1
|
Xie T, Yao L, Li X. Advance in Iron Metabolism, Oxidative Stress and Cellular Dysfunction in Experimental and Human Kidney Diseases. Antioxidants (Basel) 2024; 13:659. [PMID: 38929098 PMCID: PMC11200795 DOI: 10.3390/antiox13060659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Kidney diseases pose a significant global health issue, frequently resulting in the gradual decline of renal function and eventually leading to end-stage renal failure. Abnormal iron metabolism and oxidative stress-mediated cellular dysfunction facilitates the advancement of kidney diseases. Iron homeostasis is strictly regulated in the body, and disturbance in this regulatory system results in abnormal iron accumulation or deficiency, both of which are associated with the pathogenesis of kidney diseases. Iron overload promotes the production of reactive oxygen species (ROS) through the Fenton reaction, resulting in oxidative damage to cellular molecules and impaired cellular function. Increased oxidative stress can also influence iron metabolism through upregulation of iron regulatory proteins and altering the expression and activity of key iron transport and storage proteins. This creates a harmful cycle in which abnormal iron metabolism and oxidative stress perpetuate each other, ultimately contributing to the advancement of kidney diseases. The crosstalk of iron metabolism and oxidative stress involves multiple signaling pathways, such as hypoxia-inducible factor (HIF) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. This review delves into the functions and mechanisms of iron metabolism and oxidative stress, along with the intricate relationship between these two factors in the context of kidney diseases. Understanding the underlying mechanisms should help to identify potential therapeutic targets and develop novel and effective therapeutic strategies to combat the burden of kidney diseases.
Collapse
Affiliation(s)
- Tiancheng Xie
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, China;
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Muthamil S, Kim HY, Jang HJ, Lyu JH, Shin UC, Go Y, Park SH, Lee HG, Park JH. Understanding the relationship between cancer associated cachexia and hypoxia-inducible factor-1. Biomed Pharmacother 2023; 163:114802. [PMID: 37146421 DOI: 10.1016/j.biopha.2023.114802] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023] Open
Abstract
Cancer-associated cachexia (CAC) is a multifactorial disorder characterized by an unrestricted loss of body weight as a result of muscle and adipose tissue atrophy. Cachexia is influenced by several factors, including decreased metabolic activity and food intake, an imbalance between energy uptake and expenditure, excessive catabolism, and inflammation. Cachexia is highly associated with all types of cancers responsible for more than half of cancer-related mortalities worldwide. In healthy individuals, adipose tissue significantly regulates energy balance and glucose homeostasis. However, in metastatic cancer patients, CAC occurs mainly because of an imbalance between muscle protein synthesis and degradation which are organized by certain extracellular ligands and associated signaling pathways. Under hypoxic conditions, hypoxia-inducible factor-1 (HIF-1α) accumulated and translocated to the nucleus and activate numerous genes involved in cell survival, invasion, angiogenesis, metastasis, metabolic reprogramming, and cancer stemness. On the other hand, the ubiquitination proteasome pathway is inhibited during low O2 levels which promote muscle wasting in cancer patients. Therefore, understanding the mechanism of the HIF-1 pathway and its metabolic adaptation to biomolecules is important for developing a novel therapeutic method for cancer and cachexia therapy. Even though many HIF inhibitors are already in a clinical trial, their mechanism of action remains unknown. With this background, this review summarizes the basic concepts of cachexia, the role of inflammatory cytokines, pathways connected with cachexia with special reference to the HIF-1 pathway and its regulation, metabolic changes, and inhibitors of HIFs.
Collapse
Affiliation(s)
- Subramanian Muthamil
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Hyun Yong Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Ji-Hyo Lyu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Ung Cheol Shin
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Younghoon Go
- Korean Medicine (KM)-application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea
| | - Seong-Hoon Park
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34141, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea; University of Science & Technology (UST), KIOM campus, Korean Convergence Medicine Major, Daejeon 34054, Republic of Korea.
| |
Collapse
|
3
|
Ong HT, Prêle CM, Dilley RJ. Using RNA-seq to identify suitable housekeeping genes for hypoxia studies in human adipose-derived stem cells. BMC Mol Cell Biol 2023; 24:16. [PMID: 37062833 PMCID: PMC10108514 DOI: 10.1186/s12860-023-00475-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/15/2023] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND Hypoxic culture conditions have been used to study the impact of oxygen deprivation has on gene expression in a number of disease models. However, hypoxia response elements present in the promoter regions of some commonly used housekeeping genes, such as GAPDH and PGK1, can confound the relative gene expression analysis. Thus, there is ongoing debate as to which housekeeping gene is appropriate for studies investigating hypoxia-induced cell responses. Specifically, there is still contradicting information for which housekeeping genes are stable in hypoxia cultures of mesenchymal stem cells. In this study, candidate housekeeping genes curated from the literature were matched to RNAseq data of normoxic and hypoxic human adipose-derived stem cell cultures to determine if gene expression was modulated by hypoxia or not. Expression levels of selected candidates were used to calculate coefficient of variation. Then, accounting for the mean coefficient of variation, and normalised log twofold change, genes were ranked and shortlisted, before validating with qRT-PCR. Housekeeping gene suitability were then determined using GeNorm, NormFinder, BestKeeper, comparative[Formula: see text], RefFinder, and the Livak method. RESULTS Gene expression levels of 78 candidate genes identified in the literature were analysed in the RNAseq dataset generated from hADSC cultured under Nx and Hx conditions. From the dataset, 15 candidates with coefficient of variation ≤ 0.15 were identified, where differential expression analysis results further shortlisted 8 genes with least variation in expression levels. The top 4 housekeeping gene candidates, ALAS1, RRP1, GUSB, and POLR2B, were chosen for qRT-PCR validation. Additionally, 18S, a ribosomal RNA commonly used as housekeeping gene but not detected in the RNAseq method, was added to the list of housekeeping gene candidates to validate. From qRT-PCR results, 18S and RRP1 were determined to be stably expressed in cells cultured under hypoxic conditions. CONCLUSIONS We have demonstrated that 18S and RRP1 are suitable housekeeping genes for use in hypoxia studies with human adipose-derived stem cell and should be used in combination. Additionally, these data shown that the commonly used GAPDH and PGK1 are not suitable housekeeping genes for investigations into the effect of hypoxia in human adipose-derived stem cell.
Collapse
Affiliation(s)
- Huan Ting Ong
- Ear Science Institute Australia, Nedlands, Western Australia, Australia.
- Ear Sciences Centre, The University of Western Australia, Nedlands, Western Australia, Australia.
| | - Cecilia M Prêle
- Ear Science Institute Australia, Nedlands, Western Australia, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, Western Australia, Australia
- Institute for Respiratory Health, The University of Western Australia, Nedlands, Western Australia, Australia
- Discipline of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Rodney J Dilley
- Ear Science Institute Australia, Nedlands, Western Australia, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, Western Australia, Australia
- Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
4
|
Wu Y, Terekhanova NV, Caravan W, Naser Al Deen N, Lal P, Chen S, Mo CK, Cao S, Li Y, Karpova A, Liu R, Zhao Y, Shinkle A, Strunilin I, Weimholt C, Sato K, Yao L, Serasanambati M, Yang X, Wyczalkowski M, Zhu H, Zhou DC, Jayasinghe RG, Mendez D, Wendl MC, Clark D, Newton C, Ruan Y, Reimers MA, Pachynski RK, Kinsinger C, Jewell S, Chan DW, Zhang H, Chaudhuri AA, Chheda MG, Humphreys BD, Mesri M, Rodriguez H, Hsieh JJ, Ding L, Chen F. Epigenetic and transcriptomic characterization reveals progression markers and essential pathways in clear cell renal cell carcinoma. Nat Commun 2023; 14:1681. [PMID: 36973268 PMCID: PMC10042888 DOI: 10.1038/s41467-023-37211-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Identifying tumor-cell-specific markers and elucidating their epigenetic regulation and spatial heterogeneity provides mechanistic insights into cancer etiology. Here, we perform snRNA-seq and snATAC-seq in 34 and 28 human clear cell renal cell carcinoma (ccRCC) specimens, respectively, with matched bulk proteogenomics data. By identifying 20 tumor-specific markers through a multi-omics tiered approach, we reveal an association between higher ceruloplasmin (CP) expression and reduced survival. CP knockdown, combined with spatial transcriptomics, suggests a role for CP in regulating hyalinized stroma and tumor-stroma interactions in ccRCC. Intratumoral heterogeneity analysis portrays tumor cell-intrinsic inflammation and epithelial-mesenchymal transition (EMT) as two distinguishing features of tumor subpopulations. Finally, BAP1 mutations are associated with widespread reduction of chromatin accessibility, while PBRM1 mutations generally increase accessibility, with the former affecting five times more accessible peaks than the latter. These integrated analyses reveal the cellular architecture of ccRCC, providing insights into key markers and pathways in ccRCC tumorigenesis.
Collapse
Affiliation(s)
- Yige Wu
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Nadezhda V Terekhanova
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Wagma Caravan
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Nataly Naser Al Deen
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Preet Lal
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Siqi Chen
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Chia-Kuei Mo
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Song Cao
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Yize Li
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Alla Karpova
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Ruiyang Liu
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Yanyan Zhao
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Andrew Shinkle
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Ilya Strunilin
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Cody Weimholt
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Kazuhito Sato
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Lijun Yao
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Mamatha Serasanambati
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Xiaolu Yang
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Matthew Wyczalkowski
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Houxiang Zhu
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Daniel Cui Zhou
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Reyka G Jayasinghe
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Daniel Mendez
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Michael C Wendl
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - David Clark
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21231, USA
| | | | - Yijun Ruan
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Melissa A Reimers
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Russell K Pachynski
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chris Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Scott Jewell
- Van Andel Institutes, Grand Rapids, MI, 49503, USA
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Aadel A Chaudhuri
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Milan G Chheda
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Benjamin D Humphreys
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - James J Hsieh
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Li Ding
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA.
