1
|
Zhang H, Wang N, Xu Y, Pei M, Zheng Y. Comparative analysis of peripheral blood immunoinflammatory landscapes in patients with acute cholangitis and its secondary septic shock using single-cell RNA sequencing. Biochem Biophys Res Commun 2023; 683:149121. [PMID: 37864923 DOI: 10.1016/j.bbrc.2023.149121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Acute cholangitis (AC) is a key pathogeny of septic shock, which has a high mortality rate. AC has significant clinical heterogeneity, but no study has analyzed the discrepancies in immunoresponsiveness between AC and its secondary septic shock. The immune inflammatory responses play a critical role in the development of septic shock. METHODS We performed single-cell RNA sequencing (scRNA-seq) to analyze the differences of immunocytes in immunoresponse and inflammation between the early stages of AC (A1, A2, and A3) and its secondary septic shock (B1, B2, and B3). RESULTS This study has identified seven cell types, including T cells, B cells, plasma cells, neutrophils, monocytes, platelets and erythrocytes. We mainly focused on neutrophils, monocytes, and T cells. Neutrophil subpopulation analysis indicated that neutrophil progenitors (proNeus) were identified in neutrophil subsets. Compared with patients suffering from AC, the gene phenotypes of proNeus (ELANE, AZU1, MPO, and PRTN3) were significantly upregulated in septic shock. The differentiation direction of neutrophil subsets in peripheral blood mononuclear cells (PBMCs) was determined; Moreover, the proNeus in septic shock presented a state of "expansion", with upregulation of neutrophil degranulation and downregulation of monocyte and T cell proliferation. Neutrophils-7 (CCL5, RPL23A, RPL13, RPS19 and RPS18) were mainly involved in the regulation of cellular functions. The neutrophils-7 subpopulation in septic shock were in a state of "exhaustion", and its biological functions showed the characteristics of weakening neutrophil migration and phagocytosis, etc., which maked infection difficult to control and aggravated the development of septic shock. Analysis of monocyte and T cell subpopulations showed that the expression genes and biological functions of subpopulations were closely related to immunoinflammatory regulation. In addition, CCL3 - CCR1, CXCL1 - CXCR2 and other ligand-receptors were highly expressed in neutrophils and monocytes, enhancing interactions between immune cells. CONCLUSION ScRNA-seq revealed significant differences in immune cells between AC and its secondary septic shock, which were primarily manifested in the cellular numbers, differentially expressed genes, functions of cellular subsets, differentiation trajectories, cell-cell interactions and so on. We identified many subsets of neutrophil, T cell and monocyte were associated with inflammation and immunosuppression induced by septic shock. These provided a reference for accurately evaluating the pathological severity of patients with AC and discovering the targets for therapy.
Collapse
Affiliation(s)
- He Zhang
- Department of Emergency, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Nan Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; Anhui Public Health Clinical Center, Hefei, China.
| | - Yuntian Xu
- Department of Emergency, The Third Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Mingchao Pei
- Department of Emergency, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Yun Zheng
- Department of Emergency ICU, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Sommer F, Torraca V, Xie Y, In 't Veld AE, Willemse J, Meijer AH. Disruption of Cxcr3 chemotactic signaling alters lysosomal function and renders macrophages more microbicidal. Cell Rep 2021; 35:109000. [PMID: 33852860 DOI: 10.1016/j.celrep.2021.109000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/11/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Chemotaxis and lysosomal function are closely intertwined processes essential for the inflammatory response and clearance of intracellular bacteria. We used the zebrafish model to examine the link between chemotactic signaling and lysosome physiology in macrophages during mycobacterial infection and wound-induced inflammation in vivo. Macrophages from zebrafish larvae carrying a mutation in a chemokine receptor of the Cxcr3 family display upregulated expression of vesicle trafficking and lysosomal genes and possess enlarged lysosomes that enhance intracellular bacterial clearance. This increased microbicidal capacity is phenocopied by inhibiting the lysosomal transcription factor EC, while its overexpression counteracts the protective effect of chemokine receptor mutation. Tracking macrophage migration in zebrafish revealed that lysosomes of chemokine receptor mutants accumulate in the front half of cells, preventing macrophage polarization during chemotaxis and reaching sites of inflammation. Our work shows that chemotactic signaling affects the bactericidal properties and localization during chemotaxis, key aspects of the inflammatory response.
