1
|
Hogg EKJ, Findlay GM. Functions of SRPK, CLK and DYRK kinases in stem cells, development, and human developmental disorders. FEBS Lett 2023; 597:2375-2415. [PMID: 37607329 PMCID: PMC10952393 DOI: 10.1002/1873-3468.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Human developmental disorders encompass a wide range of debilitating physical conditions and intellectual disabilities. Perturbation of protein kinase signalling underlies the development of some of these disorders. For example, disrupted SRPK signalling is associated with intellectual disabilities, and the gene dosage of DYRKs can dictate the pathology of disorders including Down's syndrome. Here, we review the emerging roles of the CMGC kinase families SRPK, CLK, DYRK, and sub-family HIPK during embryonic development and in developmental disorders. In particular, SRPK, CLK, and DYRK kinase families have key roles in developmental signalling and stem cell regulation, and can co-ordinate neuronal development and function. Genetic studies in model organisms reveal critical phenotypes including embryonic lethality, sterility, musculoskeletal errors, and most notably, altered neurological behaviours arising from defects of the neuroectoderm and altered neuronal signalling. Further unpicking the mechanisms of specific kinases using human stem cell models of neuronal differentiation and function will improve our understanding of human developmental disorders and may provide avenues for therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth K. J. Hogg
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| | - Greg M. Findlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| |
Collapse
|
2
|
Xu Y, Zheng M, Gong L, Liu G, Qian S, Han Y, Kang J. Comprehensive Profiling of Rapamycin Interacting Proteins with Multiple Mass Spectrometry-Based Omics Techniques. Anal Chem 2023. [PMID: 37216191 DOI: 10.1021/acs.analchem.3c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Profiling drug-protein interactions is critical for understanding a drug's mechanism of action and predicting the possible adverse side effects. However, to comprehensively profile drug-protein interactions remains a challenge. To address this issue, we proposed a strategy that integrates multiple mass spectrometry-based omics analysis to provided global drug-protein interactions, including physical interactions and functional interactions, with rapamycin (Rap) as a model. Chemoproteomics profiling reveals 47 Rap binding proteins including the known target protein FKBP12 with high confidence. Gen Ontology enrichment analysis suggested that the Rap binding proteins are implicated in several important cellular processes, such as DNA replication, immunity, autophagy, programmed cell death, aging, transcription modulation, vesicle-mediated transport, membrane organization, and carbohydrate and nucleobase metabolic processes. The phosphoproteomics profiling revealed 255 down-regulated and 150 up-regulated phosphoproteins responding to Rap stimulation; they mainly involve the PI3K-Akt-mTORC1 signaling axis. Untargeted metabolomic profiling revealed 22 down-regulated metabolites and 75 up-regulated metabolites responding to Rap stimulation; they are mainly associated with the synthesis processes of pyrimidine and purine. The integrative multiomics data analysis provides deep insight into the drug-protein interactions and reveals Rap's complicated mechanism of action.
Collapse
Affiliation(s)
- Yao Xu
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China
| | - Mengmeng Zheng
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China
| | - Li Gong
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China
| | - Guizhen Liu
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, Haike Road 100, Shanghai 200120, China
| | - Shanshan Qian
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China
| | - Ying Han
- School of Life Science and Technology, ShanghaiTech University, Haike Road 100, Shanghai 200120, China
| | - Jingwu Kang
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, Haike Road 100, Shanghai 200120, China
| |
Collapse
|
3
|
Stenroos P, Pirttimäki T, Paasonen J, Paasonen E, Salo RA, Koivisto H, Natunen T, Mäkinen P, Kuulasmaa T, Hiltunen M, Tanila H, Gröhn O. Isoflurane affects brain functional connectivity in rats 1 month after exposure. Neuroimage 2021; 234:117987. [PMID: 33762218 DOI: 10.1016/j.neuroimage.2021.117987] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/16/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022] Open
Abstract
Isoflurane, the most commonly used preclinical anesthetic, induces brain plasticity and long-term cellular and molecular changes leading to behavioral and/or cognitive consequences. These changes are most likely associated with network-level changes in brain function. To elucidate the mechanisms underlying long-term effects of isoflurane, we investigated the influence of a single isoflurane exposure on functional connectivity, brain electrical activity, and gene expression. Male Wistar rats (n = 22) were exposed to 1.8% isoflurane for 3 h. Control rats (n = 22) spent 3 h in the same room without exposure to anesthesia. After 1 month, functional connectivity was evaluated with resting-state functional magnetic resonance imaging (fMRI; n = 6 + 6) and local field potential measurements (n = 6 + 6) in anesthetized animals. A whole genome expression analysis (n = 10+10) was also conducted with mRNA-sequencing from cortical and hippocampal tissue samples. Isoflurane treatment strengthened thalamo-cortical and hippocampal-cortical functional connectivity. Cortical low-frequency fMRI power was also significantly increased in response to the isoflurane treatment. The local field potential results indicating strengthened hippocampal-cortical alpha and beta coherence were in good agreement with the fMRI findings. Furthermore, altered expression was found in 20 cortical genes, several of which are involved in neuronal signal transmission, but no gene expression changes were noted in the hippocampus. Isoflurane induced prolonged changes in thalamo-cortical and hippocampal-cortical function and expression of genes contributing to signal transmission in the cortex. Further studies are required to investigate whether these changes are associated with the postoperative behavioral and cognitive symptoms commonly observed in patients and animals.