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| | - Feng Chen
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
5
|
Chacon-Barahona JA, Salladay-Perez IA, Lanning NJ. Lung Adenocarcinoma Transcriptomic Analysis Predicts Adenylate Kinase Signatures Contributing to Tumor Progression and Negative Patient Prognosis. Metabolites 2021; 11:metabo11120859. [PMID: 34940617 PMCID: PMC8705281 DOI: 10.3390/metabo11120859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
The ability to detect and respond to hypoxia within a developing tumor appears to be a common feature amongst most cancers. This hypoxic response has many molecular drivers, but none as widely studied as Hypoxia-Inducible Factor 1 (HIF-1). Recent evidence suggests that HIF-1 biology within lung adenocarcinoma (LUAD) may be associated with expression levels of adenylate kinases (AKs). Using LUAD patient transcriptome data, we sought to characterize AK gene signatures related to lung cancer hallmarks, such as hypoxia and metabolic reprogramming, to identify conserved biological themes across LUAD tumor progression. Transcriptomic analysis revealed perturbation of HIF-1 targets to correlate with altered expression of most AKs, with AK4 having the strongest correlation. Enrichment analysis of LUAD tumor AK4 gene signatures predicts signatures involved in pyrimidine, and by extension, nucleotide metabolism across all LUAD tumor stages. To further discriminate potential drivers of LUAD tumor progression within AK4 gene signatures, partial least squares discriminant analysis was used at LUAD stage-stage interfaces, identifying candidate genes that may promote LUAD tumor growth or regression. Collectively, these results characterize regulatory gene networks associated with the expression of all nine human AKs that may contribute to underlying metabolic perturbations within LUAD and reveal potential mechanistic insight into the complementary role of AK4 in LUAD tumor development.
Collapse
Affiliation(s)
- Jonathan A. Chacon-Barahona
- Department of Biological Sciences, California State University, Los Angeles, CA 90032, USA; (J.A.C.-B.); (I.A.S.-P.)
| | - Ivan A. Salladay-Perez
- Department of Biological Sciences, California State University, Los Angeles, CA 90032, USA; (J.A.C.-B.); (I.A.S.-P.)
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, CA 94701, USA
| | - Nathan James Lanning
- Department of Biological Sciences, California State University, Los Angeles, CA 90032, USA; (J.A.C.-B.); (I.A.S.-P.)
- Correspondence: ; Tel.: +1-(323)-343-2092
| |
Collapse
|
6
|
Ppia is the most stable housekeeping gene for qRT-PCR normalization in kidneys of three Pkd1-deficient mouse models. Sci Rep 2021; 11:19798. [PMID: 34611276 PMCID: PMC8492864 DOI: 10.1038/s41598-021-99366-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/13/2021] [Indexed: 01/08/2023] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the most common inherited renal disorder, characterized by renal cyst development leading to end-stage renal disease. Although the appropriate choice of suitable reference is critical for quantitative RNA analysis, no comparison of frequently used “housekeeping” genes is available. Here, we determined the validity of 7 candidate housekeeping genes (Actb, Actg1, B2m, Gapdh, Hprt, Pgam1 and Ppia) in kidney tissues from mouse models orthologous to ADPKD, including a cystic mice (CY) 10–12 weeks old (Pkd1flox/flox:Nestincre/Pkd1flox/−:Nestincre, n = 10) and non-cystic (NC) controls (Pkd1flox/flox/Pkd1flox/-, n = 10), Pkd1-haploinsufficient (HT) mice (Pkd1+/−, n = 6) and wild-type (WT) controls (Pkd1+/+, n = 6) and a severely cystic (SC) mice 15 days old (Pkd1V/V, n = 7) and their controls (CO, n = 5). Gene expression data were analyzed using six distinct statistical softwares. The estimation of the ideal number of genes suggested the use of Ppia alone as sufficient, although not ideal, to analyze groups altogether. Actb, Hprt and Ppia expression profiles were correlated in all samples. Ppia was identified as the most stable housekeeping gene, while Gapdh was the least stable for all kidney samples. Stat3 expression level was consistent with upregulation in SC compared to CO when normalized by Ppia expression. In conclusion, present findings identified Ppia as the best housekeeping gene for CY + NC and SC + CO groups, while Hprt was the best for the HT + WT group.
Collapse
|
7
|
Digging deeper through glucose metabolism and its regulators in cancer and metastasis. Life Sci 2020; 264:118603. [PMID: 33091446 DOI: 10.1016/j.lfs.2020.118603] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
Abstract
Glucose metabolism enzymes and transporters play major role in cancer development and metastasis. In this study, we discuss glucose metabolism, transporters, receptors, hormones, oncogenes and tumor suppressors which interact with glucose metabolism and we try to discuss their major role in cancer development and cancer metabolism. We try to highlight the. Metabolic changes in cancer and metastasis upregulation of glycolysis is observed in many primary and metastatic cancers and aerobic glycolysis is the most favorable mechanism for glucose metabolism in cancer cells, and it is a kind of evolutionary change. The question that is posed at this juncture is: Can we use aerobic glycolysis phenotype and enzymes beyond this mechanism in estimating cancer prognosis and metastasis? Lactate is a metabolite of glucose metabolism and it is a key player in cancer and metastasis in both normoxic and hypoxic condition so lactate dehydrogenase can be a good prognostic biomarker. Furthermore, monocarboxylic transporter which is the main lactate transporter can be good target in therapeutic studies. Glycolysis enzymes are valuable enzymes in cancer and metastasis diagnosis and can be used as therapeutic targets in cancer treatment. Designing a diagnostic and prognostic profile for cancer metastasis seems to be possible base on glycolysis enzymes and glucose transporters. Also, glucose metabolism enzymes and agents can give us a clear vision in estimating cancer metastasis. We can promote a panel of genes that detect genetic changes in glucose metabolism agents to diagnose cancer metastasis.
Collapse
|
8
|
Wu LF, Xu GP, Zhao Q, Zhou LJ, Wang D, Chen WX. The association between hypoxia inducible factor 1 subunit alpha gene rs2057482 polymorphism and cancer risk: a meta-analysis. BMC Cancer 2019; 19:1123. [PMID: 31744467 PMCID: PMC6862742 DOI: 10.1186/s12885-019-6329-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Background The rs2057482 polymorphism in the hypoxia inducible factor 1 subunit alpha (HIF1A) gene has been reported to be associated with a risk of several types of cancer, but this association has not yet been definitively confirmed. We performed this meta-analysis to determine whether rs2057482 is associated with overall cancer risk. Methods The PubMed, Embase, and Web of Science databases were searched for the potential studies about the association between the rs2057482 and cancer risk. The data of genotype frequencies in cases with cancer and controls were extracted from the selected studies. Odds ratios (ORs) and the corresponding 95% confidence intervals (CIs) were calculated to determine the strength of the associations. Results The meta-analysis showed an association between the rs2057482 polymorphism and overall cancer risk. However, a stratified analysis of ethnicity did not show any significant association between rs2057482 and cancer risk in the Asian population. Conclusions The rs2057482 polymorphism was associated with decreased overall cancer risk, based on the currently available studies. However, this conclusion needs verification by further well-designed epidemiology studies that examine different cancer types and more subjects.
Collapse
Affiliation(s)
- Li-Fang Wu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Gui-Ping Xu
- Transfusion Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Zhao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Li-Jing Zhou
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Ding Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Wei-Xian Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
9
|
Regulation of glyceraldehyde-3-phosphate dehydrogenase by hypoxia inducible factor 1 in the white shrimp Litopenaeus vannamei during hypoxia and reoxygenation. Comp Biochem Physiol A Mol Integr Physiol 2019; 235:56-65. [PMID: 31100464 DOI: 10.1016/j.cbpa.2019.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/15/2022]
Abstract
Hypoxia is a frequent source of stress in the estuarine habitat of the white shrimp Litopenaeus vannamei. During hypoxia, L. vannamei gill cells rely more heavily on anaerobic glycolysis to obtain ATP. This is mediated by transcriptional up-regulation of glycolytic enzymes including glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The hypoxia inducible factor 1 (HIF-1) is an important transcriptional activator of several glycolytic enzymes during hypoxia in diverse animals, including crustaceans. In this work, we cloned and sequenced a fragment corresponding to the 5' flank of the GAPDH gene and identified a putative HIF-1 binding site, as well as sites for other transcription factors involved in the hypoxia signaling pathway. To investigate the role of HIF-1 in GAPDH regulation, we simultaneously injected double-stranded RNA (dsRNA) into shrimp to silence HIF-1α and HIF-1β under normoxia, hypoxia, and hypoxia followed by reoxygenation, and then measured gill HIF-1α, HIF-1β expression, GAPDH expression and activity, and glucose and lactate concentrations at 0, 3, 24 and 48 h. During normoxia, HIF-1 silencing induced up-regulation of GAPDH transcripts and activity, suggesting that expression is down-regulated via HIF-1 under these conditions. In contrast, HIF-1 silencing during hypoxia abolished the increases in GAPDH expression and activity, glucose and lactate concentrations. Finally, HIF-1 silencing during hypoxia-reoxygenation prevented the increase in GAPDH expression, however, those changes were not reflected in GAPDH activity and lactate accumulation. Altogether, these results indicate that GAPDH and glycolysis are transcriptionally regulated by HIF-1 in gills of white shrimp.
Collapse
|
10
|
Sirover MA. Pleiotropic effects of moonlighting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in cancer progression, invasiveness, and metastases. Cancer Metastasis Rev 2019; 37:665-676. [PMID: 30209795 DOI: 10.1007/s10555-018-9764-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) may represent the quintessential example of a moonlighting protein. The latter are a new, intriguing class of cell proteins which exhibit multiple activities in different subcellular locales apart from their initially, well-characterized function. As such, apart from its classical role in energy production, membrane-bound GAPDH is required for membrane fusion, endocytosis and, intriguingly, for iron transport. Cytoplasmic GAPDH regulates mRNA stability and is required for ER to Golgi trafficking. Nuclear GAPDH is involved in apoptosis, transcriptional gene regulation, the maintenance of DNA integrity, as well as nuclear tRNA export. Paradoxically, the etiology of a number of human pathologies is dependent upon GAPDH structure and function. In particular, recent evidence indicates a significant role for moonlighting GAPDH in tumorigenesis. Specifically, these include its role in the survival of tumor cells, in tumor angiogenesis, as well as its control of tumor cell gene expression and posttranscriptional regulation of tumor cell mRNA. Each of these activities correlates with increased tumor progression and, unfortunately, a poor prognosis for the afflicted individual.
