1
|
Słupecka-Ziemilska M, Pierzynowski SG, Szczurek P, Pierzynowska K, Wychowański P, Seklecka B, Koperski M, Starzyńska A, Szkopek D, Donaldson J, Andrzejewski K, Woliński J. Milk Formula Enriched with Sodium Butyrate Influences Small Intestine Contractility in Neonatal Pigs. Nutrients 2022; 14:nu14204301. [PMID: 36296985 PMCID: PMC9608939 DOI: 10.3390/nu14204301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Butyrate, a by-product of gut bacteria fermentation as well as the digestion of fat in mother’s milk, exerts a wide spectrum of beneficial effects in the gastrointestinal tissues. The present study aimed to determine the effects of sodium butyrate on small intestine contractility in neonatal piglets. Piglets were fed milk formula alone (group C) or milk formula supplemented with sodium butyrate (group B). After a 7-day treatment period, isometric recordings of whole-thickness segments of the duodenum and middle jejunum were obtained by electric field stimulation under the influence of increasing doses of Ach (acetylocholine) in the presence of TTX (tetrodotoxin) and atropine. Moreover, structural properties of the intestinal wall were assessed, together with the expression of cholinergic and muscarinic receptors (M1 and M2). In both intestinal segments (duodenum and middle jejunum), EFS (electric field stimulation) impulses resulted in increased contractility and amplitude of contractions in group B compared to group C. Additionally, exposure to dietary butyrate led to a significant increase in tunica muscularis thickness in the duodenum, while mitotic and apoptotic indices were increased in the middle jejunum. The expression of M1 and M2 receptors in the middle jejunum was significantly higher after butyrate treatment. The results indicate increased cholinergic signaling and small intestinal growth and renewal in response to feeding with milk formula enriched with sodium butyrate in neonatal piglets.
Collapse
Affiliation(s)
- Monika Słupecka-Ziemilska
- Department of Human Epigenetics, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warszawa, Poland
| | - Stefan Grzegorz Pierzynowski
- Department of Medical Biology, Institute of Rural Health, 20-090 Lublin, Poland
- SGP + Group, 231 32 Trelleborg, Sweden
- Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Paulina Szczurek
- Department of Animal Nutrition and Feed Sciences, National Research Institute of Animal Production, 32-083 Balice, Poland
| | - Kateryna Pierzynowska
- Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, 05-110 Jabłonna, Poland
- Correspondence: (K.P.); (J.W.)
| | - Piotr Wychowański
- Division of Oral Surgery and Implantology, Department of Head and Neck, Institute of Clinical Dentistry, Oral Surgery and Implantology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS-Universita Cattolica del Sacro Coure, 00168 Rome, Italy
| | | | - Maciej Koperski
- Department of Human Epigenetics, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warszawa, Poland
| | - Anna Starzyńska
- Departament of Oral Surgery, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland
| | - Dominika Szkopek
- Large Animal Models Laboratory, The Kielanowski Institute of Animal Physiology and Nutrition, 05-110 Jabłonna, Poland
| | - Janine Donaldson
- SGP + Group, 231 32 Trelleborg, Sweden
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Krzysztof Andrzejewski
- Department of Orthopedics and Traumatology, Veteran’s Memorial Hospital, Medical University of Łódź, 90-549 Łódź, Poland
| | - Jarosław Woliński
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, 05-110 Jabłonna, Poland
- Large Animal Models Laboratory, The Kielanowski Institute of Animal Physiology and Nutrition, 05-110 Jabłonna, Poland
- Correspondence: (K.P.); (J.W.)
| |
Collapse
|
2
|
Jung SM, Kim S. In vitro Models of the Small Intestine for Studying Intestinal Diseases. Front Microbiol 2022; 12:767038. [PMID: 35058894 PMCID: PMC8765704 DOI: 10.3389/fmicb.2021.767038] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
The small intestine is a digestive organ that has a complex and dynamic ecosystem, which is vulnerable to the risk of pathogen infections and disorders or imbalances. Many studies have focused attention on intestinal mechanisms, such as host–microbiome interactions and pathways, which are associated with its healthy and diseased conditions. This review highlights the intestine models currently used for simulating such normal and diseased states. We introduce the typical models used to simulate the intestine along with its cell composition, structure, cellular functions, and external environment and review the current state of the art for in vitro cell-based models of the small intestine system to replace animal models, including ex vivo, 2D culture, organoid, lab-on-a-chip, and 3D culture models. These models are described in terms of their structure, composition, and co-culture availability with microbiomes. Furthermore, we discuss the potential application for the aforementioned techniques to these in vitro models. The review concludes with a summary of intestine models from the viewpoint of current techniques as well as their main features, highlighting potential future developments and applications.