Collapse
Affiliation(s)
- Frida Sommer
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Vincenzo Torraca
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands; Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Yufei Xie
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | | | - Joost Willemse
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Annemarie H Meijer
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
3
|
New Interactors of the Truncated EBNA-LP Protein Identified by Mass Spectrometry in P3HR1 Burkitt's Lymphoma Cells. Cancers (Basel) 2018; 10:cancers10010012. [PMID: 29303964 PMCID: PMC5789362 DOI: 10.3390/cancers10010012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 01/07/2023] Open
Abstract
The Epstein-Barr virus nuclear antigen leader protein (EBNA-LP) acts as a co-activator of EBNA-2, a transcriptional activator essential for Epstein-Barr virus (EBV)-induced B-cell transformation. Burkitt's lymphoma (BL) cells harboring a mutant EBV strain that lacks both the EBNA-2 gene and 3' exons of EBNA-LP express Y1Y2-truncated isoforms of EBNA-LP (tEBNA-LP) and better resist apoptosis than if infected with the wild-type virus. In such BL cells, tEBNA-LP interacts with the protein phosphatase 2A (PP2A) catalytic subunit (PP2A C), and this interaction likely plays a role in resistance to apoptosis. Here, 28 cellular and four viral proteins have been identified by mass spectrometry as further possible interactors of tEBNA-LP. Three interactions were confirmed by immunoprecipitation and Western blotting, namely with the A structural subunit of PP2A (PP2A A), the structure-specific recognition protein 1 (SSRP1, a component of the facilitate chromatin transcription (FACT) complex), and a new form of the transcription factor EC (TFEC). Thus, tEBNA-LP appears to be involved not only in cell resistance to apoptosis through its interaction with two PP2A subunits, but also in other processes where its ability to co-activate transcriptional regulators could be important.
Collapse
|
4
|
tfec controls the hematopoietic stem cell vascular niche during zebrafish embryogenesis. Blood 2016; 128:1336-45. [PMID: 27402973 DOI: 10.1182/blood-2016-04-710137] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/01/2016] [Indexed: 12/11/2022] Open
Abstract
In mammals, embryonic hematopoiesis occurs in successive waves, culminating with the emergence of hematopoietic stem cells (HSCs) in the aorta. HSCs first migrate to the fetal liver (FL), where they expand, before they seed the bone marrow niche, where they will sustain hematopoiesis throughout adulthood. In zebrafish, HSCs emerge from the dorsal aorta and colonize the caudal hematopoietic tissue (CHT). Recent studies showed that they interact with endothelial cells (ECs), where they expand, before they reach their ultimate niche, the kidney marrow. We identified tfec, a transcription factor from the mitf family, which is highly enriched in caudal endothelial cells (cECs) at the time of HSC colonization in the CHT. Gain-of-function assays indicate that tfec is capable of expanding HSC-derived hematopoiesis in a non-cell-autonomous fashion. Furthermore, tfec mutants (generated by CRISPR/Cas9) showed reduced hematopoiesis in the CHT, leading to anemia. Tfec mediates these changes by increasing the expression of several cytokines in cECs from the CHT niche. Among these, we found kitlgb, which could rescue the loss of HSCs observed in tfec mutants. We conclude that tfec plays an important role in the niche to expand hematopoietic progenitors through the modulation of several cytokines. The full comprehension of the mechanisms induced by tfec will represent an important milestone toward the expansion of HSCs for regenerative purposes.
Collapse
|
5
|
Ploper D, De Robertis EM. The MITF family of transcription factors: Role in endolysosomal biogenesis, Wnt signaling, and oncogenesis. Pharmacol Res 2015; 99:36-43. [DOI: 10.1016/j.phrs.2015.04.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 04/18/2015] [Accepted: 04/18/2015] [Indexed: 12/19/2022]
|
6
|
Saravanaperumal SA, Pediconi D, Renieri C, La Terza A. Alternative splicing of the sheep MITF gene: novel transcripts detectable in skin. Gene 2014; 552:165-75. [PMID: 25239663 DOI: 10.1016/j.gene.2014.09.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 01/05/2023]
Abstract
Microphthalmia-associated transcription factor (MITF) is a basic helix-loop-helix leucine zipper (bHLH-LZ) transcription factor, which regulates the differentiation and development of melanocytes and pigment cell-specific transcription of the melanogenesis enzyme genes. Though multiple splice variants of MITF have been reported in humans, mice and other vertebrate species, in merino sheep (Ovis aries), MITF gene splicing has not yet been investigated until now. To investigate the sheep MITF isoforms, the full length mRNA/cDNAs from the skin of merino sheep were cloned, sequenced and characterized. Reverse transcriptase (RT)-PCR analysis and molecular prediction revealed two basic splice variants with (+) and without (-) an 18 bp insertion viz. CGTGTATTTTCCCCACAG, in the coding region (CDS) for the amino acids 'ACIFPT'. It was further confirmed by the complete nucleotide sequencing of splice junction covering intron-6 (2463 bp), wherein an 18bp intronic sequence is retained into the CDS of MITF (+) isoform. Further, full-length cDNA libraries were enriched by the method of 5' and 3' rapid amplification of cDNA ends (RACE-PCR). A total of seven sheep MITF splice variants, with distinct N-terminus sequences such as MITF-A, B, E, H, and M, the counterparts of human and mouse MITF, were identified by 5' RACE. The other two 5' RACE products were found to be novel splice variants of MITF and represented as 'MITF truncated form (Trn)-1, 2'. These alternative splice (AS) variants were illustrated using comparative genome analysis. By means of 3' RACE three different MITF 3' UTRs (625, 1083, 3167bp) were identified and characterized. We also demonstrated that the MITF gene expression determined at transcript level is mediated via an intron-6 splicing event. Here we summarize for the first time, the expression of seven MITF splice variants with three distinct 3' UTRs in the skin of merino sheep. Our data refine the structure of the MITF gene in sheep beyond what was previously known in humans, mice, dogs and other mammals.