Collapse
Affiliation(s)
- Michael A Sirover
- Department of Pharmacology, The Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19047, USA.
| |
Collapse
|
11
|
Repression of Human Papillomavirus Oncogene Expression under Hypoxia Is Mediated by PI3K/mTORC2/AKT Signaling. mBio 2019; 10:mBio.02323-18. [PMID: 30755508 PMCID: PMC6372795 DOI: 10.1128/mbio.02323-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oncogenic HPV types are major human carcinogens. Under hypoxia, HPV-positive cancer cells can repress the viral E6/E7 oncogenes and induce a reversible growth arrest. This response could contribute to therapy resistance, immune evasion, and tumor recurrence upon reoxygenation. Here, we uncover evidence that HPV oncogene repression is mediated by hypoxia-induced activation of canonical PI3K/mTORC2/AKT signaling. AKT-dependent downregulation of E6/E7 is only observed under hypoxia and occurs, at least in part, at the transcriptional level. Quantitative proteome analyses identify additional factors as candidates to be involved in AKT-dependent E6/E7 repression and/or hypoxic PI3K/mTORC2/AKT activation. These results connect PI3K/mTORC2/AKT signaling with HPV oncogene regulation, providing new mechanistic insights into the cross talk between oncogenic HPVs and their host cells. Hypoxia is linked to therapeutic resistance and poor clinical prognosis for many tumor entities, including human papillomavirus (HPV)-positive cancers. Notably, HPV-positive cancer cells can induce a dormant state under hypoxia, characterized by a reversible growth arrest and strong repression of viral E6/E7 oncogene expression, which could contribute to therapy resistance, immune evasion and tumor recurrence. The present work aimed to gain mechanistic insights into the pathway(s) underlying HPV oncogene repression under hypoxia. We show that E6/E7 downregulation is mediated by hypoxia-induced stimulation of AKT signaling. Ablating AKT function in hypoxic HPV-positive cancer cells by using chemical inhibitors efficiently counteracts E6/E7 repression. Isoform-specific activation or downregulation of AKT1 and AKT2 reveals that both AKT isoforms contribute to hypoxic E6/E7 repression and act in a functionally redundant manner. Hypoxic AKT activation and consecutive E6/E7 repression is dependent on the activities of the canonical upstream AKT regulators phosphoinositide 3-kinase (PI3K) and mechanistic target of rapamycin (mTOR) complex 2 (mTORC2). Hypoxic downregulation of E6/E7 occurs, at least in part, at the transcriptional level. Modulation of E6/E7 expression by the PI3K/mTORC2/AKT cascade is hypoxia specific and not observed in normoxic HPV-positive cancer cells. Quantitative proteome analyses identify additional factors as candidates to be involved in hypoxia-induced activation of the PI3K/mTORC2/AKT signaling cascade and in the AKT-dependent repression of the E6/E7 oncogenes under hypoxia. Collectively, these data uncover a functional key role of the PI3K/mTORC2/AKT signaling cascade for viral oncogene repression in hypoxic HPV-positive cancer cells and provide new insights into the poorly understood cross talk between oncogenic HPVs and their host cells under hypoxia.
Collapse
|
12
|
El-Kashef N, Gomes I, Mercer-Chalmers-Bender K, Schneider PM, Rothschild MA, Juebner M. Comparative proteome analysis for identification of differentially abundant proteins in SIDS. Int J Legal Med 2017; 131:1597-1613. [DOI: 10.1007/s00414-017-1632-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 07/04/2017] [Indexed: 12/01/2022]
|
13
|
Javan B, Shahbazi M. Hypoxia-inducible tumour-specific promoters as a dual-targeting transcriptional regulation system for cancer gene therapy. Ecancermedicalscience 2017; 11:751. [PMID: 28798809 PMCID: PMC5533602 DOI: 10.3332/ecancer.2017.751] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Indexed: 12/25/2022] Open
Abstract
Transcriptional targeting is the best approach for specific gene therapy. Hypoxia is a common feature of the tumour microenvironment. Therefore, targeting gene expression in hypoxic cells by placing transgene under the control of a hypoxia-responsive promoter can be a good strategy for cancer-specific gene therapy. The hypoxia-inducible gene expression system has been investigated more in suicide gene therapy and it can also be of great help in knocking down cancer gene therapy with siRNAs. However, this system needs to be optimised to have maximum efficacy with minimum side effects in normal tissues. The combination of tissue-/tumour-specific promoters with HRE core sequences has been found to enhance the specificity and efficacy of this system. In this review, hypoxia-inducible gene expression system as well as gene therapy strategies targeting tumour hypoxia will be discussed. This review will also focus on hypoxia-inducible tumour-specific promoters as a dual-targeting transcriptional regulation systems developed for cancer-specific gene therapy.
Collapse
Affiliation(s)
- Bita Javan
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan 4934174515, Iran
| | - Majid Shahbazi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan 4934174515, Iran
| |
Collapse
|
14
|
Comprehensive Transcriptome Analysis of Six Catfish Species from an Altitude Gradient Reveals Adaptive Evolution in Tibetan Fishes. G3-GENES GENOMES GENETICS 2015; 6:141-8. [PMID: 26564948 PMCID: PMC4704712 DOI: 10.1534/g3.115.024448] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Glyptosternoid fishes (Siluriformes), one of the three broad fish lineages (the two other are schizothoracines and Triplophysa), have a limited distribution in the rivers in the Tibetan Plateau and peripheral regions. To investigate the genetic mechanisms underlying adaptation to the Tibetan Plateau in several fish species from gradient altitudes, a total of 20,659,183–37,166,756 sequence reads from six species of catfish were generated by Illumina sequencing, resulting in six assemblies. Analysis of the 1,656 orthologs among the six assembled catfish unigene sets provided consistent evidence for genome-wide accelerated evolution in the three glyptosternoid lineages living at high altitudes. A large number of genes refer to functional categories related to hypoxia and energy metabolism exhibited rapid evolution in the glyptosternoid lineages relative to yellowhead catfish living in plains areas. Genes showing signatures of rapid evolution and positive selection in the glyptosternoid lineages were also enriched in functions associated with energy metabolism and hypoxia. Our analyses provide novel insights into highland adaptation in fishes and can serve as a foundation for future studies aiming to identify candidate genes underlying the genetic basis of adaptation in Tibetan fishes.
Collapse
|
15
|
Beloiartsev A, da Glória Rodrigues-Machado M, Zhou GL, Tan TC, Zazzeron L, Tainsh RE, Leyton P, Jones RC, Scherrer-Crosbie M, Zapol WM. Pulmonary hypertension after prolonged hypoxic exposure in mice with a congenital deficiency of Cyp2j. Am J Respir Cell Mol Biol 2015; 52:563-70. [PMID: 25233285 DOI: 10.1165/rcmb.2013-0482oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cytochrome P450 epoxygenase-derived epoxyeicosatrienoic acids contribute to the regulation of pulmonary vascular tone and hypoxic pulmonary vasoconstriction. We investigated whether the attenuated acute vasoconstrictor response to hypoxic exposure of Cyp2j(-/-) mice would protect these mice against the pulmonary vascular remodeling and hypertension associated with prolonged exposure to hypoxia. Cyp2j(-/-) and Cyp2j(+/+) male and female mice continuously breathed an inspired oxygen fraction of 0.21 (normoxia) or 0.10 (hypoxia) in a normobaric chamber for 6 weeks. We assessed hemoglobin (Hb) concentrations, right ventricular (RV) systolic pressure (RVSP), and transthoracic echocardiographic parameters (pulmonary acceleration time [PAT] and RV wall thickness). Pulmonary Cyp2c29, Cyp2c38, and sEH mRNA levels were measured in Cyp2j(-/-) and Cyp2j(+/+) male mice. At baseline, Cyp2j(-/-) and Cyp2j(+/+) mice had similar Hb levels and RVSP while breathing air. After 6 weeks of hypoxia, circulating Hb concentrations increased but did not differ between Cyp2j(-/-) and Cyp2j(+/+) mice. Chronic hypoxia increased RVSP in Cyp2j(-/-) and Cyp2j(+/+) mice of either gender. Exposure to chronic hypoxia decreased PAT and increased RV wall thickness in both genotypes and genders to a similar extent. Prolonged exposure to hypoxia produced similar levels of RV hypertrophy in both genotypes of either gender. Pulmonary Cyp2c29, Cyp2c38, and sEH mRNA levels did not differ between Cyp2j(-/-) and Cyp2j(+/+) male mice after breathing at normoxia or hypoxia for 6 weeks. These results suggest that murine Cyp2j deficiency does not attenuate the development of murine pulmonary vascular remodeling and hypertension associated with prolonged exposure to hypoxia in mice of both genders.
Collapse
Affiliation(s)
- Arkadi Beloiartsev
- 1 Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Unwith S, Zhao H, Hennah L, Ma D. The potential role of HIF on tumour progression and dissemination. Int J Cancer 2014; 136:2491-503. [PMID: 24729302 DOI: 10.1002/ijc.28889] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/07/2014] [Accepted: 04/03/2014] [Indexed: 12/20/2022]
Abstract
Cancer is the second cause of mortality worldwide, primarily owing to failure to cure metastatic disease. The need to target the metastatic process to reduce mortality is clear and research over the past decade has shown hypoxia-inducible factor-1 (HIF-1) to be one of the promising targets. In order for metastatic disease to be established, multiple steps need to be taken whereby the tumour cells escape into the bloodstream and survive, disseminate and then establish at a premetastatic niche. HIF-1 mediates hypoxia-induced proangiogenic factors such as vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF), which promote extravasation and chemotaxis. The migration of tumour cells is mediated by loss of E-cadherin, which results in a more invasive phenotype; dissemination of the tumour cells by increased vascular permeability and survival in the bloodstream through resistance to apoptosis as well as adhesion at the premetastatic niche are all controlled by factors under the influence of HIF-1. The overexpression of HIF in many aggressive cancer types as well as its role in the establishment of metastatic disease and treatment resistance demonstrate its potential target in therapeutics. Taken together, the role of HIF-1 in cancer and metastatic disease is clear and the need for better treatment targeting metastases is paramount; more aggressive phenotypes with less response to treatment are associated with HIF-1 expression. Our research has shown promise but many questions still remain to be answered.