Collapse
Affiliation(s)
- Sang-Myung Jung
- Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Seonghun Kim
- Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, South Korea
| |
Collapse
|
3
|
Skrzypek T, Szymańczyk S, Ferenc K, Kazimierczak W, Szczepaniak K, Zabielski R. The contribution of vacuolated foetal-type enterocytes in the process of maturation of the small intestine in piglets. Invited review. JOURNAL OF ANIMAL AND FEED SCIENCES 2018. [DOI: 10.22358/jafs/94167/2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Górka P, Kowalski ZM, Zabielski R, Guilloteau P. Invited review: Use of butyrate to promote gastrointestinal tract development in calves. J Dairy Sci 2018. [PMID: 29525310 DOI: 10.3168/jds.2017-14086] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Promotion of microbial butyrate production in the reticulorumen is a widely used method for enhancing forestomach development in calves. Additional acceleration of gastrointestinal tract (GIT) development, both the forestomach and lower parts of the GIT (e.g., abomasum, intestine, and also pancreas), can be obtained by dietary butyrate supplementation. For this purpose, different sources (e.g., butyrate salts or butyrins), forms (e.g., protected or unprotected), methods (e.g., in liquid feed or solid feed), and periods (e.g., before or after weaning) of butyrate administration can be used. The aim of this paper was to summarize the knowledge in the field of butyrate supplementation in feeds for newborn calves in practical situations, and to suggest directions of future studies. It has been repeatedly shown that supplementation of unprotected salts of butyrate (primarily sodium salt) in milk replacer (MR) stimulates the rumen, small intestine, and pancreas development in calves, with a supplementation level equating to 0.3% of dry matter being sufficient to exert the desired effect on both GIT development and growth performance. On the other hand, the effect of unprotected butyrins and protected forms of butyrate supplementation in MR has not been extensively investigated, and few studies have documented the effect of butyrate addition into whole milk (WM), with those available focusing mainly on the growth performance of animals. Protected butyrate supplementation at a low level (0.3% of protected product in DM) in solid feed was shown to have a potential to enhance GIT development and performance of calves fed MR during the preweaning period. Justification of this form of butyrate supplementation in solid feed when calves are fed WM or after weaning needs to be documented. After weaning, inclusion of unprotected butyrate salts in solid feed was shown to increase solid feed intake, but the effect on GIT development and function has not been determined in detail, and optimal levels of supplementation are also difficult to recommend based on available reports. Future studies should focus on comparing different sources (e.g., salts vs. esters), forms (e.g., protected vs. unprotected), and doses of supplemental butyrate in liquid feeds and solid feeds and their effect not only on the development of rumen, abomasum, and small intestine but also the omasum and large intestine. Furthermore, the most effective source, form, and dose of supplemental butyrate in solid feed depending on the liquid feed program (e.g., MR or WM), stage of rearing (e.g., pre- or postweaning), and solid composition (e.g., lack or presence of forage in the diet) need to be determined.
Collapse
Affiliation(s)
- P Górka
- Department of Animal Nutrition and Dietetics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland.