Collapse
Affiliation(s)
- Siva Arumugam Saravanaperumal
- Animal and Molecular Ecology Lab, School of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, Camerino, Macerata 62032, Italy.
| | - Dario Pediconi
- Animal and Molecular Ecology Lab, School of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, Camerino, Macerata 62032, Italy.
| | - Carlo Renieri
- Animal and Molecular Ecology Lab, School of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, Camerino, Macerata 62032, Italy.
| | - Antonietta La Terza
- Animal and Molecular Ecology Lab, School of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, Camerino, Macerata 62032, Italy.
| |
Collapse
|
7
|
Lin WY, Lee WC. Floating prioritized subset analysis: A powerful method to detect differentially expressed genes. Comput Stat Data Anal 2011. [DOI: 10.1016/j.csda.2010.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Corre S, Galibert MD. Upstream stimulating factors: highly versatile stress-responsive transcription factors. ACTA ACUST UNITED AC 2005; 18:337-48. [PMID: 16162174 DOI: 10.1111/j.1600-0749.2005.00262.x] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Upstream stimulating factors (USF), USF-1 and USF-2, are members of the eucaryotic evolutionary conserved basic-Helix-Loop-Helix-Leucine Zipper transcription factor family. They interact with high affinity to cognate E-box regulatory elements (CANNTG), which are largely represented across the whole genome in eucaryotes. The ubiquitously expressed USF-transcription factors participate in distinct transcriptional processes, mediating recruitment of chromatin remodelling enzymes and interacting with co-activators and members of the transcription pre-initiation complex. Results obtained from both cell lines and knock-out mice indicates that USF factors are key regulators of a wide number of gene regulation networks, including the stress and immune responses, cell cycle and proliferation, lipid and glucid metabolism, and in melanocytes USF-1 has been implicated as a key UV-activated regulator of genes associated with pigmentation. This review will focus on general characteristics of the USF-transcription factors and their place in some regulatory networks.
Collapse
Affiliation(s)
- Sébastien Corre
- CNRS UMR 6061 Laboratoire de Génétique et Développement, Faculté de Médecine, Université de Rennes-1, Rennes Cedex, France
| | | |
Collapse
|
9
|
Rehli M, Sulzbacher S, Pape S, Ravasi T, Wells CA, Heinz S, Söllner L, El Chartouni C, Krause SW, Steingrimsson E, Hume DA, Andreesen R. Transcription factor Tfec contributes to the IL-4-inducible expression of a small group of genes in mouse macrophages including the granulocyte colony-stimulating factor receptor. THE JOURNAL OF IMMUNOLOGY 2005; 174:7111-22. [PMID: 15908341 DOI: 10.4049/jimmunol.174.11.7111] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Expression of the mouse transcription factor EC (Tfec) is restricted to the myeloid compartment, suggesting a function for Tfec in the development or function of these cells. However, mice lacking Tfec develop normally, indicating a redundant role for Tfec in myeloid cell development. We now report that Tfec is specifically induced in bone marrow-derived macrophages upon stimulation with the Th2 cytokines, IL-4 and IL-13, or LPS. LPS induced a rapid and transient up-regulation of Tfec mRNA expression and promoter activity, which was dependent on a functional NF-kappaB site. IL-4, however, induced a rapid, but long-lasting, increase in Tfec mRNA, which, in contrast to LPS stimulation, also resulted in detectable levels of Tfec protein. IL-4-induced transcription of Tfec was absent in macrophages lacking Stat6, and its promoter depended on two functional Stat6-binding sites. A global comparison of IL-4-induced genes in both wild-type and Tfec mutant macrophages revealed a surprisingly mild phenotype with only a few genes affected by Tfec deficiency. These included the G-CSFR (Csf3r) gene that was strongly up-regulated by IL-4 in wild-type macrophages and, to a lesser extent, in Tfec mutant macrophages. Our study also provides a general definition of the transcriptome in alternatively activated mouse macrophages and identifies a large number of novel genes characterizing this cell type.
