyrus, and lingual gyrus. There were also leptin-reversible decreases in activity in response to food cues in the hypothalamus, cingulate gyrus, and middle frontal gyrus. These data are consistent with a model of the weight-reduced state as one of relative leptin deficiency.
Collapse
Affiliation(s)
- Michael Rosenbaum
- Department of Pediatrics, Division of Molecular Genetics, Naomi Berrie Diabetes Center, Columbia University Medical Center/New York Presbyterian Medical Center, New York, New York, USA.
| | | | | | | | | |
Collapse
|
15
|
Impairment of the serotonergic control of feeding in adult female rats exposed to intra-uterine malnutrition. Br J Nutr 2008; 101:1255-61. [PMID: 18786279 DOI: 10.1017/s0007114508061503] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have previously shown that adult female rats exposed to intra-uterine malnutrition were normophagic, although obese and resistant to insulin-induced hypophagia. The present study aimed at examining aspects of another important catabolic component of energy homeostasis control, the hypothalamic serotonergic function, which inhibits feeding and stimulates energy expenditure. Pregnant dams were fed ad libitum or were restricted to 50 % of ad libitum intake during the first 2 weeks of pregnancy. Control and restricted 4-month-old progeny were studied. The restricted rats had increased body adiposity with normal daily food intake but failed to respond with hypophagia to an intracerebroventricular injection of serotonin (5-hydroxytryptamine; 5-HT). Stimulation, by food ingestion, of extracellular levels of serotonin in medial hypothalamus microdialysates was more pronounced and lasted longer in the restricted than in the control rats. In the restricted group, hypothalamic levels of 5-HT 2C receptor protein tended to be reduced (P = 0.07) while the levels of 5-HT1B receptor and serotonin transporter proteins were significantly elevated (36 and 79 %, respectively). In conclusion, female rats undernourished in utero had normophagic obesity as adults but had an absence of serotonin-induced hypophagia and low hypothalamic levels of the 5-HT 2C receptor. Compensatory adaptations for the functional serotonergic impairment were evidenced, such as an enhanced release of serotonin in response to a meal allied to up-regulated hypothalamic 5-HT1B and transporter expression. Whether these compensations will persist in later life warrants further investigation. Moreover, it cannot be ruled out that the serotonergic component of energy expenditure was already impaired, thus contributing to the observed body-fat phenotype.
Collapse
|
16
|
Fluoxetine alters feeding behavior and leptin levels in chronically-stressed rats. Pharmacol Biochem Behav 2008; 90:312-7. [DOI: 10.1016/j.pbb.2008.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 02/28/2008] [Accepted: 03/05/2008] [Indexed: 12/13/2022]
|
17
|
Gerozissis K. Brain insulin, energy and glucose homeostasis; genes, environment and metabolic pathologies. Eur J Pharmacol 2008; 585:38-49. [PMID: 18407262 DOI: 10.1016/j.ejphar.2008.01.050] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 11/30/2007] [Accepted: 01/21/2008] [Indexed: 11/18/2022]
Abstract
The central nervous system is essential in maintaining energy and glucose homeostasis. In both animals and humans, efficient cerebral insulin signalling is a pivotal control element in these pathophysiological processes. The action of insulin in the brain is under a multilevel control via metabolic, endocrine and neural signals induced by nutrients, integrated mainly by the hypothalamus. Of particular interest is the interaction of insulin with the anabolic and catabolic neuroregulators. The anorexic peptides insulin, leptin and the neurotransmitter serotonin share common signalling pathways involved in food intake, in particular the insulin receptor substrate, phosphatidylinositol-3-kinase (PI3K) pathway. The dialogue of neurotransmitters and peptides via this signalling pathway is potentially of major importance in the pathophysiology of the brain in general and specifically in the regulation of feeding behaviour. At this time, a new concept in the aetiopathology of type 2 diabetes is immerging. This concept proposes that the combination of defective pancreatic beta-cell function and insulin resistance not only in classical insulin target tissues but in every tissue, contributes to the onset of the disease. It highlights the importance of the disruption of cerebral insulin signal transmission and its direct relation to metabolic diseases. Impaired brain insulin signalling, a link coupling obesity to diabetes, may be related to either genetic factors, or environmental factors such as stress, over or under-feeding and unbalanced diets: such factors may work either independently or in concert. Current approaches used for the prevention and treatment of type 2 diabetes are not adequately effective. Most of the anti-diabetic therapies induce many adverse effects, in particular obesity, and thus may initiate a vicious cycle of problems. In order to develop new, more efficient, preventive and therapeutic strategies for metabolic pathologies, there is an urgent need for increased understanding of the complexity of insulin signalling in the brain and on the interactive, central and peripheral effects of insulin.