| | - Z M Kowalski
- Department of Animal Nutrition and Dietetics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - R Zabielski
- Veterinary Research Center, Department of Large Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, ul. Nowoursynowska 100, 02-787 Warsaw, Poland
| | - P Guilloteau
- INRA, Institut National de la Santé et de la Recherche Médicale, Université de Rennes, Université Bretagne Loire, Nutrition, Métabolismes et Cancer, Rennes, 35000, France
| |
Collapse
|
5
|
De Luca A, Vassalotti G, Pelagalli A, Pero ME, Squillacioti C, Mirabella N, Lombardi P, Avallone L. Expression and Localization of Aquaporin-1 Along the Intestine of Colostrum Suckling Buffalo Calves. Anat Histol Embryol 2015; 44:391-400. [PMID: 25348329 DOI: 10.1111/ahe.12157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 09/23/2014] [Indexed: 11/30/2022]
Abstract
Aquaporin-1 (AQP1), a six-transmembrane domain protein, belongs to a highly conserved group of proteins called aquaporins known to regulate permeability across cell membranes. Although the role of AQP1 has been extensively studied, its specific activity along the gastrointestinal tract in animals during early postnatal development is poorly known. This study investigates the expression of AQP1 mRNA and protein in the small and large intestine of water buffalo calves after colostrum ingestion using reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and cellular localization of AQP1 by immunohistochemistry. Our results revealed AQP1 immunoreactivity and the presence of the corresponding mRNA in all the examined tracts of the intestine but with a different cellular localization. Western blotting confirmed the presence of AQP1, with a more intense band in colostrum-suckling animals. These findings offer insights into AQP1 expression in the small and large intestine, suggesting its involvement in osmoregulation in gastrointestinal physiology particularly during the first week after birth in relation to specific maturation of intestinal structures.
Collapse
Affiliation(s)
- A De Luca
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria, Naples, 80137, Italy
| | - G Vassalotti
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria, Naples, 80137, Italy
| | - A Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, Naples, 80131, Italy
- Institute of Biostructures and Bioimages, National Research Council, Via De Amicis 95, Naples, 80131, Italy
| | - M E Pero
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria, Naples, 80137, Italy
| | - C Squillacioti
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria, Naples, 80137, Italy
| | - N Mirabella
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria, Naples, 80137, Italy
| | - P Lombardi
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria, Naples, 80137, Italy
| | - L Avallone
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria, Naples, 80137, Italy
| |
Collapse
|
6
|
Górka P, Pietrzak P, Kotunia A, Zabielski R, Kowalski Z. Effect of method of delivery of sodium butyrate on maturation of the small intestine in newborn calves. J Dairy Sci 2014; 97:1026-35. [DOI: 10.3168/jds.2013-7251] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/25/2013] [Indexed: 11/19/2022]
|
7
|
Abstract
The aim of the present review is to synthesise and summarise our recent knowledge on the involvement of cholecystokinin (CCK) and gastrin peptides and their receptors in the control of digestive functions and more generally their role in the field of nutrition in mammals. First, we examined the release of these peptides from the gut, focusing on their molecular forms, the factors regulating their release and the signalling pathways mediating their effects. Second, general physiological effects of CCK and gastrin peptides are described with regard to their specific receptors and the role of CCK on vagal mucosal afferent nerve activities. Local effects of CCK and gastrin in the gut are also reported, including gut development, gastrointestinal motility and control of pancreatic functions through vagal afferent pathways, including NO. Third, some examples of the intervention of the CCK and gastrin peptides are exposed in diseases, taking into account intervention of the classical receptor subtypes (CCK1 and CCK2 receptors) and their heterodimerisation as well as CCK-C receptor subtype. Finally, applications and future challenges are suggested in the nutritional field (performances) and in therapy with regards to the molecular forms or in relation with the type of receptor as well as new techniques to be utilised in detection or in therapy of disease. In conclusion, the present review underlines recent developments in this field: CCK and gastrin peptides and their receptors are the key factor of nutritional aspects; a better understanding of the mechanisms involved may increase the efficiency of the nutritional functions and the treatment of abnormalities under pathological conditions.