Collapse
Affiliation(s)
- Petteri Stenroos
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI,-70211 Kuopio, Finland
| | - Tiina Pirttimäki
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI,-70211 Kuopio, Finland
| | - Jaakko Paasonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI,-70211 Kuopio, Finland
| | - Ekaterina Paasonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI,-70211 Kuopio, Finland
| | - Raimo A Salo
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI,-70211 Kuopio, Finland
| | - Hennariikka Koivisto
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI,-70211 Kuopio, Finland
| | - Teemu Natunen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI,-70211 Kuopio, Finland
| | - Petra Mäkinen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI,-70211 Kuopio, Finland
| | - Teemu Kuulasmaa
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI,-70211 Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI,-70211 Kuopio, Finland
| | - Heikki Tanila
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI,-70211 Kuopio, Finland
| | - Olli Gröhn
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI,-70211 Kuopio, Finland
| |
Collapse
|
4
|
Dai Y, Kyoyama H, Yang YL, Wang Y, Liu S, Wang Y, Mao JH, Xu Z, Uematsu K, Jablons DM, You L. A novel isoform of Homeodomain-interacting protein kinase-2 promotes YAP/TEAD transcriptional activity in NSCLC cells. Oncotarget 2021; 12:173-184. [PMID: 33613845 PMCID: PMC7869571 DOI: 10.18632/oncotarget.27871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/03/2020] [Indexed: 11/25/2022] Open
Abstract
Homeodomain-interacting protein kinase-2 (HIPK2) can either promote or inhibit transcription depending on cellular context. In this study, we show that a new HIPK2 isoform increases TEAD reporter activity in NSCLC cells. We detected HIPK2 copy number gain in 5/6 (83.3%) NSCLC cell lines. In NSCLC patients with high HIPK2 mRNA expression in the Human Protein Atlas, the five-year survival rate is significantly lower than in patients with low expression (38% vs 47%; p = 0.047). We also found that 70/78 (89.7%) of NSCLC tissues have moderate to strong expression of the N-terminal HIPK2 protein. We detected and cloned a novel HIPK2 isoform 3 and found that its forced overexpression promotes TEAD reporter activity in NSCLC cells. Expressing HIPK2 isoform 3_K228A kinase-dead plasmid failed to increase TEAD reporter activity in NSCLC cells. Next, we showed that two siRNAs targeting HIPK2 decreased HIPK2 isoform 3 and YAP protein levels in NSCLC cells. Degradation of the YAP protein was accelerated after HIPK2 knockdown in NSCLC cells. Inhibition of HIPK2 isoform 3 decreased the mRNA expression of YAP downstream gene CTGF. The specific HIPK2 kinase inhibitor TBID decreased TEAD reporter activity, reduced cancer side populations, and inhibited tumorsphere formation of NSCLC cells. In summary, this study indicates that HIPK2 isoform 3, the main HIPK2 isoform expressed in NSCLC, promotes YAP/TEAD transcriptional activity in NSCLC cells. Our results suggest that HIPK2 isoform 3 may be a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Yuyuan Dai
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Model Animal Research Center of Nanjing University, Nanjing, Jiangsu, China
- These authors contributed equally to this work
| | - Hiroyuki Kyoyama
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Department of Pulmonary Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
- These authors contributed equally to this work
| | - Yi-Lin Yang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- These authors contributed equally to this work
| | - Yucheng Wang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Shu Liu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Yinghao Wang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Zhidong Xu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Kazutsugu Uematsu
- Department of Pulmonary Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - David M. Jablons
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Liang You
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
5
|
Ishikawa G, Fujiwara N, Hirschfield H, Varricchio L, Hoshida Y, Barosi G, Rosti V, Padilla M, Mazzarini M, Friedman SL, Hoffman R, Migliaccio AR. Shared and Tissue-Specific Expression Signatures between Bone Marrow from Primary Myelofibrosis and Essential Thrombocythemia. Exp Hematol 2019; 79:16-25.e3. [PMID: 31678370 PMCID: PMC6910948 DOI: 10.1016/j.exphem.2019.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022]
Abstract