Collapse
Affiliation(s)
- Michael Rehli
- Department of Hematology and Oncology, University of Regensburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The first mouse microphthalmia transcription factor (Mitf ) mutation was discovered over 60 years ago, and since then over 24 spontaneous and induced mutations have been identified at the locus. Mitf encodes a member of the Myc supergene family of basic helix-loop-helix zipper (bHLH-Zip) transcription factors. Like Myc, Mitf regulates gene expression by binding to DNA as a homodimer or as a heterodimer with another related family member, in the case of Mitf the Tfe3, Tfeb, and Tfec proteins. The study of Mitf has provided many insights into the biology of melanocytes and helped to explain how melanocyte-specific gene expression and signaling is regulated. The human homologue of MITF is mutated in patients with the pigmentary and deafness disorder Waardenburg Syndrome Type 2A (WS2A). The mouse Mitf mutations therefore serve as a model for the study of this human disease. Mutations and/or aberrant expression of several MITF family member genes have also been reported in human cancer, including melanoma (MITF), papillary renal cell carcinoma (TFE3, TFEB), and alveolar soft part sarcoma (TFE3). Genes in the MITF/TFE pathway may therefore also represent valuable therapeutic targets for the treatment of human cancer. Here we review recent developments in the analysis of Mitf function in vivo and in vitro and show how traditional genetics, modern forward genetics and in vitro biochemical analyses have combined to produce an intriguing story on the role and actions of a gene family in a living organism.
Collapse
Affiliation(s)
- Eiríkur Steingrímsson
- Department of Biochemistry and Molecular Biology, University of Iceland, 101 Reykjavik, Iceland.
| | | | | |
Collapse
|
11
|
Yajima I, Endo K, Sato S, Toyoda R, Wada H, Shibahara S, Numakunai T, Ikeo K, Gojobori T, Goding CR, Yamamoto H. Cloning and functional analysis of ascidian Mitf in vivo: insights into the origin of vertebrate pigment cells. Mech Dev 2004; 120:1489-504. [PMID: 14654221 DOI: 10.1016/j.mod.2003.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The microphthalmia-associated transcription factor (Mitf) is a basic-helix-loop-helix-leucine zipper (bHLH-ZIP) transcription factor essential for the development and function of all melanin-producing pigment cells in vertebrates. To elucidate the evolutionary history of Mitf and the antiquity of its association with pigment cells, we have isolated and characterized HrMitf, a sole member of the Mitf-TFE bHLH-ZIP subfamily in the ascidian Halocynthia roretzi. Maternal HrMitf mRNA is detected in the fertilized egg and in the animal hemisphere from 4-cell stage through the gastrula stage. From the neurula through the early tailbud stage, HrMitf is preferentially expressed in the pigment-lineage cells that express the lineage-specific melanogenesis genes tyrosinase (HrTyr) and Tyrp. Overexpression of HrMitf induced ectopic expression of HrTyr enzyme activity in mesenchymal cells where the same enzyme activity was induced by overexpression of HrPax3/7, suggesting that a part(s) of the Pax3-Mitf-tyrosinase gene regulatory cascade seen in vertebrate melanocytes is operative during ascidian embryogenesis. We also show HrMitf and mouse Mitf-A, a Mitf isoform abundantly expressed in pigmented epithelial cells, share similar functional characteristics. These results suggest antiquity of the association of the Mitf-TFE subfamily with pigment cells and may support the idea that acquisition of multiple promoters (isoforms) by an ancestral Mitf gene has allowed the evolution of multiple pigment cell types.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cloning, Molecular
- Conserved Sequence/genetics
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Embryo, Nonmammalian/embryology
- Embryo, Nonmammalian/enzymology
- Embryo, Nonmammalian/metabolism
- Evolution, Molecular
- Gastrula/cytology
- Gastrula/metabolism
- Gene Expression Regulation, Developmental
- Melanocytes/cytology
- Melanocytes/metabolism
- Mice
- Microphthalmia-Associated Transcription Factor
- Models, Genetic
- Molecular Sequence Data
- Monophenol Monooxygenase/genetics
- Monophenol Monooxygenase/metabolism
- Phylogeny
- Pigments, Biological
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Urochordata/embryology
- Urochordata/enzymology
- Urochordata/genetics
- Urochordata/metabolism
- Vertebrates
Collapse
Affiliation(s)
- Ichiro Yajima