Collapse
|
8
|
Guilloteau P, Zabielski R, David J, Blum J, Morisset J, Biernat M, Woliński J, Laubitz D, Hamon Y. Sodium-butyrate as a growth promoter in milk replacer formula for young calves. J Dairy Sci 2009; 92:1038-49. [DOI: 10.3168/jds.2008-1213] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Piva A, Grilli E, Fabbri L, Pizzamiglio V, Gatta PP, Galvano F, Bognanno M, Fiorentini L, Woliński J, Zabielski R, Patterson JA. Intestinal metabolism of weaned piglets fed a typical United States or European diet with or without supplementation of tributyrin and lactitol. J Anim Sci 2008; 86:2952-61. [DOI: 10.2527/jas.2007-0402] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Marion J, Romé V, Savary G, Thomas F, Le Dividich J, Le Huërou-Luron I. Weaning and feed intake alter pancreatic enzyme activities and corresponding mRNA levels in 7-d-old piglets. J Nutr 2003; 133:362-8. [PMID: 12566468 DOI: 10.1093/jn/133.2.362] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigated the changes in the capacity for synthesis of the exocrine pancreas of piglets during the 2 wk after weaning at 7 d of age (trial 1) by measuring the expression of digestive enzymes at mRNA and activity levels in pancreas homogenates, and the effects of high and low feed intakes during the 1st wk postweaning (trial 2) on these measures. The trypsin mRNA level was transiently decreased 43% 3 d postweaning (P < 0.05). Thereafter, trypsin and lipase mRNAs linearly increased (P < 0.05). During the 1st wk postweaning, trypsin- and lipase-specific activities were reduced 44 and 79% (P < 0.05), respectively, whereas 14 d after weaning, trypsin was at the preweaning value and lipase was at a low level. Amylase-specific activity did not change with weaning. Plasma cholecystokinin (CCK) and gastrin concentrations decreased 1 d postweaning and increased afterward up to 3 and 5 d postweaning, respectively. By 3 d after weaning, the mRNA level of trypsin was twofold higher (P < 0.05) in piglets that consumed more feed than in those that consumed less, whereas 7 d after weaning, the groups did not differ. By 7 d after weaning, the specific activity of amylase was higher, and lipase-specific activity was lower, in piglets that consumed more feed than in those that consumed less. Plasma CCK and gastrin concentrations measured 7 d after weaning were correlated with feed intake (r = +0.56 and r = +0.68, P < 0.05, respectively). In conclusion, by 3 d postweaning, pancreatic exocrine function was adapting to the new diet. Afterward, the expression of specific genes coding digestive enzymes and the levels of pancreatic enzyme activities were restored or stimulated, except for lipase-specific activity. Therefore, the pancreas can adjust to weaning and dry food intake as early as wk 2 of life.
Collapse
Affiliation(s)
- Julia Marion
- Unité Mixte de Recherches sur le Veau et le Porc, Institut National de la Recherche Agronomique, St-Gilles, France
| | | | | | | | | | | |
Collapse
|
11
|
Zabielski R, Morisset J, Podgurniak P, Romé V, Biernat M, Bernard C, Chayvialle JA, Guilloteau P. Bovine pancreatic secretion in the first week of life: potential involvement of intestinal CCK receptors. REGULATORY PEPTIDES 2002; 103:93-104. [PMID: 11786148 DOI: 10.1016/s0167-0115(01)00362-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to evaluate pancreatic juice secretion of calves in the first postnatal days, and determine a potential involvement of cholecystokinin (CCK) and intestinal CCK receptor in its regulation. Nine neonatal Friesian calves (five controls and four treated intraduodenally with FK480, a CCK-A receptor antagonist) were surgically fitted with a pancreatic duct catheter and a duodenal cannula before the first colostrum feeding. Collections of pancreatic juice and duodenal luminal pressure recordings were started early after recovery from anaesthesia and continued for 6 days. From day 2 or 3 of life, periodic fluctuations in pancreatic secretions were observed in concert with duodenal myoelectric motor complex (MMC) and variations in plasma pancreatic polypeptide (PP) concentrations. Intraduodenal administration of FK480 reduced pancreatic juice secretion while intravenous infusion of CCK had no effect. Immunocytochemistry indicated an association of mucosal CCK-A and -B receptors with neural components of the small intestine. In conclusion, periodic activity of the exocrine pancreas exists in neonatal calves soon after birth and local neural intestinal CCK-A receptors could be partly responsible for the modulation of neonatal calf pancreatic secretion.
Collapse
Affiliation(s)
- Romuald Zabielski
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Science, 05-110 Jabłonna, Poland
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Chapter 11 Gut regulatory peptides and hormones of the small intestine. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1877-1823(09)70127-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
13
|
Chapter 6 Role of colostrum and milk components in the development of the intestine structure and function in calves. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1877-1823(09)70122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|