Collapse
Affiliation(s)
- Sandeep Unwith
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and, Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, United Kingdom
| | | | | | | |
Collapse
|
17
|
Hu X, Wu R, Shehadeh LA, Zhou Q, Jiang C, Huang X, Zhang L, Gao F, Liu X, Yu H, Webster KA, Wang J. Severe hypoxia exerts parallel and cell-specific regulation of gene expression and alternative splicing in human mesenchymal stem cells. BMC Genomics 2014; 15:303. [PMID: 24758227 PMCID: PMC4234502 DOI: 10.1186/1471-2164-15-303] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 04/16/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The endosteum of the bone marrow provides a specialized hypoxic niche that may serve to preserve the integrity, pluripotency, longevity and stemness of resident mesenchymal stem cells (MSCs). To explore the molecular genetic consequences of such a niche we subjected human (h) MSCs to a pO2 of 4 mmHg and analyzed global gene expression and alternative splicing (AS) by genome-exon microarray and RT-qPCR, and phenotype by western blot and immunostaining. RESULTS Out of 446 genes differentially regulated by >2.5-fold, down-regulated genes outnumbered up-regulated genes by 243:203. Exon analyses revealed 60 hypoxia-regulated AS events with splice indices (SI) >1.0 from 53 genes and a correlation between high SI and degree of transcript regulation. Parallel analyses of a publicly available AS study on human umbilical vein endothelial cells (HUVECs) showed that there was a strong cell-specific component with only 11 genes commonly regulated in hMSCs and HUVECs and 17 common differentially spliced genes. Only 3 genes were differentially responsive to hypoxia at the gene (>2.0) and AS levels in both cell types. Functional assignments revealed unique profiles of gene expression with complex regulation of differentiation, extracellular matrix, intermediate filament and metabolic marker genes. Antioxidant genes, striated muscle genes and insulin/IGF-1 signaling intermediates were down-regulated. There was a coordinate induction of 9 out of 12 acidic keratins that along with other epithelial and cell adhesion markers implies a partial mesenchymal to epithelial transition. CONCLUSIONS We conclude that severe hypoxia confers a quiescent phenotype in hMSCs that is reflected by both the transcriptome profile and gene-specific changes of splicosome actions. The results reveal that severe hypoxia imposes markedly different patterns of gene regulation of MSCs compared with more moderate hypoxia. This is the first study to report hypoxia-regulation of AS in stem/progenitor cells and the first molecular genetic characterization of MSC in a hypoxia-induced quiescent immobile state.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Keith A Webster
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, P,R, China.
| | | |
Collapse
|
18
|
Kim HA, Park JH, Yi N, Lee M. Delivery of hypoxia and glioma dual-specific suicide gene using dexamethasone conjugated polyethylenimine for glioblastoma-specific gene therapy. Mol Pharm 2014; 11:938-50. [PMID: 24467192 DOI: 10.1021/mp4006003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Gene therapy has been considered a promising approach for glioblastoma therapy. To avoid side effects and increase the specificity of gene expression, gene expression should be tightly regulated. In this study, glioma and hypoxia dual-specific plasmids (pEpo-NI2-SV-Luc and pEpo-NI2-SV-HSVtk) were developed by combining the erythropoietin (Epo) enhancer and nestin intron 2 (NI2). In the in vitro studies, pEpo-NI2-SV-Luc showed higher gene expression under hypoxia than normoxia in a glioblastoma-specific manner. The MTT and caspase assays demonstrated that pEpo-NI2-SV-HSVtk specifically induced caspase activity and cell death in hypoxic glioblastoma cells. For in vivo evaluation, subcutaneous and intracranial glioblastoma models were established. Dexamethasone-conjugated-polyethylenimine (PEI-Dexa) was used as a gene carrier, since PEI-Dexa efficiently delivers plasmid to glioblastoma cells and also has an antitumor effect due to the effect of dexamethasone. In the in vivo study in the subcutaneous and intracranial glioblastoma models, the tumor size was reduced more effectively in the pEpo-NI2-SV-HSVtk group than in the control and pSV-HSVtk groups. In addition, higher levels of HSVtk gene expression and TUNEL-positive cells were observed in the pEpo-NI2-SV-HSVtk group compared with the control and pSV-HSVtk groups, suggesting that pEpo-NI2-SV-HSVtk increased the therapeutic efficacy in hypoxic glioblastoma. Therefore, pEpo-NI2-SV-HSVtk/PEI-Dexa complex may be useful for glioblastoma-specific gene therapy.
Collapse
Affiliation(s)
- Hyun Ah Kim
- Department of Bioengineering, College of Engineering, Hanyang University , Seoul 133-791, Republic of Korea
| | | | | | | |
Collapse
|
19
|
Hypoxia as a target for tissue specific gene therapy. J Control Release 2013; 172:484-94. [DOI: 10.1016/j.jconrel.2013.05.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/13/2013] [Accepted: 05/24/2013] [Indexed: 12/28/2022]
|
20
|
Harn HJ, Chen YL, Lin PC, Cheng YL, Lee SC, Chiou TW, Yang HH. Exploration of Potential Tumor Markers for Lung Adenocarcinomas by Two-Dimensional Gel Electrophoresis Coupled with Nano-LC/MS/MS. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201000029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Tumor hypoxia and metabolism -- towards novel anticancer approaches. ANNALES D'ENDOCRINOLOGIE 2013; 74:111-4. [PMID: 23597945 DOI: 10.1016/j.ando.2013.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The transcription factor hypoxia-inducible factor-1 (HIF-1) facilitates the induction of enzymes necessary for regulation of biological processes required for cell survival and the acquisition of an aggressive and invasive phenotype, such as regulation of the intracellular pH (pHi), anaerobic glycolysis, angiogenesis, migration/invasion... In this presentation, we will highlight some of the HIF-1-induced gene products - carbonic anhydrases IX and XII (CAs) and monocarboxylate transporters (MCTs) - which regulate the pHi by controlling export of metabolically-generated acids (carbonic and lactic acids). We reported that targeting these pHi-regulated processes through inhibition of either HIF-1-induced CAIX/CAXII or HIF-1-induced MCT4, MCT1 or Basigin/EMMPRIN/CD147 chaperone of MCTs, severely restricts glycolysis-generated ATP levels and tumor growth. In addition, we demonstrated that the Myc/HIF-1-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzing a key step producing the NADH cofactor, activates the Akt pathway, thereby upregulating expression of the anti-apoptotic Bcl-xL. As a consequence, high expression of GAPDH contributes to tumor aggressiveness, in particular in the context Myc-driven B lymphomas. We propose that membrane-bound carbonic anhydrases (CAIX, CAXII), monocarboxylate transporters/chaperon Basigin (Myc-induced MCT1 and HIF-induced-MCT4) and GAPDH that are associated with exacerbated tumor metabolism, represent new potential targets for anticancer therapy.
Collapse
|
22
|
Li R, Shen Y. An old method facing a new challenge: re-visiting housekeeping proteins as internal reference control for neuroscience research. Life Sci 2013; 92:747-51. [PMID: 23454168 DOI: 10.1016/j.lfs.2013.02.014] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/08/2013] [Accepted: 02/18/2013] [Indexed: 01/09/2023]
Abstract
The study of specific target protein expression is often performed by western blotting, a commonly used method to measure the protein expression in neuroscience research by specific antibodies. Housekeeping proteins are used as an internal control for protein loading as well as reference in the western blotting analysis. This practice is based on the belief that such housekeeping genes are considered to be ubiquitously and constitutively expressed in every tissue and produce the minimal essential transcripts necessary for normal cellular function. The most commonly used housekeeping proteins are β-actin, β-tubulin, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). However, recent studies have shown significant variation in some housekeeping genes both at the mRNA and protein levels in various neuropathological events, such as spinal cord injury and Alzheimer's diseases. Changes of housekeeping genes are also induced by non-neuronal diseases in various tissues. Therefore, these discoveries raise a potential concern regarding whether using a housekeeping protein as an internal standard for target protein analysis is an appropriate practice. This minireview will focus on (I) the effects of neuronal and non-neuronal diseases, experimental condition, and tissue-specific roles on alteration of housekeeping genes, and (II) alternative internal standards for gene and protein expression analysis.
Collapse
Affiliation(s)
- Rena Li
- Center for Hormone Advanced Science and Education, Roskamp Institute, Sarasota, FL 34243, USA.
| | | |
Collapse
|
23
|
|
24
|
Apparent versus true gene expression changes of three hypoxia-related genes in autopsy derived tissue and the importance of normalisation. Int J Legal Med 2012; 127:335-44. [DOI: 10.1007/s00414-012-0787-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 10/16/2012] [Indexed: 01/21/2023]
|
25
|
Lao YM, Lu Y, Jiang JG, Luo LX. Six regulatory elements lying in the promoter region imply the functional diversity of chloroplast GAPDH in Duanliella bardawil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9211-9220. [PMID: 22906227 DOI: 10.1021/jf302659z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a well-known proverbial protein involved in various functions in vivo. The functional diversity of GAPDH from Dunaliella bardawil (DbGAPDH) may relate to the regulatory elements lying in the promoter at the transcriptional level. Using RT-PCR and RACE reactions, gapdh cDNA was isolated, and the full-length genomic sequence was obtained by LA-PCR-based genome walking. The full-length cDNA sequence was 1645 bp containing an 1128 bp putative open reading frame (ORF), which coded a 375 amino acids-deduced polypeptide whose molecular weight was 40.27 kDa computationally. Protein conserved domain search and structural computation found that DbGAPDH consists of two structural conserved domains highly homologous in most species; multiple sequence alignment discovered two positive charge residues (Lys164 and Arg 233), which play a critical role in the protein-protein interaction between GAPDH, phosphoribulokinase (PRK), and CP12. Phylogenetic analysis demonstrated that DbGAPDH has a closer relationship with analogues from algae and higher plants than with those from other species. In silico analysis of the promoter region revealed six potential regulatory elements might be involved in four hypothesized functions characterized by chloroplast GAPDH: oxygen-, light-, pathogen-, and cold-induced regulation. These results might supply some hints for the functional diversity mechanisms of DbGAPDH, and fresh information for further research to bridge the gap between our knowledge of DNA and protein structure and our understanding of functional biology in GAPDH regulation.
