1
|
Differential expression and tumorigenic function of neurotensin receptor 1 in neuroendocrine tumor cells. Oncotarget 2016; 6:26960-70. [PMID: 26298774 PMCID: PMC4694966 DOI: 10.18632/oncotarget.4745] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/15/2015] [Indexed: 01/27/2023] Open
Abstract
Neurotensin (NTS), localized predominantly to the small bowel, stimulates the growth of a variety of cancers, including neuroendocrine tumors (NETs), mainly through its interaction with the high-affinity NTS receptor 1 (NTSR1). Here, we observed increased expression of NTSR1 in almost all tested clinical NET samples, but not in normal tissues. Through RT-PCR analysis, we found that the expression of NTSR1 and NTSR2 was either variable (NTSR1) or absent (NTSR2) in human NET cell lines. In contrast, NTSR3 and NTS were expressed in all NET cells. Treatment with 5-aza-2′-deoxycytidine, a demethylating agent, increased levels of NTSR1 and NTSR2 suggesting that DNA methylation contributes to NTSR1/2 expression patterns, which was confirmed by methylation analyses. In addition, we found that knockdown of NTSR1 decreased proliferation, expression levels of growth-related proteins, and anchorage-independent growth of BON human carcinoid cells. Moreover, stable silencing of NTSR1 suppressed BON cell growth, adhesion, migration and invasion. Our results show that high expression of NTSR1 is found in clinical NETs and that promoter methylation is an important mechanism controlling the differential expression of NTSR1 and silencing of NTSR2 in NET cells. Furthermore, knockdown of NTSR1 in BON cells suppressed oncogenic functions suggesting that NTSR1 contributes to NET tumorigenesis.
Collapse
|
2
|
Pedersen ME, Vuong TT, Rønning SB, Kolset SO. Matrix metalloproteinases in fish biology and matrix turnover. Matrix Biol 2015; 44-46:86-93. [PMID: 25617492 DOI: 10.1016/j.matbio.2015.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 11/18/2022]
Abstract
Matrix metalloproteinases have important functions for tissue turnover in fish, with relevance both for the fish industry and molecular and cellular research on embryology, inflammation and tissue repair. These metalloproteinases have been studied in different fish types, subjected to both aquaculture and experimental conditions. This review highlights studies on these metalloproteinases in relation to both fish quality and health and further, the future importance of fish for basic research studies.
Collapse
Affiliation(s)
| | | | | | - Svein O Kolset
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
3
|
Foradori MJ, Chen Q, Fernandez CA, Harper J, Li X, Tsang PCW, Langer R, Moses MA. Matrilin-1 is an inhibitor of neovascularization. J Biol Chem 2014; 289:14301-9. [PMID: 24692560 DOI: 10.1074/jbc.m113.529982] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In the course of conducting a series of studies whose goal was to discover novel endogenous angiogenesis inhibitors, we have purified matrilin-1 (MATN-1) and have demonstrated, for the first time, that it inhibits neovascularization both in vitro and in vivo. Proteins were extracted from cartilage using a 2 m NaCl, 0.01 m HEPES buffer at 4 °C, followed by concentration of the extract. The concentrate was fractionated by size exclusion chromatography, and fractions were then screened for their ability to inhibit capillary endothelial cell (EC) proliferation in vitro. Fractions containing EC inhibitory activity were pooled and further purified by cation exchange chromatography. The resulting fractions from this step were then screened to isolate the antiangiogenic activity in vitro. This activity was identified by tandem mass spectrometry as being MATN-1. Human MATN-1 was cloned and expressed in Pichia pastoris and purified to homogeneity. Purified recombinant MATN-1, along with purified native protein, was shown to inhibit angiogenesis in vivo using the chick chorioallantoic membrane assay by the inhibition of capillary EC proliferation and migration. Finally, using a MATN-1-deficient mouse, we showed that angiogenesis during fracture healing was significantly higher in MATN-1(-/-) mice compared with the wild type mice as demonstrated by in vivo imaging and by elevated expression of angiogenesis markers including PECAM1, VEGFR, and VE-cadherin.