Megakaryocytes have been implicated in the micro-environmental abnormalities associated with fibrosis and hematopoietic failure in the bone marrow (BM) of primary myelofibrosis (PMF) patients, the Philadelphia-negative myeloproliferative neoplasm (MPN) associated with the poorest prognosis. To identify possible therapeutic targets for restoring BM functions in PMF, we compared the expression profiling of PMF BM with that of BM from essential thrombocytopenia (ET), a fibrosis-free MPN also associated with BM megakaryocyte hyperplasia. The signature of PMF BM was also compared with published signatures associated with liver and lung fibrosis. Gene set enrichment analysis (GSEA) identified distinctive differences between the expression profiles of PMF and ET. Notch, K-Ras, IL-8, and apoptosis pathways were altered the most in PMF as compared with controls. By contrast, cholesterol homeostasis, unfolded protein response, and hypoxia were the pathways found altered to the greatest degree in ET compared with control specimens. BM from PMF expressed a noncanonical transforming growth factor β (TGF-β) signature, which included activation of ID1, JUN, GADD45b, and genes with binding motifs for the JUN transcriptional complex AP1. By contrast, the expression of ID1 and GADD45b was not altered and there was a modest signal for JUN activation in ET. The similarities among PMF, liver fibrosis, and lung fibrosis were modest and included activation of integrin-α9 and tropomyosin-α1 between PMF and liver fibrosis, and of ectoderm-neural cortex protein 1 and FRAS1-related extracellular matrix protein 1 between PMF and lung fibrosis, but not TGF-β. These data identify TGF-β as a potential target for micro-environmental therapy in PMF.
Collapse
Affiliation(s)
- Genta Ishikawa
- Division of Pulmonary Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Naoto Fujiwara
- Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Liver Tumor Translational Research Program, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hadassa Hirschfield
- Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lilian Varricchio
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yujin Hoshida
- Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Liver Tumor Translational Research Program, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnostic, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnostic, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Maria Padilla
- Division of Pulmonary Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Maria Mazzarini
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| | - Scott L Friedman
- Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ronald Hoffman
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Anna Rita Migliaccio
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy.
| |
Collapse
|
6
|
Ke CY, Mei HH, Wong FH, Lo LJ. IRF6 and TAK1 coordinately promote the activation of HIPK2 to stimulate apoptosis during palate fusion. Sci Signal 2019; 12:12/593/eaav7666. [DOI: 10.1126/scisignal.aav7666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cleft palate is a common craniofacial defect caused by a failure in palate fusion. The palatal shelves migrate toward one another and meet at the embryonic midline, creating a seam. Transforming growth factor–β3 (TGF-β3)–induced apoptosis of the medial edge epithelium (MEE), the cells located along the seam, is required for completion of palate fusion. The transcription factor interferon regulatory factor 6 (IRF6) promotes TGF-β3–induced MEE cell apoptosis by stimulating the degradation of the transcription factor ΔNp63 and promoting the expression of the gene encoding the cyclin-dependent kinase inhibitor p21. Because homeodomain-interacting protein kinase 2 (HIPK2) functions downstream of IRF6 in human cancer cells and is required for ΔNp63 protein degradation in keratinocytes, we investigated whether HIPK2 played a role in IRF6-induced ΔNp63 degradation in palate fusion. HIPK2 was present in the MEE cells of mouse palatal shelves during seam formation in vivo, and ectopic expression of IRF6 in palatal shelves cultured ex vivo stimulated the expression of Hipk2 and the accumulation of phosphorylated HIPK2. Knockdown and ectopic expression experiments in organ culture demonstrated that p21 was required for HIPK2- and IRF6-dependent activation of caspase 3, MEE apoptosis, and palate fusion. Contact between palatal shelves enhanced the phosphorylation of TGF-β–activated kinase 1 (TAK1), which promoted the phosphorylation of HIPK2 and palate fusion. Our findings demonstrate that HIPK2 promotes seam cell apoptosis and palate fusion downstream of IRF6 and that IRF6 and TAK1 appear to coordinately enhance the abundance and activation of HIPK2 during palate fusion.