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Matsunaga T, Ishida T, Takekawa M, Nishimura S, Adachi M, Imai K. Analysis of gene expression during maturation of immature dendritic cells derived from peripheral blood monocytes. Scand J Immunol 2002; 56:593-601. [PMID: 12472671 DOI: 10.1046/j.1365-3083.2002.01179.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dendritic cells (DCs) are the most important antigen-presenting cells. Many recent studies have compared the function of immature DCs (iDCs) and mature DCs (mDCs), but there have been few reports of the molecular changes that occur in DCs during maturation. Here, we report on differential gene expression in iDCs generated from peripheral blood monocytes compared with mDCs. Gene expression was evaluated using the differential display method after activation of iDCs with a low concentration of lipopolysaccharide (LPS) to induce maturation. Proteasome subunit alpha type 3 (PSMA3), transcription factor EC (TFEC) isoform and BTK region clone 2f10-rpi were transiently upregulated. Tryptophanyl-tRNA synthetase and CD63 antigen were upregulated for at least 24 h. Neuronal apoptosis inhibitory protein (NAIP) and transforming growth factor-beta-induced 68 kDa protein were downregulated. This is the first report of NAIP expression in human DCs. By comparing the expression of NAIP with that of other members of the inhibitor of apoptosis protein (IAP) family and the Bcl-2 family, only NAIP was found to be strongly expressed in iDCs before stimulation by LPS. PSMA3 was also induced in the DCs stimulated with immune complex. These findings might contribute to our understanding of DC maturation and the effectiveness of DC-based vaccines.
Collapse
Affiliation(s)
- T Matsunaga
- First Department of Internal Medicine, Sapporo Medical University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Yasumoto KI, Takeda K, Saito H, Watanabe KI, Takahashi K, Shibahara S. Microphthalmia-associated transcription factor interacts with LEF-1, a mediator of Wnt signaling. EMBO J 2002; 21:2703-14. [PMID: 12032083 PMCID: PMC126018 DOI: 10.1093/emboj/21.11.2703] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Wnt signals regulate differentiation of neural crest cells through the beta-catenin associated with a nuclear mediator of the lymphoid-enhancing factor 1 (LEF-1)/T-cell factors (TCFs) family. Here we show the interaction between the basic helix-loop-helix and leucine-zipper region of microphthalmia-associated transcription factor (MITF) and LEF-1. MITF is essential for melanocyte differentiation and its heterozygous mutations cause auditory-pigmentary syndromes. Functional cooperation of MITF with LEF-1 results in synergistic transactivation of the dopachrome tautomerase (DCT) gene promoter, an early melanoblast marker. This activation depends on the separate cis-acting elements, which are also responsible for the induction of the DCT promoter by lithium chloride that mimics Wnt signaling. beta-catenin is required for efficient transactivation, but dispensable for the interaction between MITF and LEF-1. The interaction with MITF is unique to LEF-1 and not detectable with TCF-1. LEF-1 also cooperates with the MITF-related proteins, such as TFE3, to transactivate the DCT promoter. This study therefore suggests that the MITF/TFE3 family is a new class of nuclear modulators for LEF-1, which may ensure efficient propagation of Wnt signals in many types of cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Shigeki Shibahara
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Aoba-ku, Sendai, Miyagi 980-8575, Japan
Corresponding author e-mail:
| |
Collapse
|
14
|
Lister JA, Close J, Raible DW. Duplicate mitf genes in zebrafish: complementary expression and conservation of melanogenic potential. Dev Biol 2001; 237:333-44. [PMID: 11543618 DOI: 10.1006/dbio.2001.0379] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in the zebrafish nacre/mitfa gene, expressed in all embryonic melanogenic cells, perturb only neural crest melanocytes, suggesting redundancy of mitfa with another gene in the zebrafish retinal pigment epithelium (RPE). Here, we describe a second zebrafish mitf gene, mitfb, which may fulfill this role. The proteins encoded by the two zebrafish mitf genes appear homologous to distinct isoforms generated by alternately spliced mRNAs of the single mammalian Mitf gene, suggesting specialization of the two zebrafish genes following a duplication event. Consistent with this hypothesis, expression of mitfa and mitfb is partially overlapping. mitfb is coexpressed with mitfa in the RPE at an appropriate time to compensate for loss of mitfa function in the nacre mutant but is not expressed in neural crest melanoblasts. Additionally, mitfb is expressed in the epiphysis and olfactory bulb where mitfa is not, and where Mitf expression has not previously been reported in other species. mitfb, but not a zebrafish ortholog of the closely related gene tfe3, can rescue neural crest melanophore development in nacre/mitfa mutant embryos when expressed via the mitfa promoter. These data suggest that mitfa and mitfb together may recapitulate the expression and functions of a single ancestral Mitf gene, and that mitfb may serve additional novel functions.