Collapse
Affiliation(s)
- Matthew J Foradori
- From the Program in Vascular Biology and Department of Surgery, Boston Children's Hospital, Boston, Massachusetts 02115 and Harvard Medical School, Boston, Massachusetts 02115
| | - Qian Chen
- the Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island 02903
| | - Cecilia A Fernandez
- From the Program in Vascular Biology and Department of Surgery, Boston Children's Hospital, Boston, Massachusetts 02115 and Harvard Medical School, Boston, Massachusetts 02115
| | - Jay Harper
- From the Program in Vascular Biology and Department of Surgery, Boston Children's Hospital, Boston, Massachusetts 02115 and Harvard Medical School, Boston, Massachusetts 02115
| | - Xin Li
- the Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island 02903
| | - Paul C W Tsang
- the Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824, and
| | - Robert Langer
- the Department of Biochemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Marsha A Moses
- From the Program in Vascular Biology and Department of Surgery, Boston Children's Hospital, Boston, Massachusetts 02115 and Harvard Medical School, Boston, Massachusetts 02115,
| |
Collapse
|
4
|
Xie Q, Yao S, Chen X, Xu L, Peng W, Zhang L, Zhang Q, Liang XF, Hong A. A polypeptide from shark troponin I can inhibit angiogenesis and tumor growth. Mol Biol Rep 2011; 39:1493-501. [PMID: 21750912 DOI: 10.1007/s11033-011-0887-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 05/14/2011] [Indexed: 12/24/2022]
Abstract
The shark troponin I gene (TnI) was found for the first time in this study to inhibit endothelial cell proliferation and angiogenesis. This shark TnI had 68.9% amino acid homology with human TnI, whereas the polypeptide from Lys91 to Leu123, which is thought to be the active site of TnI, had 78.8% homology with the corresponding fragment of human TnI. However, the polypeptide of shark had higher activity to inhibit the proliferation of HUVEC and tumor cell lines than that of human TnI. To investigate the anti-angiogenesis and anti-tumor effect of the shark TnI polypeptide, the DNA sequence of polypeptide (Lys91-Leu123) of white-spot catshark TnI(psTnI) was cloned and fused with the His-SUMO cDNA, followed by expression in Escherichia coli. After its purification by Ni(2+) affinity chromatography, the fusion His-SUMO-psTnI protein was digested with the SUMO enzyme to release psTnI. The inhibitory ability of this recombinant shark TnI polypeptide for angiogenesis was confirmed by chicken embryo allantoic membrane (CAM) test and IHC analysis. It was also found by breast carcinoma xenograft study in Balb/c mice that this polypeptide could inhibit tumor growth in vivo.
Collapse
Affiliation(s)
- Qiuling Xie
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Tsukamoto H, Yokoyama Y, Suzuki T, Mizuta S, Yoshinaka R. Expression of fugu TIMP-3 and -4 genes in adult tissues and embryos. Comp Biochem Physiol B Biochem Mol Biol 2006; 144:395-403. [PMID: 16753323 DOI: 10.1016/j.cbpb.2006.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 04/25/2006] [Accepted: 04/26/2006] [Indexed: 10/24/2022]
Abstract
The tissue inhibitors of metalloproteinases (TIMPs) are involved in various processes of extra-cellular matrix (ECM) metabolism by inhibiting matrix metalloproteinases (MMPs). However, the fundamental information for these genes is little known in fish. Previously, we report cDNA cloning and gene expressions of two fugu (Takifugu rubripes) TIMP-2s. Here, we cloned cDNA of fugu TIMP-3 and performed an expression analysis of TIMP-3 and -4 mRNA in fugu adult tissues using a quantitative real-time PCR. The expression level of TIMP-3 mRNA was constitutive in all tissues, while TIMP-4 was significantly higher in the brain (P=0.05). Further, we performed a whole mount in situ hybridization in fugu embryos at different stages. In early stages, TIMP-3 mRNA was abundant in the somites and the caudal end of the notochord. At hatching larvae, the TIMP-3 mRNA was abundant in the pectoral fin, dorsal and ventral fin fold along the entire antero-posterior axis. TIMP-3 may be involved in axis elongation and somitogenesis. TIMP-4 mRNA was expressed in the tail bud, at the midbrain-hindbrain boundary and in the diencephalon from 72 to 104 hpf. This indicates TIMP-4 is highly expressed in the brain matrix in vivo.