Collapse
|
7
|
Blaquiere JA, Verheyen EM. Homeodomain-Interacting Protein Kinases: Diverse and Complex Roles in Development and Disease. Curr Top Dev Biol 2016; 123:73-103. [PMID: 28236976 DOI: 10.1016/bs.ctdb.2016.10.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Homeodomain-interacting protein kinase (Hipk) family of proteins plays diverse, and at times conflicting, biological roles in normal development and disease. In this review we will highlight developmental and cellular roles for Hipk proteins, with an emphasis on the pleiotropic and essential physiological roles revealed through genetic studies. We discuss the myriad ways of regulating Hipk protein function, and how these may contribute to the diverse cellular roles. Furthermore we will describe the context-specific activities of Hipk family members in diseases such as cancer and fibrosis, including seemingly contradictory tumor-suppressive and oncogenic activities. Given the diverse signaling pathways regulated by Hipk proteins, it is likely that Hipks act to fine-tune signaling and may mediate cross talk in certain contexts. Such regulation is emerging as vital for development and in disease.
Collapse
Affiliation(s)
- Jessica A Blaquiere
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
8
|
Hashimoto K, Tsuji Y. Arsenic-Induced Activation of the Homeodomain-Interacting Protein Kinase 2 (HIPK2) to cAMP-Response Element Binding Protein (CREB) Axis. J Mol Biol 2016; 429:64-78. [PMID: 27884605 DOI: 10.1016/j.jmb.2016.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/30/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022]
Abstract
Cyclic AMP-response element-binding protein (CREB) plays key transcriptional roles in cell metabolism, proliferation, and survival. Ser133 phosphorylation by protein kinase A (PKA) is a well-characterized CREB activation mechanism. Homeodomain-interacting protein kinase (HIPK) 2, a nuclear serine/threonine kinase, activates CREB through Ser271 phosphorylation; however, the regulatory mechanism remains uncharacterized. Transfection of CREB in HEK293 cells together with the kinase demonstrated that HIPK2 phosphorylated CREB at Ser271 but not Ser133; likewise, PKA phosphorylated CREB at Ser133 but not Ser271, suggesting two distinct CREB regulatory mechanisms by HIPK2 and PKA. In vitro kinase assay revealed that HIPK2, and HIPK1 and HIPK3, directly phosphorylated CREB. Cells exposed to 10μM sodium arsenite increased the stability of HIPK1 and HIPK2 proteins, leading to CREB activation via Ser271 phosphorylation. Phospho-Ser271 CREB showed facilitated interaction with the TFIID subunit coactivator TAF4 assessed by immunoprecipitation. Furthermore, a focused gene array between cells transfected with CREB alone and CREB plus HIPK2 over empty vector-transfected control displayed 14- and 32-fold upregulation of cyclin A1, respectively, while no upregulation was displayed by HIPK2 alone. These results suggest that the HIPK2-phospho-Ser271 CREB axis is a new arsenic-responsive CREB activation mechanism in parallel with the PKA-phospho-Ser133 CREB axis.
Collapse
Affiliation(s)
- Kazunori Hashimoto
- Department of Biological Sciences, North Carolina State University, Campus Box 7633, Raleigh, NC 27695, USA
| | - Yoshiaki Tsuji
- Department of Biological Sciences, North Carolina State University, Campus Box 7633, Raleigh, NC 27695, USA.