Collapse
Affiliation(s)
- Yong-Min Lao
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | | | | | | |
Collapse
|
26
|
Drabovich AP, Pavlou MP, Dimitromanolakis A, Diamandis EP. Quantitative analysis of energy metabolic pathways in MCF-7 breast cancer cells by selected reaction monitoring assay. Mol Cell Proteomics 2012; 11:422-34. [PMID: 22535206 DOI: 10.1074/mcp.m111.015214] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the quantitative response of energy metabolic pathways in human MCF-7 breast cancer cells to hypoxia, glucose deprivation, and estradiol stimulation, we developed a targeted proteomics assay for accurate quantification of protein expression in glycolysis/gluconeogenesis, TCA cycle, and pentose phosphate pathways. Cell growth conditions were selected to roughly mimic the exposure of cells in the cancer tissue to the intermittent hypoxia, glucose deprivation, and hormonal stimulation. Targeted proteomics assay allowed for reproducible quantification of 76 proteins in four different growth conditions after 24 and 48 h of perturbation. Differential expression of a number of control and metabolic pathway proteins in response to the change of growth conditions was found. Elevated expression of the majority of glycolytic enzymes was observed in hypoxia. Cancer cells, as opposed to near-normal MCF-10A cells, exhibited significantly increased expression of key energy metabolic pathway enzymes (FBP1, IDH2, and G6PD) that are known to redirect cellular metabolism and increase carbon flux through the pentose phosphate pathway. Our quantitative proteomic protocol is based on a mass spectrometry-compatible acid-labile detergent and is described in detail. Optimized parameters of a multiplex selected reaction monitoring (SRM) assay for 76 proteins, 134 proteotypic peptides, and 401 transitions are included and can be downloaded and used with any SRM-compatible mass spectrometer. The presented workflow is an integrated tool for hypothesis-driven studies of mammalian cells as well as functional studies of proteins, and can greatly complement experimental methods in systems biology, metabolic engineering, and metabolic transformation of cancer cells.
Collapse
Affiliation(s)
- Andrei P Drabovich
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada
| | | | | | | |
Collapse
|
27
|
Kim HA, Rhim T, Lee M. Regulatory systems for hypoxia-inducible gene expression in ischemic heart disease gene therapy. Adv Drug Deliv Rev 2011; 63:678-87. [PMID: 21241757 DOI: 10.1016/j.addr.2011.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 12/29/2010] [Accepted: 01/05/2011] [Indexed: 12/30/2022]
Abstract
Ischemic heart diseases are caused by narrowed coronary arteries that decrease the blood supply to the myocardium. In the ischemic myocardium, hypoxia-responsive genes are up-regulated by hypoxia-inducible factor-1 (HIF-1). Gene therapy for ischemic heart diseases uses genes encoding angiogenic growth factors and anti-apoptotic proteins as therapeutic genes. These genes increase blood supply into the myocardium by angiogenesis and protect cardiomyocytes from cell death. However, non-specific expression of these genes in normal tissues may be harmful, since growth factors and anti-apoptotic proteins may induce tumor growth. Therefore, tight gene regulation is required to limit gene expression to ischemic tissues, to avoid unwanted side effects. For this purpose, various gene expression strategies have been developed for ischemic-specific gene expression. Transcriptional, post-transcriptional, and post-translational regulatory strategies have been developed and evaluated in ischemic heart disease animal models. The regulatory systems can limit therapeutic gene expression to ischemic tissues and increase the efficiency of gene therapy. In this review, recent progresses in ischemic-specific gene expression systems are presented, and their applications to ischemic heart diseases are discussed.
Collapse
|
28
|
Rezvani HR, Ali N, Nissen LJ, Harfouche G, de Verneuil H, Taïeb A, Mazurier F. HIF-1α in epidermis: oxygen sensing, cutaneous angiogenesis, cancer, and non-cancer disorders. J Invest Dermatol 2011; 131:1793-805. [PMID: 21633368 DOI: 10.1038/jid.2011.141] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Besides lung, postnatal human epidermis is the only epithelium in direct contact with atmospheric oxygen. Skin epidermal oxygenation occurs mostly through atmospheric oxygen rather than tissue vasculature, resulting in a mildly hypoxic microenvironment that favors increased expression of hypoxia-inducible factor-1α (HIF-1α). Considering the wide spectrum of biological processes, such as angiogenesis, inflammation, bioenergetics, proliferation, motility, and apoptosis, that are regulated by this transcription factor, its high expression level in the epidermis might be important to HIF-1α in skin physiology and pathophysiology. Here, we review the role of HIF-1α in cutaneous angiogenesis, skin tumorigenesis, and several skin disorders.
Collapse
|
29
|
Up-regulation of glyceraldehyde-3-phosphate dehydrogenase gene expression by HIF-1 activity depending on Sp1 in hypoxic breast cancer cells. Arch Biochem Biophys 2011; 509:1-8. [DOI: 10.1016/j.abb.2011.02.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/26/2011] [Accepted: 02/13/2011] [Indexed: 11/22/2022]
|
30
|
Mazurek B, Amarjargal N, Haupt H, Fuchs J, Olze H, Machulik A, Gross J. Expression of genes implicated in oxidative stress in the cochlea of newborn rats. Hear Res 2011; 277:54-60. [PMID: 21447374 DOI: 10.1016/j.heares.2011.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 03/16/2011] [Accepted: 03/17/2011] [Indexed: 01/03/2023]
Abstract
Oxidative stress is an important mechanism inducing ototoxicity-, age- and noise-induced hearing loss. To better understand this phenomenon, we examined cochlear tissues for the expression of following genes involved directly or indirectly in the oxidative stress response: glyceraldehyde-3-phosphate dehydrogenase (Gapdh); solute carrier family-2 (facilitated glucose transporter), member-1 (Slc2a1); heme oxygenase-1 (Hmox1); heme oxygenase-2 (Hmox2); inducible nitric oxide synthase-2 (Nos2); transferrin (Tf); transferrin receptor (Tfrc); glutathione S-transferase A3 (Gsta3) and metallothionein-1a (Mt1a). Cochlear tissues were dissected from the p3-p5 Wistar rats, divided into the organ of Corti (OC), modiolus (MOD) and stria vascularis together with spiral ligament (SV + SL) and processed immediately or cultured under normoxic conditions or a short-term, mild hypoxia followed by re-oxygenation. After 24 h, explants were collected and total RNA isolated, transcribed and amplified in the real time RT-PCR. We found all genes listed above expressed in the freshly isolated cochlear tissues. In the OC and MOD, Slc2a1, Tf, and Mt1a were expressed on a lower level than in the SV + SL. In the OC, Hmox1 was expressed on a lower level than in the MOD and SV + SL. Hypoxic and normoxic cultures increased the transcript number of Gapdh, Slc2a1 and Hmox1 in all cochlear tissues. The expression of Nos2, Tf, Gsta3 and Mt1a increased in a tissue-specific manner. In the SV + SL, Mt1a expression decreased after normoxic and hypoxic conditions. Taken together, using real time RT-PCR, our results imply that oxidative stress may be an important component of cochlear injury during the developing period. In spite of the immaturity of the tissue, a differential response of antioxidant enzymes/proteins with respect to the pathway, the expression levels and regions was observed.
Collapse
Affiliation(s)
- Birgit Mazurek
- Molecular Biology Research Laboratory, Department of Otorhinolaryngology CCM, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
31
|
Semenza GL. Oxygen homeostasis. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 2:336-361. [PMID: 20836033 DOI: 10.1002/wsbm.69] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metazoan life is dependent upon the utilization of O(2) for essential metabolic processes and oxygen homeostasis is an organizing principle for understanding metazoan evolution, ontology, physiology, and pathology. Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that is expressed by all metazoan species and functions as a master regulator of oxygen homeostasis. Recent studies have elucidated complex mechanisms by which HIF-1 activity is regulated and by which HIF-1 regulates gene expression, with profound consequences for prenatal development, postnatal physiology, and disease pathogenesis.
Collapse
Affiliation(s)
- Gregg L Semenza
- Vascular Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MA 21205, USA.,Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, and Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MA 21205, USA.,McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MA 21205, USA
| |
Collapse
|
32
|
Kammili RK, Taylor DG, Xia J, Osuala K, Thompson K, Menick DR, Ebert SN. Generation of novel reporter stem cells and their application for molecular imaging of cardiac-differentiated stem cells in vivo. Stem Cells Dev 2011; 19:1437-48. [PMID: 20109065 DOI: 10.1089/scd.2009.0308] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stem cell therapies offer the potential for repair and regeneration of cardiac tissue. To facilitate evaluation of stem cell activity in vivo, we created novel dual-reporter mouse embryonic stem (mES) cell lines that express the firefly luciferase (LUC) reporter gene under the control of the cardiac sodium-calcium exchanger-1 (Ncx-1) promoter in the background of the 7AC5-EYFP mES cell line that constitutively expresses the enhanced yellow fluorescent protein (EYFP). We compared the ability of recombinant clonal cell lines to express LUC before and after induction of cardiac differentiation in vitro. In particular, one of the clonal cell lines (Ncx-1-43LUC mES cells) showed markedly enhanced LUC expression (45-fold increase) upon induction of cardiac differentiation in vitro. Further, cardiac differentiation in these cells was perpetuated over a period of 2-4 weeks after transplantation in a neonatal mouse heart model, as monitored by noninvasive bioluminescence imaging (BLI) and confirmed via postmortem immunofluorescence and histological assessments. In contrast, transplantation of undifferentiated pluripotent Ncx-1-43LUC mES cells in neonatal hearts did not result in detectable levels of cardiac differentiation in these cells in vivo. These results suggest that prior induction of cardiac differentiation in vitro enhances development and maintenance of a cardiomyocyte-like phenotype for mES cells following transplantation into neonatal mouse hearts in vivo. We conclude that the Ncx-1-43LUC mES cell line is a novel tool for monitoring early cardiac differentiation in vivo using noninvasive BLI.