Collapse
Affiliation(s)
- Kyriaki Gerozissis
- Chercheur INSERM, UMR 7059 CNRS, University Paris 7, 2 place Jussieu, case 7126, 75251 Paris CEDEX 05, France.
| |
Collapse
|
18
|
Iuras A, Telles MM, Bertoncini CRA, Ko GM, de Andrade IS, Silveira VLF, Ribeiro EB. Central administration of a nitric oxide precursor abolishes both the hypothalamic serotonin release and the hypophagia induced by interleukin-1beta in obese Zucker rats. ACTA ACUST UNITED AC 2005; 124:145-50. [PMID: 15544852 DOI: 10.1016/j.regpep.2004.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Accepted: 07/02/2004] [Indexed: 01/23/2023]
Abstract
Serotonin-induced anorexia has long been recognized as an important part of the CNS mechanisms controlling energy balance. More recently, interleukin-1beta and nitric oxide have been suggested to influence this control, possibly through modulation of hypothalamic serotonin. The present work aimed at investigating the interaction of these systems. We addressed whether 5-HT is affected during IL-1beta-induced anorexia in obese Zucker rats and the influence of the central NO system on this IL-1beta/5-HT interaction. Using microdialysis, we observed that an intracerebroventricular injection of 10 ng IL-1beta significantly stimulated 5-HT extracellular levels in the VMH, with a peak variation of 102+/-41% above baseline. IL-1beta also significantly reduced the 4-h feeding by 33% and the 24-h feeding by 42%. Contrarily, these effects were absent when IL-1beta was injected 2 h after the i.c.v. administration of 20 microg of the NO precursor L-arginine. The results suggest that, in obese Zucker rats, activation of the serotonergic system in the medial hypothalamus participates in IL-1beta-induced anorexia. Since L-arginine, probably through NO stimulation, abolished both the anorexia and the serotonergic activation, it can be proposed that the NO system, either directly or indirectly, counteracts IL-1beta anorexia. The hypothalamic serotonergic system is likely to mediate this NO effect.
Collapse
Affiliation(s)
- Anderson Iuras
- Department of Physiology, Federal University of São Paulo, Rua Botucatu, 862-2 Andar, Vila Clementino, São Paulo, SP 04023-060, Brazil
| | | | | | | | | | | | | |
Collapse
|
19
|
Wilson ME, Fisher J, Brown J. Chronic subcutaneous leptin infusion diminishes the responsiveness of the hypothalamic-pituitary-adrenal (HPA) axis in female rhesus monkeys. Physiol Behav 2005; 84:449-58. [PMID: 15763583 DOI: 10.1016/j.physbeh.2005.01.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 01/14/2005] [Accepted: 01/24/2005] [Indexed: 11/20/2022]
Abstract
The fat derived protein leptin has its anorexic action through a number of neuropeptides including an upregulation of corticotropin releasing hormone (CRH) expression in the hypothalamus. However, the influence of leptin on these neuropeptides may be different during stress. The present study used ovariectomized female rhesus monkeys (n=8) to further define the effect of leptin on HPA responsivity. To accomplish this, we assessed the effects of constant leptin infusion on cortisol and ACTH secretion in both a predictable and unpredictable situation as well as in response to dexamethasone suppression-CRH stimulation test. We hypothesized that leptin would attenuate the increase in cortisol and ACTH to a novel, unpredictable situation and would enhance glucocorticoid negative feedback and diminish the response to CRH. Animals were assessed under control placebo conditions and during a 28 day infusion with recombinant human leptin (6 microg/kg/day, SC). Within each treatment condition, HPA responsivity was assessed during no estradiol replacement and acute estradiol replacement that produced serum concentrations of approximately 40 pg/ml. However, the results indicated that neither estradiol alone or in combination with leptin had any consistent effect on the outcome measures. Compared to the control condition, leptin had no effect on the cortisol diurnal rhythm; however, evening but not morning plasma ACTH concentrations were significantly lower during leptin infusion. In contrast, the response in plasma cortisol and ACTH to an unpredictable situation was significantly attenuated by chronic leptin infusion. Furthermore, leptin enhanced glucocorticoid negative feedback and blunted CRH-induced increase in both cortisol and ACTH. Taken together, these data suggest that in the female monkey, leptin has little effect on basal cortisol. However, when the HPA axis is activated, leptin attenuates the neuroendocrine response by enhancing glucocorticoid negative feedback. These data underscore the potential importance of leptin in maintaining homeostasis through its diverse interaction with the HPA axis.