| |
Collapse
|
9
|
Hailemariam K, Iwasaki K, Huang BW, Sakamoto K, Tsuji Y. Transcriptional regulation of ferritin and antioxidant genes by HIPK2 under genotoxic stress. J Cell Sci 2010; 123:3863-71. [PMID: 20980392 DOI: 10.1242/jcs.073627] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
ATF1 (activating transcription factor 1), a stimulus-induced CREB family transcription factor, plays important roles in cell survival and proliferation. Phosphorylation of ATF1 at Ser63 by PKA (cAMP-dependent protein kinase) and related kinases was the only known post-translational regulatory mechanism of ATF1. Here, we found that HIPK2 (homeodomain-interacting protein kinase 2), a DNA-damage-responsive nuclear kinase, is a new ATF1 kinase that phosphorylates Ser198 but not Ser63. ATF1 phosphorylation by HIPK2 activated ATF1 transcription function in the GAL4-reporter system. ATF1 is a transcriptional repressor of ferritin H, the major intracellular iron storage gene, through an ARE (antioxidant-responsive element). HIPK2 overrode the ATF1-mediated ARE repression in a kinase-activity-dependent manner in HepG2 cells. Furthermore, DNA-damage-inducing agents doxorubicin, etoposide and sodium arsenite induced ferritin H mRNA expression in HIPK2(+/+) MEF cells, whereas it was significantly impaired in HIPK2(-/-) MEF cells. Induction of other ARE-regulated detoxification genes such as NQO1 (NADPH quinone oxidoreductase 1), GST (glutathione S-transferase) and HO1 (heme oxygenase 1) by genotoxic stress was also decreased in HIPK2-deficient cells. Taken together, these results suggest that HIPK2 is a new ATF1 kinase involved in the regulation of ferritin H and other antioxidant detoxification genes in genotoxic stress conditions.
Collapse
Affiliation(s)
- Kiros Hailemariam
- Department of Environmental and Molecular Toxicology, North Carolina State University, Campus Box 7633, Raleigh, NC 27695, USA
| | | | | | | | | |
Collapse
|
10
|
Sakamoto K, Huang BW, Iwasaki K, Hailemariam K, Ninomiya-Tsuji J, Tsuji Y. Regulation of genotoxic stress response by homeodomain-interacting protein kinase 2 through phosphorylation of cyclic AMP response element-binding protein at serine 271. Mol Biol Cell 2010; 21:2966-74. [PMID: 20573984 PMCID: PMC2921112 DOI: 10.1091/mbc.e10-01-0015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Homeodomain-interacting protein kinase 2 (HIPK2) is a new CREB kinase for phosphorylation at Ser-271 but not Ser-133 in genotoxic stress and activates CREB transactivation function including brain-derived neurotrophic factor (BDNF) mRNA expression. CREB (cyclic AMP response element-binding protein) is a stimulus-induced transcription factor that plays pivotal roles in cell survival and proliferation. The transactivation function of CREB is primarily regulated through Ser-133 phosphorylation by cAMP-dependent protein kinase A (PKA) and related kinases. Here we found that homeodomain-interacting protein kinase 2 (HIPK2), a DNA-damage responsive nuclear kinase, is a new CREB kinase for phosphorylation at Ser-271 but not Ser-133, and activates CREB transactivation function including brain-derived neurotrophic factor (BDNF) mRNA expression. Ser-271 to Glu-271 substitution potentiated the CREB transactivation function. ChIP assays in SH-SY5Y neuroblastoma cells demonstrated that CREB Ser-271 phosphorylation by HIPK2 increased recruitment of a transcriptional coactivator CBP (CREB binding protein) without modulation of CREB binding to the BDNF CRE sequence. HIPK2−/− MEF cells were more susceptible to apoptosis induced by etoposide, a DNA-damaging agent, than HIPK2+/+ cells. Etoposide activated CRE-dependent transcription in HIPK2+/+ MEF cells but not in HIPK2−/− cells. HIPK2 knockdown in SH-SY5Y cells decreased etoposide-induced BDNF mRNA expression. These results demonstrate that HIPK2 is a new CREB kinase that regulates CREB-dependent transcription in genotoxic stress.