Collapse
Affiliation(s)
- Ramana K Kammili
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Mitani T, Yamaji R, Higashimura Y, Harada N, Nakano Y, Inui H. Hypoxia enhances transcriptional activity of androgen receptor through hypoxia-inducible factor-1α in a low androgen environment. J Steroid Biochem Mol Biol 2011; 123:58-64. [PMID: 21056661 DOI: 10.1016/j.jsbmb.2010.10.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 11/24/2022]
Abstract
The androgen receptor (AR) acts as a ligand-dependent transcriptional factor controlling development or progression of prostate cancer. Androgen ablation by castration is an effective therapy for prostate cancer, whereas eventually most of the tumors convert from a hormone-sensitive to a hormone-refractory disease state and grow even in a low androgen environment (e.g., 0.1nM 5α-dihydrotestosterone (DHT)) like the castration-resistant stage. Androgen ablation results in hypoxia, and solid tumors possess hypoxic environments. Hypoxia-inducible factor (HIF)-1, which is composed of HIF-1α and HIF-1β/ARNT subunits, functions as a master transcription factor for hypoxia-inducible genes. Here, we report that hypoxia enhances AR transactivation in the presence of 0.05 and 0.1nM DHT in LNCaP prostate cancer cells. siRNA-mediated knockdown of HIF-1α inhibited hypoxia-enhanced AR transactivation. Its inhibition by HIF-1α siRNA was canceled by expression of a siRNA-resistant form of HIF-1α. HIF-1α siRNA repressed hypoxia-stimulated expression of the androgen-responsive NKX3.1 gene in the presence of 0.1nM DHT, but not in the absence of DHT. In hypoxia, HIF-1α siRNA-repressed AR transactivation was restored in mutants in which HIF-1α lacked DNA-binding activity. Furthermore, a dominant negative form of HIF-1α canceled hypoxia-enhanced AR transactivation, and HIF-1β/ARNT siRNAs had no influence on hypoxia-enhanced AR transactivation. These results indicate that hypoxia leads to HIF-1α-mediated AR transactivation independent of HIF-1 activity and that HIF-1β/ARNT is not necessarily required for the transactivation.
Collapse
Affiliation(s)
- Takakazu Mitani
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 5998531, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Glyceraldehyde-3-phosphate dehydrogenase expression is altered by hypoxia in melanoma cells and primary human melanocytes. Melanoma Res 2010; 20:61-3. [PMID: 20051782 DOI: 10.1097/cmr.0b013e328333d8c2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
35
|
Chen JK, Zhan YJ, Yang CS, Tzeng SF. Oxidative stress-induced attenuation of thrombospondin-1 expression in primary rat astrocytes. J Cell Biochem 2010; 112:59-70. [DOI: 10.1002/jcb.22732] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Behringer EJ, Leite LD, Buchholz NE, Keeney MG, Pearce WJ, Vanterpool CK, Wilson SM, Buchholz JN. Maturation and long-term hypoxia alters Ca2+-induced Ca2+ release in sheep cerebrovascular sympathetic neurons. J Appl Physiol (1985) 2009; 107:1223-34. [PMID: 19644029 PMCID: PMC2763832 DOI: 10.1152/japplphysiol.00363.2009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 07/24/2009] [Indexed: 11/22/2022] Open
Abstract
The contribution of sympathetic nerves arising from the superior cervical ganglia (SCG) toward the growth and function of cerebral blood vessels is pertinent throughout maturation as well as in response to cardiovascular stress imposed by high-altitude long-term hypoxia (LTH). The function of SCG sympathetic neurons is dependent on intracellular Ca2+ concentration ([Ca2+]i) signaling, which is strongly influenced by a process known as Ca(2+)-induced Ca2+ release (CICR) from the smooth endoplasmic reticulum (SER). In this study, we used the sheep SCG neuronal model to test the hypotheses that maturation decreases CICR and high-altitude LTH depresses CICR in fetal SCG neurons but not in those of the adult. We found that the contribution of CICR to electric field stimulation (EFS)-evoked [Ca2+]i transients was greatest in SCG cells from normoxic fetuses and was abolished by LTH. The decline in CICR was associated with a reduction in sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) function in fetal SCG cells during LTH, reducing SER Ca2+ levels below the threshold needed for the coupling of Ca2+ influx and CICR. With respect to the maturation from the fetus to adult, the decrease in CICR may reflect both a reduction in the levels of ryanodine receptor isoforms 2 and 3 and SERCA function. In response to LTH and in contrast to the fetus, CICR function in adult SCG cells is maintained and may reflect alterations in other mechanisms that modulate the CICR process. As CICR is instrumental in the function of sympathetic neurons within the cerebrovasculature, the loss of this signaling mechanism in the fetus may have consequences for the adaptation to LTH in terms of fetal susceptibility to vascular insults.
Collapse
Affiliation(s)
- Erik J Behringer
- Department of Physiology and Pharmacology, Loma Linda Univ. School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Bence M, Kereszturi E, Mozes V, Sasvari-Szekely M, Keszler G. Hypoxia-induced transcription of dopamine D3 and D4 receptors in human neuroblastoma and astrocytoma cells. BMC Neurosci 2009; 10:92. [PMID: 19653907 PMCID: PMC3224682 DOI: 10.1186/1471-2202-10-92] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 08/04/2009] [Indexed: 01/07/2023] Open
Abstract
Background Dopaminergic pathways that influence mood and behaviour are severely affected in cerebral hypoxia. In contrast, hypoxia promotes the differentiation of dopaminergic neurons. In order to clarify the hypoxic sensitivity of key dopaminergic genes, we aimed to study their transcriptional regulation in the context of neuroblastoma and astrocytoma cell lines exposed to 1% hypoxia. Results Quantitative RT-PCR assays revealed that the transcription of both type D3 and D4 postsynaptic dopamine receptors (DRD3 and DRD4) was induced several fold upon 2-day hypoxia in a cell-specific manner, while the vascular endothelial growth factor gene was activated after 3-hr incubation in hypoxia. On the other hand, mRNA levels of type 2 dopamine receptor, dopamine transporter, monoamino oxidase and catechol-O-methyltransferase were unaltered, while those of the dopamine receptor regulating factor (DRRF) were decreased by hypoxia. Notably, 2-day hypoxia did not result in elevation of protein levels of DRD3 and DRD4. Conclusion In light of the relatively delayed transcriptional activation of the DRD3 and DRD4 genes, we propose that slow-reacting hypoxia sensitive transcription factors might be involved in the transactivation of DRD3 and DRD4 promoters in hypoxia.
Collapse
Affiliation(s)
- Melinda Bence
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, POB 260, Budapest H-1444, Hungary.
| | | | | | | | | |
Collapse
|
38
|
Abstract
Human oncology has clearly demonstrated the existence of hypoxic tumours and the problematic nature of those tumours. Hypoxia is a significant problem in the treatment of all types of solid tumours and a common reason for treatment failure. Hypoxia is a negative prognostic indicator of survival and is correlated with the development of metastatic disease. Resistance to radiation therapy and chemotherapy can be because of hypoxia. There are two dominant types of hypoxia recognized in tumours, static and intermittent. Both types of hypoxia are important in terms of resistance. A variety of physiological factors cause hypoxia, and in turn, hypoxia can induce genetic and physiological changes. A limited number of studies have documented that hypoxia exists in spontaneous canine tumours. The knowledge from the human literature of problematic nature of hypoxic tumours combined with the rapid growth of veterinary oncology has necessitated a better understanding of hypoxia in canine tumours.
Collapse
Affiliation(s)
- S A Snyder
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | | | | |
Collapse
|
39
|
Marignol L, Foley R, Southgate TD, Coffey M, Hollywood D, Lawler M. Hypoxia response element-driven cytosine deaminase/5-fluorocytosine gene therapy system: a highly effective approach to overcome the dynamics of tumour hypoxia and enhance the radiosensitivity of prostate cancer cellsin vitro. J Gene Med 2009; 11:169-79. [DOI: 10.1002/jgm.1281] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
40
|
Said HM, Polat B, Hagemann C, Anacker J, Flentje M, Vordermark D. Absence of GAPDH regulation in tumor-cells of different origin under hypoxic conditions in - vitro. BMC Res Notes 2009; 2:8. [PMID: 19144146 PMCID: PMC2646737 DOI: 10.1186/1756-0500-2-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 01/13/2009] [Indexed: 12/21/2022] Open
Abstract
Background Gene expression studies related to cancer diagnosis and treatment are important. In order to conduct such experiment accurately, absolutely reliable housekeeping genes are essential to normalize cancer related gene expression. The most important characteristics of such genes are their presence in all cells and their expression levels remain relatively constant under different experimental conditions. However, no single gene of this group of genes manifests always stable expression levels under all experimental conditions. Incorrect choice of housekeeping genes leads to interpretation errors of experimental results including evaluation and quantification of pathological gene expression. Here, we examined (a) the degree of GAPDH expression regulation in Hep-1-6 mouse hepatoma and Hep-3-B and HepG2 human hepatocellular carcinoma cell lines as well as in human lung adenocarcinoma epithelial cell line (A-549) in addition to both HT-29, and HCT-116 colon cancer cell lines, under hypoxic conditions in vitro in comparison to other housekeeping genes like β-actin, serving as experimental loading controls, (b) the potential use of GAPDH as a target for tumor therapeutic approaches was comparatively examined in vitro on both protein and mRNA level, by western blot and semi quantitative RT-PCR, respectively. Findings No hypoxia-induced regulatory effect on GAPDH expression was observed in the cell lines studied in vitro that were; Hep-1-6 mouse hepatoma and Hep-3-B and HepG2 human hepatocellular carcinoma cell lines, Human lung adenocarcinoma epithelial cell line (A-549), both colon cancer cell lines HT-29, and HCT-116. Conclusion As it is the case for human hepatocellular carcinoma, mouse hepatoma, human colon cancer, and human lung adenocarcinoma, GAPDH represents an optimal choice of a housekeeping gene and/(or) loading control to determine the expression of hypoxia induced genes in tumors of different origin. The results confirm our previous findings in human glioblastoma that this gene is not an attractive target for tumor therapeutic approaches because of the lack of GAPDH regulation under hypoxia.