Collapse
Affiliation(s)
- Mark E Wilson
- Division of Psychobiology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States.
| | | | | |
Collapse
|
20
|
Medeiros MA, Costa-e-Sousa RH, Olivares EL, Côrtes WS, Reis LC. A reassessment of the role of serotonergic system in the control of feeding behavior. AN ACAD BRAS CIENC 2005; 77:103-11. [PMID: 15692681 DOI: 10.1590/s0001-37652005000100008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The role of serotonergic system in the feeding behavior was appraised by electrolytic lesions in the dorsal raphe nucleus (DRN) and administration of para-chlorophenylalanine (PCPA, 3 mg/5 microl, icv). Chronic evaluations were accomplished through 120 and 360 days in PCPA-injected and DRN-lesioned rats, respectively. Acute food intake was evaluated in fasted rats and submitted to injection of PCPA and hydroxytryptophan (LHTP, 30 mg/kg, ip). DRN-lesioned rats exhibited 22-80% increase in food intake up to sixth month, whereas the obesity was evident and sustained by whole period. In PCPA-injected rats was observed an initial increase in the food intake followed by hypophagy from 25th to 30th day and a transitory increase of body weight from 5th to 60th day. In the acute study, the LHTP reverted partially the PCPA-induced increase in food intake of fasted rats suggesting a sustained capacity of decarboxylation of precursor by serotonergic neurons. Slow restoration of the levels of food intake in DRN-lesioned rats reveals a neuroplasticity in the systems that regulate feeding behavior. A plateau on the body weight curve in lesioned rats possibly represents the establishment of a new and higher set point of energetic balance.
Collapse
Affiliation(s)
- Magda A Medeiros
- Departamento de Ciências Fisiológicas, Instituto de Biologia, Universidade Federal Rural do Rio de Janeiro, BR 465, Km 07, 23890-000, Seropédica, RJ, Brazil
| | | | | | | | | |
Collapse
|
21
|
Fabre V, Adrien J. Leptine et sommeil : des liens méconnus ? MÉDECINE DU SOMMEIL 2004; 1:25-29. [DOI: 10.1016/s1769-4493(04)70164-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
22
|
Abstract
Obesity represents one of the most serious global health issues with approximately 310 million people presently affected. It develops because of a mismatch between energy intake and expenditure that results from behavior (feeding behavior and time spent active) and physiology (resting metabolism and expenditure when active). Both of these traits are affected by environmental and genetic factors. The dramatic increase in the numbers of obese people in Western societies reflects mostly changing environmental factors and is linked to reduced activity and perhaps also increased food intake. However, in all societies and subpopulations, there are both obese and nonobese subjects. These differences are primarily a consequence of genetic factors as is revealed by the high heritability for body mass index. Most researchers agree that energy balance and, hence, body weight are regulated phenomena. There is some disagreement about exactly how this regulation occurs. However, a common model is the "lipostatic" regulation system, whereby our energy stores generate signals that are compared with targets encoded in the brain, and differences between these drive our food intake levels, activity patterns, and resting and active metabolisms. Considerable advances were made in the last decade in understanding the molecular basis of this lipostatic system. Some obese people have high body weight because they have broken lipostats, but these are a rare minority. This suggests that for the majority of obese people, the lipostat is set at an inappropriately high level. When combined with exposure to an environment where there is ready availability of food at low energy costs to obtain it, obesity develops. The evolutionary background to how such a system might have evolved involves the evolution of social behavior, the harnessing of fire, and the development of weapons that effectively freed humans from the risks of predation. The lipostatic model not only explains why some people become obese whereas others do not, but also allows us to understand why energy-controlled diets do not work. Drug-based solutions to the obesity problem that work with the lipostat, rather than against it, are presently under development and will probably be in regular use within 5-10 y. However, several lines of evidence including genetic mapping studies of quantitative trait loci associated with obesity suggest that our present understanding of the regulatory system is still rudimentary. In particular, we know nothing about how the target body weight in the brain is encoded. As our understanding in this field advances, new drug targets are likely to emerge and allow us to treat this crippling disorder.
Collapse
Affiliation(s)
- John R Speakman
- Aberdeen Centre for Energy Regulation and Obesity, Division of Energy Balance and Obesity, Rowett Research Institute, Aberdeen AB21 9SB, Scotland.
| |
Collapse
|