Collapse
Affiliation(s)
- Hiroshi Tsukamoto
- Laboratory of Food Chemistry, Department of Marine Bioscience, Faculty of Biotechnology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | | | | | | | | |
Collapse
|
6
|
Lødemel JB, Egge-Jacobsen W, Olsen RL. Detection of TIMP-2-like protein in Atlantic cod (Gadus morhua) muscle using two-dimensional real-time reverse zymography. Comp Biochem Physiol B Biochem Mol Biol 2005; 139:253-9. [PMID: 15465672 DOI: 10.1016/j.cbpc.2004.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Revised: 08/03/2004] [Accepted: 08/03/2004] [Indexed: 10/26/2022]
Abstract
Matrix metalloproteinases (MMPs) have been proposed to participate in postmortem degradation of fish muscle connective tissues during storage. In the extracellular matrix (ECM) of mammals, a group of specific tissue inhibitors of metalloproteinases (TIMPs) contributes in regulating the MMPs present. However, little information exists on the presence of TIMPs in fish. In this paper, the presence of TIMPs in the muscle of Atlantic cod (Gadus morhua) was investigated using gelatin affinity chromatography, real-time reverse zymography (RTRZ) and mass spectrometry (MS). Using RTRZ inhibitory action against cod muscle, proteinases binding to gelatin were detected in the muscle. The inhibitor had similar molecular weight (21 kDa) as a human recombinant TIMP-2 used as a reference sample. Because isoforms of TIMP-2 homologues with similar molecular weight have been suggested in fish, a two-dimensional RTRZ (2D RTRZ) method was designed. The new method showed the existence of only one form with inhibitory action against cod muscle proteinases. Finally, de novo sequencing of two peptides derived from the cod muscle inhibitor showed high homology to TIMP-2s both from human and other teleosts.
Collapse
Affiliation(s)
- Jørgen B Lødemel
- Department of Marine Biotechnology, Norwegian College of Fishery Science, University of Tromsø, Breivika, N-9037 Tromsø, Norway.
| | | | | |
Collapse
|
7
|
Pickard B, Damjanovski S. Overexpression of the tissue inhibitor of metalloproteinase-3 during Xenopus embryogenesis affects head and axial tissue formation. Cell Res 2005; 14:389-99. [PMID: 15538971 DOI: 10.1038/sj.cr.7290239] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) modulate extracellular matrix remodeling during embryonic development and disease. TIMP-3 expression was examined during Xenopus laevis embryogenesis: TIMP-3 transcripts detected in the maternal pool of RNA increased at the mid-blastula transition, decreased dramatically during gastrulation and increased again during neurulation and axis elongation. Interestingly, the decrease during gastrulation was not seen in LiCl treated (dorsalized) embryos. Whole mount in situ hybridization of TIMP-3 using DIG-labeled RNA probes demonstrated that the transcripts were present in all dorsal tissues during embryogenesis, but were prominent only in head structures starting at stage 35. Overexpression of TIMP-3 through transgenesis and RNA injections led to developmental abnormalities and death. Both overexpression strategies resulted in post-gastrulation perturbation including those to neural and head structures, as well as truncated axes. However, RNA injections resulted in more severe early defects such as failure of neural tube closure, and transgenesis caused truncated axes and head abnormalities. No transgenic embryo expressing TIMP-3 survived past stage 40.
Collapse
Affiliation(s)
- Bryce Pickard
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
8
|
Kang JA, Kim JT, Song HS, Bae MK, Yi EY, Kim KW, Kim YJ. Anti-angiogenic and anti-tumor invasive activities of tissue inhibitor of metalloproteinase-3 from shark, Scyliorhinus torazame. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1620:59-64. [PMID: 12595074 DOI: 10.1016/s0304-4165(02)00508-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In order to investigate the anti-angiogenic activity of shark TIMP-3 (sTIMP-3) in endothelial cells, angiogenic assays including in vitro invasion assay, migration assay, zymogram assay and tube formation assay were performed. We observed that the overexpression of sTIMP-3 decreased the invasive capacity by about 70%, the migratory activity by about 50% and the production of gelatinase A in bovine aortic endothelial cells (BAECs). In addition, the overexpression of sTIMP-3 interfered with the formation of capillary-like network in endothelial cells. We also examined whether sTIMP-3 shows the anti-invasive activity in cancer cells. We found that the overexpression of sTIMP-3 diminished the invasive ability of the human fibrosarcoma HT1080 cells by about 40%. Also, the production of specific gelatinases was suppressed in the cancer cells. Therefore, we propose that sTIMP-3 acts as the inhibitor of angiogenesis in endothelial cells and the suppressor of tumor invasion in human fibrosarcoma HT1080 cells.
Collapse
Affiliation(s)
- Jung A Kang
- Department of Molecular Biology, Pusan National University, South Korea
| | | | | | | | | | | | | |
Collapse
|