Collapse
Affiliation(s)
- Kensuke Sakamoto
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | | | |
Collapse
|
11
|
AL-BEITI MAM, LU X. Expression of HIPK2 in cervical cancer: Correlation with clinicopathology and prognosis. Aust N Z J Obstet Gynaecol 2008; 48:329-36. [DOI: 10.1111/j.1479-828x.2008.00874.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
Choi DW, Seo YM, Kim EA, Sung KS, Ahn JW, Park SJ, Lee SR, Choi CY. Ubiquitination and degradation of homeodomain-interacting protein kinase 2 by WD40 repeat/SOCS box protein WSB-1. J Biol Chem 2007; 283:4682-9. [PMID: 18093972 DOI: 10.1074/jbc.m708873200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Homeodomain-interacting protein kinase 2 (HIPK2) is a member of the nuclear protein kinase family, which induces both p53- and CtBP-mediated apoptosis. Levels of HIPK2 were increased by UV irradiation and cisplatin treatment, thereby implying the degradation of HIPK2 in cells under normal conditions. Here, we indicate that HIPK2 is ubiquitinated and degraded by the WD40-repeat/SOCS box protein WSB-1, a process that is blocked under DNA damage conditions. Yeast two-hybrid screening was conducted to identify the proteins that interact with HIPK2. WSB-1, an E3 ubiquitin ligase, was characterized as an HIPK2-interacting protein. The coexpression of WSB-1 resulted in the degradation of HIPK2 via its C-terminal region. Domain analysis of WSB-1 showed that WD40-repeats and the SOCS box were required for its interaction with and degradation of HIPK2, respectively. In support of the degradation of HIPK2 by WSB-1, HIPK2 was polyubiquitinated by WSB-1 in vitro and in vivo. The knockdown of endogenous WSB-1 with the expression of short hairpin RNA against WSB-1 increases the stability of endogenous HIPK2 and resulted in the accumulation of HIPK2. The ubiquitination and degradation of HIPK2 by WSB-1 was inhibited completely via the administration of DNA damage reagents, including Adriamycin and cisplatin. These findings effectively illustrate the regulatory mechanisms by which HIPK2 is maintained at a low level, by WSB-1 in cells under normal conditions, and stabilized by genotoxic stresses.
Collapse
Affiliation(s)
- Dong Wook Choi
- Department of Biological Science, Sungkyunkwan University, 300 Chunchundong, Suwon 440-746, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Li XL, Arai Y, Harada H, Shima Y, Yoshida H, Rokudai S, Aikawa Y, Kimura A, Kitabayashi I. Mutations of the HIPK2 gene in acute myeloid leukemia and myelodysplastic syndrome impair AML1- and p53-mediated transcription. Oncogene 2007; 26:7231-9. [PMID: 17533375 DOI: 10.1038/sj.onc.1210523] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The AML1 transcription factor complex is the most frequent target of leukemia-associated chromosomal translocations. Homeodomain-interacting protein kinase 2 (HIPK2) is a part of the AML1 complex and activates AML1-mediated transcription. However, chromosomal translocations and mutations of HIPK2 have not been reported. In the current study, we screened mutations of the HIPK2 gene in 50 cases of acute myeloid leukemia (AML) and in 80 cases of myelodysplastic syndrome (MDS). Results indicated there were two missense mutations (R868W and N958I) in the speckle-retention signal (SRS) domain of HIPK2. Subcellular localization analyses indicated that the two mutants were largely localized to nuclear regions with conical or ring shapes, and were somewhat diffused in the nucleus, in contrast to the wild type, which were mainly localized in nuclear speckles. The mutations impaired the overlapping localization of AML1 and HIPK2. The mutants showed decreased activities and a dominant-negative function over wild-type protein in AML1- and p53-dependent transcription. These findings suggest that dysfunction of HIPK2 may play a role in the pathogenesis of leukemia.
Collapse
Affiliation(s)
- X-L Li
- Molecular Oncology Division, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gresko E, Möller A, Roscic A, Schmitz ML. Covalent modification of human homeodomain interacting protein kinase 2 by SUMO-1 at lysine 25 affects its stability. Biochem Biophys Res Commun 2005; 329:1293-9. [PMID: 15766567 DOI: 10.1016/j.bbrc.2005.02.113] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Indexed: 11/30/2022]
Abstract
The HIPK2 protein is a critical regulator of apoptosis and functionally interacts with p53 to increase gene expression. Here we show that human HIPK2 is modified by sumoylation at lysine 25, as revealed by in vivo and in vitro experiments. While SUMO-1 modification of HIPK2 has no influence on its ability to phosphorylate p53 at serine 46, to induce gene expression, and to mediate apoptosis, a non-sumoylatable HIPK2 mutant displays a strongly increased protein stability. The N-terminal SUMO-1 modification site is conserved between all vertebrate HIPK2 proteins and is found in all members of the HIPK family of protein kinases. Accordingly, also human HIPK3 is modified by sumoylation.