Collapse
Affiliation(s)
- J A Lister
- Department of Biological Structure, Center for Developmental Biology, University of Washington, HSB G514, Seattle, Washington 98195-7420, USA.
| | | | | |
Collapse
|
15
|
Hallsson JH, Favor J, Hodgkinson C, Glaser T, Lamoreux ML, Magnúsdóttir R, Gunnarsson GJ, Sweet HO, Copeland NG, Jenkins NA, Steingrímsson E. Genomic, transcriptional and mutational analysis of the mouse microphthalmia locus. Genetics 2000; 155:291-300. [PMID: 10790403 PMCID: PMC1461060 DOI: 10.1093/genetics/155.1.291] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mouse microphthalmia transcription factor (Mitf) mutations affect the development of four cell types: melanocytes, mast cells, osteoclasts, and pigmented epithelial cells of the eye. The mutations are phenotypically diverse and can be arranged in an allelic series. In humans, MITF mutations cause Waardenburg syndrome type 2A (WS2A) and Tietz syndrome, autosomal dominant disorders resulting in deafness and hypopigmentation. Mitf mice thus represent an important model system for the study of human disease. Here we report the complete exon/intron structure of the mouse Mitf gene and show it to be similar to the human gene. We also found that the mouse gene is transcriptionally complex and is capable of generating at least 13 different Mitf isoforms. Some of these isoforms are missing important functional domains of the protein, suggesting that they might play an inhibitory role in Mitf function and signal transduction. In addition, we determined the molecular basis for six microphthalmia mutations. Two of the mutations are reported for the first time here (Mitf(mi-enu198) and Mitf(mi-x39)), while the others (Mitf(mi-ws), Mitf(mi-bws), Mitf(mi-ew), and Mitf(mi-di)) have been described but the molecular basis for the mutation not determined. When analyzed in terms of the genomic and transcriptional data presented here, it is apparent that these mutations result from RNA processing or transcriptional defects. Interestingly, three of the mutations (Mitf(mi-x39), Mitf(mi-bws), and Mitf(mi-ws)) produce proteins that are missing important functional domains of the protein identified in in vitro studies, further confirming a biological role for these domains in the whole animal.
Collapse
Affiliation(s)
- J H Hallsson
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Iceland, 101 Reykjavík, Iceland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Udono T, Yasumoto K, Takeda K, Amae S, Watanabe K, Saito H, Fuse N, Tachibana M, Takahashi K, Tamai M, Shibahara S. Structural organization of the human microphthalmia-associated transcription factor gene containing four alternative promoters. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1491:205-19. [PMID: 10760582 DOI: 10.1016/s0167-4781(00)00051-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Microphthalmia-associated transcription factor (MITF) affects the development of many types of cells, including melanocytes and retinal pigment epithelium (RPE). MITF consists of at least three isoforms, MITF-A, MITF-H and MITF-M, differing at their amino-termini and expression patterns. Here, we characterize the structural organization of the human MITF gene. The gene contains at least four isoform-specific first exons, exons 1A, 1H, 1B and 1M in the 5' to 3' direction, each of which encodes the unique amino-terminus of a given isoform, including newly identified MITF-B. The 5'-flanking regions of these isoform-specific exons are termed promoters A, H, B and M, respectively, which showed different promoter activities, as judged by transient transfection assay. Promoter A directs the expression of a reporter gene in RPE, cervical cancer and melanoma cells, whereas promoter M is functional only in melanoma cells. Promoter H showed the significant activity in RPE and cervical cancer cells but not in melanoma cells. In contrast, the 1.7 kb 5'-flanking region of exon 1B showed no noticeable promoter activity in these cell lines. Therefore, alternative promoters provide the MITF gene with the diversity in transcriptional regulation and the capability of generating structurally different protein isoforms.
Collapse
Affiliation(s)
- T Udono
- Department of Molecular Biology, Tohoku University School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Roundy K, Kollhoff A, Eichwald EJ, Weis JJ, Weis JH. Microphthalmic Mice Display a B Cell Deficiency Similar to that Seen for Mast and NK Cells. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.12.6671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
The microphthalmic mouse (mi) possesses a 3-bp deletion of the Mi gene that alters the DNA binding site of the transcription factor gene product. This animal has diminished numbers of NK and mast cells (MC) and is osteopetrotic due to a lack of the normal complement of functional osteoclasts. The reduction of MC has been proposed to be due to the lack of adequate c-Kit expression that is required for MC differentiation. However, data from other labs has questioned this interpretation. In this report, we present data suggesting bone marrow-derived deficiencies of the mi mouse are not due to a lack of c-Kit expression and function, but instead due to an inhospitable environment within the bone marrow itself. Specifically, we have found that such animals also lack virtually all B cell precursors within the marrow and rely upon other lymphatic sites, such as the spleen, for B cell development and maturation. Although the animal has depressed numbers of NK cells, B cells, and MC, it still possesses a normal thymus and peripheral T cells. Therefore, the block in cellular differentiation must be within the marrow environment, which is essential for maturing B cells, NK cells, and MC but not T cells.