Collapse
Affiliation(s)
- Harun M Said
- Department of Radiation Oncology, Faculty of Medicine, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
41
|
Clerici C, Planès C. Gene regulation in the adaptive process to hypoxia in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2008; 296:L267-74. [PMID: 19118091 DOI: 10.1152/ajplung.90528.2008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung alveolar epithelial cells are normally very well oxygenated but may be exposed to hypoxia in many pathological conditions such as pulmonary edema, acute respiratory distress syndrome, chronic obstructive pulmonary diseases, or in some environmental conditions such ascent to high altitude. The ability of alveolar epithelial cells to cope with low oxygen tensions is crucial to maintain the structural and functional integrity of the alveolar epithelium. Alveolar epithelial cells appear to be remarkably tolerant to oxygen deprivation as they are able to maintain adequate cellular ATP content during prolonged hypoxic exposure when mitochondrial oxidative phosphorylation is limited. This property mostly relies on the ability of the cells to rapidly modify their gene expression program, stimulating the expression of genes involved in anaerobic energy supply and repressing expression of genes involved in some ATP-consuming cellular processes. This adaptive strategy of the cells is mostly, but not entirely, dependent on the expression of hypoxia-inducible factors (HIFs), known to be responsible for orchestrating a large number of hypoxia-sensitive genes. This review focuses on the role of HIF isoforms expressed in alveolar epithelial cells exposed to hypoxia and on the specific hypoxic gene regulation that takes place in alveolar epithelial cells either through HIF-dependent or -independent pathways.
Collapse
Affiliation(s)
- Christine Clerici
- Service de Physiologie-Explorations Fonctionnelles, Paris cedex 18, France.
| | | |
Collapse
|
42
|
Sawada N, Yao J, Hiramatsu N, Hayakawa K, Araki I, Takeda M, Kitamura M. Involvement of hypoxia-triggered endoplasmic reticulum stress in outlet obstruction-induced apoptosis in the urinary bladder. J Transl Med 2008; 88:553-63. [PMID: 18347581 DOI: 10.1038/labinvest.2008.21] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In bladder outlet obstruction (BOO), mechanical stress and ischemia/hypoxia are implicated in structural and functional alterations of the urinary bladder. Because mechanical stress and hypoxia may trigger endoplasmic reticulum (ER) stress, we examined involvement of ER stress in the damage of the bladder caused by BOO. An experimental model of BOO was established in rats by complete ligature of the urethra for 24 h, and bladders were subjected to northern blot analysis and assessment of apoptosis. Isolated urinary bladders and bladder-derived smooth muscle cells (BSMCs) were also exposed to mechanical strain and hypoxia and used for analyses. To examine involvement of ER stress in the damage of the bladder, the effects of a chemical chaperone 4-phenylbutyrate (4-PBA) were evaluated in vitro and in vivo. Outlet obstruction for 24 h induced expression of ER stress markers, GRP78 and CCAAT/enhancer-binding protein-homologous protein (CHOP), in the bladder. It was associated with induction of markers for mechanical stress (cyclooxygenases 2) and hypoxia (vascular endothelial growth factor and glyceraldehyde-3-phosphate dehydrogenase). When isolated bladders and BSMCs were subjected to mechanical strain, induction of GRP78 and CHOP was not observed. In contrast, when BSMCs were exposed to hypoxic stress caused by CoCl2 or thenoyltrifluoroacetone (TTFA), substantial upregulation of GRP78 and CHOP was observed, suggesting involvement of hypoxia in the induction of ER stress. In the bladder subjected to BOO, the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells increased in the epithelial cells and BSMCs. Similarly, treatment with TTFA or CoCl2 induced apoptosis of BSMCs, and 4-PBA significantly attenuated ER stress and apoptosis triggered by these agents. Furthermore, in vivo administration with 4-PBA significantly reduced apoptosis in the bladder subjected to BOO. These results suggested that outlet obstruction caused ER stress via hypoxic stress in the bladder and that hypoxia-triggered ER stress may be involved in the induction of apoptosis in BOO.
Collapse
Affiliation(s)
- Norifumi Sawada
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Piscopo P, Bernardo A, Calamandrei G, Venerosi A, Valanzano A, Bianchi D, Confaloni A, Minghetti L. Altered expression of cyclooxygenase-2, presenilins and oxygen radical scavenging enzymes in a rat model of global perinatal asphyxia. Exp Neurol 2008; 209:192-8. [DOI: 10.1016/j.expneurol.2007.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 07/30/2007] [Accepted: 09/17/2007] [Indexed: 11/15/2022]
|
44
|
McNeill RE, Miller N, Kerin MJ. Evaluation and validation of candidate endogenous control genes for real-time quantitative PCR studies of breast cancer. BMC Mol Biol 2007; 8:107. [PMID: 18042273 PMCID: PMC2211316 DOI: 10.1186/1471-2199-8-107] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 11/27/2007] [Indexed: 12/13/2022] Open
Abstract
Background Real-time quantitative PCR (RQ-PCR) forms the basis of many breast cancer biomarker studies and novel prognostic assays, paving the way towards personalised cancer treatments. Normalisation of relative RQ-PCR data is required to control for non-biological variation introduced during sample preparation. Endogenous control (EC) genes, used in this context, should ideally be expressed constitutively and uniformly across treatments in all test samples. Despite widespread recognition that the accuracy of the normalised data is largely dependent on the reliability of the EC, there are no reports of the systematic validation of genes commonly used for this purpose in the analysis of gene expression by RQ-PCR in primary breast cancer tissues. The aim of this study was to identify the most suitable endogenous control genes for RQ-PCR analysis of primary breast tissue from a panel of eleven candidates in current use. Oestrogen receptor alpha (ESR1) was used a target gene to compare the effect of choice of EC on the estimate of gene quantity. Results The expression and validity of candidate ECs (GAPDH, TFRC, ABL, PPIA, HPRT1, RPLP0, B2M, GUSB, MRPL19, PUM1 and PSMC4) was determined in 6 benign and 21 malignant primary breast cancer tissues. Gene expression data was analysed using two different statistical models. MRPL19 and PPIA were identified as the most stable and reliable EC genes, while GUSB, RPLP0 and ABL were least stable. There was a highly significant difference in variance between ECs. ESR1 expression was appreciably higher in malignant compared to benign tissues and there was a significant effect of EC on the magnitude of the error associated with the relative quantity of ESR1. Conclusion We have validated two endogenous control genes, MRPL19 and PPIA, for RQ-PCR analysis of gene expression in primary breast tissue. Of the genes in current use in this field, the above combination offers increased accuracy and resolution in the quantitation of gene expression data, facilitating the detection of smaller changes in gene expression than otherwise possible. The combination identified here is a good candidate for use as a two-gene endogenous control in a broad spectrum of future research and diagnostic applications in breast cancer.
Collapse
Affiliation(s)
- Roisin E McNeill
- Department of Surgery, Clinical Science Institute, National University of Ireland, Galway, Ireland.
| | | | | |
Collapse
|
45
|
Walmsley SR, McGovern NN, Whyte MKB, Chilvers ER. The HIF/VHL pathway: from oxygen sensing to innate immunity. Am J Respir Cell Mol Biol 2007; 38:251-5. [PMID: 17932373 DOI: 10.1165/rcmb.2007-0331tr] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In aerobic organisms, all cells have the capacity to respond to changes in oxygenation through the stabilization and transcriptional activation of hypoxia-inducible factor (HIF). At sites of tissue injury, oxygen delivery to individual cells may be compromised or insufficient due to increased metabolic demands, and it is to these areas that immune cells, including neutrophils, must migrate and operate effectively. In addition to the role of HIF to regulate the adaptive metabolic and survival responses of these cells at sites of reduced oxygenation, more complex interactions between HIF and pro-inflammatory pathways are now emerging. The mechanisms by which HIF modulates pro-inflammatory myeloid cell lifespan and function remain to be fully characterized, but roles for the oxygen-sensing hydroxylase enzymes through direct hydroxylation of NF-kappaB and its repressor protein IkappaBalpha have been suggested. The ability of HIF to modulate cellular glucose utilization is also thought to be important, with the maintenance of intracellular ATP pools linked to enhanced myeloid cell aggregation, motility, invasiveness, and bacterial killing. Additional non-hypoxia-mediated routes to up-regulate HIF are also now recognized. In this review we describe the role of HIF in the oxygen-sensing response, and the oxygen-dependent and -independent regulation of myeloid cell function and longevity. Understanding these processes and the role they play in regulating innate immune responses within inflamed sites, both hypoxic and normoxic, may offer new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Sarah R Walmsley
- Academic Unit of Respiratory Medicine, School of Medicine and Biomedical Sciences, University of Sheffield, Royal Hallamshire Hospital, Sheffield, UK
| | | | | | | |
Collapse
|
46
|
Harada N, Yasunaga R, Higashimura Y, Yamaji R, Fujimoto K, Moss J, Inui H, Nakano Y. Glyceraldehyde-3-phosphate Dehydrogenase Enhances Transcriptional Activity of Androgen Receptor in Prostate Cancer Cells. J Biol Chem 2007; 282:22651-61. [PMID: 17553795 DOI: 10.1074/jbc.m610724200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Androgen receptor (AR) functions as a transcriptional factor for genes involved in proliferation and differentiation of normal and cancerous prostate cells. Coactivators that bind to AR are required for maximal androgen action. Here we report that increasing the expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in a prostate cancer cell line by as little as 1.8-fold enhances transcriptional activity of AR (but not the transcriptional activity of glucocorticoid receptor or estrogen receptor alpha) in a ligand-dependent manner and results in an increased expression of prostate-specific antigen. Small interference RNA-mediated knockdown of GAPDH significantly attenuated ligand-activated AR transactivation. Immunoprecipitation analysis revealed the presence of an endogenous protein complex containing GAPDH and AR in both the cytoplasm and nucleus. Addition of a nuclear localization signal (NLS) to GAPDH (GAPDH-NLS) completely abolished the ability of GAPDH to transactivate AR. Neither wild-type GAPDH nor GAPDH-NLS enhanced transcriptional activity of mutant AR (AR Delta C-Nuc) that is a constitutively active form of AR in the nucleus, even though GAPDH-NLS formed a complex with wild-type AR or AR Delta C-Nuc. AR transactivation was enhanced by a mutant GAPDH lacking dehydrogenase activity. GAPDH enhanced the transcriptional activity of AR(T875A) activated by an antagonist such as hydroxyflutamide or cyproterone acetate. These results indicate that GAPDH functions as a coactivator with high selectivity for AR and enhances AR transactivation independent of its glycolytic activity. Further, these data suggest that formation of a GAPDH.AR complex in the cytoplasm rather than nucleus is essential for GAPDH to enhance AR transactivation.