Collapse
Affiliation(s)
- Ekaterina Gresko
- University of Bern, Department of Chemistry and Biochemistry, Freiestr. 3, CH-3012 Bern, Switzerland
| | | | | | | |
Collapse
|
15
|
Giraud S, Diaz-Latoud C, Hacot S, Textoris J, Bourette RP, Diaz JJ. US11 of herpes simplex virus type 1 interacts with HIPK2 and antagonizes HIPK2-induced cell growth arrest. J Virol 2004; 78:2984-93. [PMID: 14990717 PMCID: PMC353731 DOI: 10.1128/jvi.78.6.2984-2993.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homeodomain-interacting protein kinase 2 (HIPK2) is a nuclear serine/threonine kinase of the subfamily of dual-specificity Yak1-related kinase proteins. HIPK2 was first described as a homeodomain-interacting protein kinase acting as a corepressor for homeodomain transcription factors. More recently, it was reported that HIPK2 plays a role in p53-mediated cellular apoptosis and could also participate in the regulation of the cell cycle. US11 protein of herpes simplex virus type 1 is a multifunctional protein involved in the regulation of several processes related to the survival of cells submitted to environmental stresses by mechanisms that are not fully elucidated. In an attempt to better understand the multiple functions of US11, we identified cellular binding partners of this protein by using the yeast two-hybrid system. We report that US11 interacts with HIPK2 through the PEST domain of HIPK2 and that this interaction occurs also in human cells. This interaction modifies the subcellular distribution of HIPK2 and protects the cell against the HIPK2-induced cell growth arrest.
Collapse
Affiliation(s)
- Stéphane Giraud
- INSERM U369, Faculté de Médecine Lyon-RTH Laennec, 69372 Lyon Cedex 08, France
| | | | | | | | | | | |
Collapse
|
16
|
Di Stefano V, Rinaldo C, Sacchi A, Soddu S, D'Orazi G. Homeodomain-interacting protein kinase-2 activity and p53 phosphorylation are critical events for cisplatin-mediated apoptosis. Exp Cell Res 2004; 293:311-20. [PMID: 14729469 DOI: 10.1016/j.yexcr.2003.09.032] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
HIPK2 is a member of a novel family of nuclear serine-threonine kinases identified through their ability to interact with the Nkx-1.2 homeoprotein. The physiological role of these kinases is largely unknown, but we have recently reported on the involvement of HIPK2 in the induction of apoptosis of tumor cells after UV stress through p53 phosphorylation and transcriptional activation. Here, we demonstrate that the chemotherapeutic drug cisplatin increases HIPK2 protein expression and its kinase activity, and that HIPK2 is involved in cisplatin-dependent apoptosis. Indeed, induction of HIPK2 and of cell death by cisplatin are efficiently inhibited by the serine-threonine kinase inhibitor SB203580 or the transduction of HIPK2-specific RNA-interfering molecules. HIPK2 gene silencing efficiently reduces the p53-mediated transcriptional activation of apoptotic gene promoters as well as apoptotic cell death after treatment with cisplatin. These findings, along with the involvement of p53 phosphorylation at serine 46 (Ser46) in the transcriptional activation of apoptotic gene promoters, suggest a critical role for HIPK2 in triggering p53-dependent apoptosis in response to the antineoplastic drug cisplatin.
Collapse
Affiliation(s)
- Valeria Di Stefano
- Deparment of Experimental Oncology, Molecular Oncogenesis Laboratory, Regina Elena Cancer Institute, via delle Messi d'Oro 156, 00158 Rome, Italy
| | | | | | | | | |
Collapse
|
17
|
Wang Y, Marion Schneider E, Li X, Duttenhöfer I, Debatin K, Hug H. HIPK2 associates with RanBPM. Biochem Biophys Res Commun 2002; 297:148-53. [PMID: 12220523 DOI: 10.1016/s0006-291x(02)02020-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Using the yeast two-hybrid system, we have identified the Ran-binding protein (RanBPM) as an interaction partner of homeodomain-interacting protein kinase 2 (HIPK2). RanBPM has been described as a centrosomal protein through which Ran regulates the centrosomal function. HIPK2 is mainly a nuclear protein, which among other functions represses transcription mediated by homeodomain containing transcription factors. Here, we show that overexpressed wildtype HIPK2 and a kinase defective mutant of HIPK2 directly interact with RanBPM in the nucleus of mammalian cells. Overexpressed wildtype RanBPM and a kinase defective mutant of HIPK2 co-localise with HIPK2 in defined nuclear structures. A carboxy- and an amino-terminal deletion of HIPK2 do not seem to be able to bind to RanBPM.