Collapse
Affiliation(s)
- Kirstin Roundy
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Angela Kollhoff
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - E. J. Eichwald
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Janis J. Weis
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - John H. Weis
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132
| |
Collapse
|
18
|
Rehli M, Den Elzen N, Cassady AI, Ostrowski MC, Hume DA. Cloning and characterization of the murine genes for bHLH-ZIP transcription factors TFEC and TFEB reveal a common gene organization for all MiT subfamily members. Genomics 1999; 56:111-20. [PMID: 10036191 DOI: 10.1006/geno.1998.5588] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The microphthalmia-TFE (MiT) subfamily of basic helix-loop-helix leucine zipper (bHLH-ZIP) transcription factors, including TFE3, TFEB, TFEC, and Mitf, has been implicated in the regulation of tissue-specific gene expression in several cell lineages. In this report, we investigate the genomic organization and structural relatedness of MiT transcription factors. We characterized the gene for mTFEC, which covers a region of more than 50 kb and is composed of seven exons. Further, we cloned a cDNA for the murine TFEB homologue and characterized its genomic structure. The eight coding exons of mTFEB are distributed over a 6-kb region. A multiple alignment of amino acid sequences of known MiT subfamily members indicates undescribed, conserved N-terminal regions and common putative phosphorylation sites for TFE3, TFEB, and Mitf. Also, intron-exon borders for characterized MiT genes appear completely conserved. A new family member and closely related putative transcription factor in Caenorhabditis elegans was identified by database searches that show a similar genomic organization within the bHLH-ZIP region and the acidic domain. Evolutionary aspects and implications for structure-function relationships are discussed.
Collapse
Affiliation(s)
- M Rehli
- Department of Biochemistry, University of Queensland, Brisbane, Queensland, Q4072, Australia
| | | | | | | | | |
Collapse
|
19
|
Rehli M, Lichanska A, Cassady AI, Ostrowski MC, Hume DA. TFEC Is a Macrophage-Restricted Member of the Microphthalmia-TFE Subfamily of Basic Helix-Loop-Helix Leucine Zipper Transcription Factors. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.3.1559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The murine homologue of the TFEC was cloned as part of an analysis of the expression of the microphthalmia-TFE (MiT) subfamily of transcription factors in macrophages. TFEC, which most likely acts as a transcriptional repressor in heterodimers with other MiT family members, was identified in cells of the mononuclear phagocyte lineage, coexpressed with all other known MiT subfamily members (Mitf, TFE3, TFEB). Northern blot analysis of several different cell lineages indicated that the expression of murine TFEC (mTFEC) was restricted to macrophages. A 600-bp fragment of the TATA-less putative proximal promoter of TFEC shares features with many known macrophage-specific promoters and preferentially directs luciferase expression in the RAW264.7 macrophage cell line in transient transfection assays. Five of six putative Ets motifs identified in the TFEC promoter bind the macrophage-restricted transcription factor PU.1 under in vitro conditions and in transfected 3T3 fibroblasts; the minimal luciferase activity of the TFEC promoter could be induced by coexpression of PU.1 or the related transcription factor Ets-2. The functional importance of the tissue-restricted expression of TFEC and a possible role in macrophage-specific gene regulation require further investigation, but are likely to be linked to the role of the other MiT family members in this lineage.