Collapse
Affiliation(s)
- Naoki Harada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 5998531, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Semenza GL. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J 2007; 405:1-9. [PMID: 17555402 DOI: 10.1042/bj20070389] [Citation(s) in RCA: 405] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The survival of metazoan organisms is dependent upon the utilization of O2 as a substrate for COX (cytochrome c oxidase), which constitutes Complex IV of the mitochondrial respiratory chain. Premature transfer of electrons, either at Complex I or at Complex III, results in the increased generation of ROS (reactive oxygen species). Recent studies have identified two critical adaptations that may function to prevent excessive ROS production in hypoxic cells. First, expression of PDK1 [PDH (pyruvate dehydrogenase) kinase 1] is induced. PDK1 phosphorylates and inactivates PDH, the mitochondrial enzyme that converts pyruvate into acetyl-CoA. In combination with the hypoxia-induced expression of LDHA (lactate dehydrogenase A), which converts pyruvate into lactate, PDK1 reduces the delivery of acetyl-CoA to the tricarboxylic acid cycle, thus reducing the levels of NADH and FADH2 delivered to the electron-transport chain. Secondly, the subunit composition of COX is altered in hypoxic cells by increased expression of the COX4-2 subunit, which optimizes COX activity under hypoxic conditions, and increased degradation of the COX4-1 subunit, which optimizes COX activity under aerobic conditions. Hypoxia-inducible factor 1 controls the metabolic adaptation of mammalian cells to hypoxia by activating transcription of the genes encoding PDK1, LDHA, COX4-2 and LON, a mitochondrial protease that is required for the degradation of COX4-1. COX subunit switching occurs in yeast, but by a completely different regulatory mechanism, suggesting that selection for O2-dependent homoeostatic regulation of mitochondrial respiration is ancient and likely to be shared by all eukaryotic organisms.
Collapse
Affiliation(s)
- Gregg L Semenza
- Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
48
|
Ferreira TC, Hertzberg L, Gassmann M, Campos ÉG. The yeast genome may harbor hypoxia response elements (HRE). Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:255-263. [PMID: 17035097 DOI: 10.1016/j.cbpc.2006.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 08/22/2006] [Accepted: 08/28/2006] [Indexed: 01/28/2023]
Abstract
The hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription factor activated when cells are submitted to hypoxia. The heterodimer is composed of two subunits, HIF-1alpha and the constitutively expressed HIF-1beta. During normoxia, HIF-1alpha is degraded by the 26S proteasome, but hypoxia causes HIF-1alpha to be stabilized, enter the nucleus and bind to HIF-1beta, thus forming the active complex. The complex then binds to the regulatory sequences of various genes involved in physiological and pathological processes. The specific regulatory sequence recognized by HIF-1 is the hypoxia response element (HRE) that has the consensus sequence 5'BRCGTGVBBB3'. Although the basic transcriptional regulation machinery is conserved between yeast and mammals, Saccharomyces cerevisiae does not express HIF-1 subunits. However, we hypothesized that baker's yeast has a protein analogous to HIF-1 which participates in the response to changes in oxygen levels by binding to HRE sequences. In this study we screened the yeast genome for HREs using probabilistic motif search tools. We described 24 yeast genes containing motifs with high probability of being HREs (p-value<0.1) and classified them according to biological function. Our results show that S. cerevisiae may harbor HREs and indicate that a transcription factor analogous to HIF-1 may exist in this organism.
Collapse
Affiliation(s)
- Túlio César Ferreira
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Libi Hertzberg
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
| | - Élida Geralda Campos
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
49
|
Said HM, Hagemann C, Stojic J, Schoemig B, Vince GH, Flentje M, Roosen K, Vordermark D. GAPDH is not regulated in human glioblastoma under hypoxic conditions. BMC Mol Biol 2007; 8:55. [PMID: 17597534 PMCID: PMC1919389 DOI: 10.1186/1471-2199-8-55] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 06/27/2007] [Indexed: 12/20/2022] Open
Abstract
Background Gene expression studies related to cancer diagnosis and treatment are becoming more important. Housekeeping genes that are absolutely reliable are essential for these studies to normalize gene expression. An incorrect choice of housekeeping genes leads to interpretation errors of experimental results including evaluation and quantification of pathological gene expression. Here, we examined (a) the degree of regulation of GAPDH expression in human glioblastoma cells under hypoxic conditions in vitro in comparison to other housekeeping genes like β-actin, serving as experimental loading controls, (b) the potential use of GAPDH as a target for tumor therapeutic approaches and (c) differences in GAPDH expression between low-grade astrocytomas and glioblastomas, for which modest and severe hypoxia, respectively, have been previously demonstrated. GAPDH and β-actin expression was comparatively examined in vivo in human low-grade astrocytoma and glioblastoma on both protein and mRNA level, by Western blot and semiquantitative RT-PCR, respectively. Furthermore, the same proteins were determined in vitro in U373, U251 and GaMG human glioblastoma cells using the same methods. HIF-1α protein regulation under hypoxia was also determined on mRNA level in vitro in GaMG and on protein level in U251, U373 and GaMG cells. Results We observed no hypoxia-induced regulatory effect on GAPDH expression in the three glioblastoma cell lines studied in vitro. In addition, GAPDH expression was similar in patient tumor samples of low-grade astrocytoma and glioblastoma, suggesting a lack of hypoxic regulation in vivo. Conclusion GAPDH represents an optimal choice of a housekeeping gene and/or loading control to determine the expression of hypoxia induced genes at least in glioblastoma. Because of the lack of GAPDH regulation under hypoxia, this gene is not an attractive target for tumor therapeutic approaches in human glioblastoma.
Collapse
Affiliation(s)
- Harun M Said
- University of Würzburg, Dept. of Radiation Oncology, Germany
| | - Carsten Hagemann
- University of Würzburg, Dept. of Neurosurgery, Tumorbiology Laboratory, Germany
| | - Jelena Stojic
- University of Würzburg, Dept. of Neurosurgery, Tumorbiology Laboratory, Germany
| | - Beate Schoemig
- University of Würzburg, Dept. of Neurosurgery, Tumorbiology Laboratory, Germany
| | - Giles H Vince
- University of Würzburg, Dept. of Neurosurgery, Tumorbiology Laboratory, Germany
| | - Michael Flentje
- University of Würzburg, Dept. of Radiation Oncology, Germany
| | - Klaus Roosen
- University of Würzburg, Dept. of Neurosurgery, Tumorbiology Laboratory, Germany
| | - Dirk Vordermark
- University of Würzburg, Dept. of Radiation Oncology, Germany
| |
Collapse
|
50
|
Agrawal A, Guttapalli A, Narayan S, Albert TJ, Shapiro IM, Risbud MV. Normoxic stabilization of HIF-1alpha drives glycolytic metabolism and regulates aggrecan gene expression in nucleus pulposus cells of the rat intervertebral disk. Am J Physiol Cell Physiol 2007; 293:C621-31. [PMID: 17442734 DOI: 10.1152/ajpcell.00538.2006] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nucleus pulposus is an aggrecan-rich, avascular tissue that permits the intervertebral disk to resist compressive loads. In the disk, nucleus pulposus cells express hypoxia-inducible factor (HIF)-1alpha, a transcription factor that responds to oxygen tension and regulates glycolysis. The goal of the present study was to examine the importance of HIF-1alpha in rat nucleus pulposus cells and to probe the function of this transcription factor in terms of regulating aggrecan gene expression. We found that HIF-1alpha protein levels and mRNA stability were similar at 20 and 2% O(2); there was a small, but significant increase in HIF-1alpha transactivation domain activity in hypoxia. With respect to HIF-1alpha target genes GAPDH, GLUT-1, and GLUT-3, mRNA and protein levels were independent of the oxygen tension. Other than a modest increase in 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase reporter activity, the oxemic state did not change GAPDH, GLUT-1, and GLUT-3 promoter activities. Treatment of cells with 2-deoxyglucose (2-DG), a glycolytic inhibitor, resulted in a significant suppression in ATP synthesis in normoxia, whereas treatment with mitochondrial inhibitors did not affect ATP production and cell viability. However, measurement of the rate of fatty acid oxidation indicated that these cells contained functioning mitochondria. Finally, we showed that when HIF-1alpha was suppressed, irrespective of the oxemic state, there was a partial loss of aggrecan expression and promoter activity. Moreover, when cells were treated with 2-DG, there was inhibition in aggrecan promoter activity. Results of this study indicate that oxygen-independent stabilization of HIF-1alpha in nucleus pulposus cells is a metabolic adaptation that drives glycolysis and aggrecan expression.
Collapse
Affiliation(s)
- Amit Agrawal
- Dept of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|