Collapse
Affiliation(s)
- Ying Wang
- Universitäts-Kinderklinik Ulm, Forschungslabore, Prittwitzstr. 43, D-89075 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Kim EJ, Park JS, Um SJ. Identification and characterization of HIPK2 interacting with p73 and modulating functions of the p53 family in vivo. J Biol Chem 2002; 277:32020-8. [PMID: 11925430 DOI: 10.1074/jbc.m200153200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To study the biological role of p73 alpha, a member of the p53 tumor suppressor family, we performed a yeast two-hybrid screen of a human cDNA library. Using a p73 alpha fragment consisting of amino acids 49-636 as bait, we found that p73 alpha is functionally associated with the human homologue of mouse and hamster homeodomain-interacting protein kinase 2 (HIPK2). The hamster homologue, also known as haHIPK2 or PKM, was used for further characterization of interactions between HIPK2 and members of the p53 protein family. Systematic yeast two-hybrid assays indicated a physical interaction between the oligomerization domains of p73 alpha and p53 (amino acid regions 345-380 and 319-360, respectively) and amino acid region 812-907 of haHIPK2. This region of haHIPK2 includes a PEST sequence, an Ubc9-binding domain, and a partial speckle retention sequence and is identical to amino acid residues 846-941 of human HIPK2 (hHIPK2). The interaction was confirmed by glutathione S-transferase pull-down assays in vitro and immunoprecipitation assays in vivo. HIPK2 colocalized with p73 and p53 in nuclear bodies, as shown by confocal microscopy. Overexpression of HIPK2 stabilized the p53 protein and greatly increased the p73- and p53-induced transcriptional repression of multidrug-resistant and collagenase promoters in Saos2 cells but had little effect on the p73- or p53-mediated transcriptional activation of synthetic p53-responsive and p21WAF1 promoters. Stable expression of HIPK2 in U2OS cells enhanced the cisplatin response of sub-G(1) and G(2)/M populations, and it also increased the apoptotic response to cisplatin and adriamycin as demonstrated by fluorescence-activated cell sorter and 4',6-diamidino-2-phenylindole-staining analyses. HIPK2 potentiated the inhibition of colony formation by p73 and p53. These results suggest that physical interactions between HIPK2 and members of the p53 family may determine the roles of these proteins in cell cycle regulation and apoptosis.
Collapse
Affiliation(s)
- Eun-Joo Kim
- Department of Bioscience and Biotechnology, Institute of Bioscience, Sejong University, Seoul, 143-747 Korea
| | | | | |
Collapse
|
19
|
Wang Y, Debatin KM, Hug H. HIPK2 overexpression leads to stabilization of p53 protein and increased p53 transcriptional activity by decreasing Mdm2 protein levels. BMC Mol Biol 2001; 2:8. [PMID: 11532197 PMCID: PMC48146 DOI: 10.1186/1471-2199-2-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2001] [Accepted: 08/10/2001] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND HIPK2 (homeodomain-interacting protein kinase 2) has been identified as a nuclear serine/threonine kinase. A central function of HIPK2 is repressing transcription of homeodomain containing transcription factors. RESULTS AND CONCLUSIONS We show here that HIPK2 activates transcription mediated by tumor suppressor p53 responsive promoter elements. Overexpression of HIPK2 leads to an increase of p53 protein expression or stability, which becomes enhanced further in the presence of the DNA damaging drug doxorubicin. The effects of HIPK2 on p53 are not observed with kinase deficient HIPK2 mutants. However, HIPK2 is not sufficient for phosphorylation of three crucial serine residues of p53, suggesting that HIPK2-induced p53 activation does not involve phosphorylation of p53. Instead, HIPK2 leads to a downregulation of p53-induced Mdm2 protein and this may lead to stabilization of p53. Overexpression of HIPK2 does not lead to a change of Mdm2 mRNA expression. The data suggest that HIPK2 plays a critical role in p53 mediated cellular responses by removing the p53 inhibitor protein Mdm2 via modification of the protein itself or its intracellular movement.
Collapse
Affiliation(s)
- Ying Wang
- Universitäts-Kinderklinik Ulm, Prittwitzstr. 43, D-89075 Ulm, Germany
| | | | - Hubert Hug
- Universitäts-Kinderklinik Ulm, Prittwitzstr. 43, D-89075 Ulm, Germany
| |
Collapse
|