Collapse
Affiliation(s)
- Michael Rehli
- *Departments of Microbiology and Biochemistry and Centre for Molecular and Cellular Biology, University of Queensland, Brisbane, Australia; and
| | - Agnieszka Lichanska
- *Departments of Microbiology and Biochemistry and Centre for Molecular and Cellular Biology, University of Queensland, Brisbane, Australia; and
| | - A. Ian Cassady
- *Departments of Microbiology and Biochemistry and Centre for Molecular and Cellular Biology, University of Queensland, Brisbane, Australia; and
| | | | - David A. Hume
- *Departments of Microbiology and Biochemistry and Centre for Molecular and Cellular Biology, University of Queensland, Brisbane, Australia; and
| |
Collapse
|
20
|
Steingrímsson E, Tessarollo L, Reid SW, Jenkins NA, Copeland NG. The bHLH-Zip transcription factor Tfeb is essential for placental vascularization. Development 1998; 125:4607-16. [PMID: 9806910 DOI: 10.1242/dev.125.23.4607] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tfeb is a member of the basic Helix-Loop-Helix-Zipper family of transcription factors. In vitro studies have shown that TFEB can bind DNA as a homodimer or as a heterodimer with three closely related family members: MITF, TFE3 and TFEC. While mutations of Mitf have been shown to affect the development of a number of cell types including melanocytes, osteoclasts, and masts cells, little is known about the phenotypic consequences of mutations at Tfe3, Tfeb and Tfec. Here we show that mice with a targeted disruption of Tfeb die between 9.5 and 10.5 days in embryonic development and have severe defects in placental vascularization. Tfeb is expressed at low levels in the embryo but at high levels in the labyrinthine trophoblast cells of the placenta. While labyrinthine cells are present in the mutant Tfeb placenta, they fail to express VEGF, a potent mitogen required for normal vasculogenesis of the embryo and extraembryonic tissues. In Tfeb mutant embryos the embryonic vasculature forms normally but few vessels are seen entering the placenta and those that do enter fail to thrive and branch normally. Our results indicate that Tfeb plays a critical role in the signal transduction processes required for normal vascularization of the placenta.
Collapse
Affiliation(s)
- E Steingrímsson
- Mammalian Genetics Laboratory and Neural Development Group, ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Frederick, MD 21702-1201, USA.
| | | | | | | | | |
Collapse
|
21
|
Yasumoto K, Amae S, Udono T, Fuse N, Takeda K, Shibahara S. A big gene linked to small eyes encodes multiple Mitf isoforms: many promoters make light work. PIGMENT CELL RESEARCH 1998; 11:329-36. [PMID: 9870544 DOI: 10.1111/j.1600-0749.1998.tb00491.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Among more than 80 different loci related to mouse coat color, microphthalmia-associated transcription factor (Mitf) encoded at the mouse microphthalmia locus is one of the most exciting molecules that regulates the development and survival of many cell types, including melanocyte, retinal pigment epithelium (RPE), and mast cells. Mitf and its human homolog MITF consist of at least three isoforms, referred to as Mitf-A/MITF-A, the heart-type Mitf-H/MITF-H, and the melanocyte lineage-specific Mitf-M/MITF-M, respectively. These isoforms differ in the amino-terminal domains but share a transactivation domain and a basic helix-loop-helix and leucine-zipper structure that is required for DNA binding and dimerization. MITF-M is exclusively expressed in melanocytes and melanoma cells, but not in other cell types, including RPE cells. In contrast, MITF-A mRNA is widely expressed in many cell types. These three isoform mRNAs are possibly generated by differential usage of the gene promoters and by alternative splicing. We predict that the entire MITF gene spans about 200 kb of DNA. Like MITF-M, MITF-A is able to activate the two melanogenesis gene promoters, tyrosinase and tyrosinase-related protein 1. These results suggest that melanogenesis may be regulated by different MITF isoforms in melanocyte and RPE. Possible implications of the multiplicity in Mitf/MITF isoforms are discussed.
Collapse
Affiliation(s)
- K Yasumoto
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Amae S, Fuse N, Yasumoto K, Sato S, Yajima I, Yamamoto H, Udono T, Durlu YK, Tamai M, Takahashi K, Shibahara S. Identification of a novel isoform of microphthalmia-associated transcription factor that is enriched in retinal pigment epithelium. Biochem Biophys Res Commun 1998; 247:710-5. [PMID: 9647758 DOI: 10.1006/bbrc.1998.8838] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations at the mouse locus encoding microphthalmia-associated transcription factor (Mitf) affect the development of many cell types, including retinal pigment epithelium (RPE), melanocytes, mast cells, and osteoclasts. Here we have identified a novel Mitf isoform, Mitf-a, and its human homologue MITF-A by cDNA cloning. MITF-A consists of 520 amino acid residues and differs in the amino-terminus from authentic melanocyte-type MITF (MITF-M). MITF-A mRNA is widely expressed and represents a predominant MITF isoform in cultured RPE cells, whereas MITF-M mRNA is exclusively expressed in melanocytes and melanoma cells. In situ hybridization analysis suggested that Mitf-a mRNA is enriched in the prospective RPE of mouse embryo. Moreover, transient cotransfection assays suggested that MITF-A activated transcription of the tyrosinase and tyrosinase-related protein 1 genes. MITF-A/Mitf-a therefore may play an important role in melanogenesis in RPE.
Collapse
Affiliation(s)
- S Amae
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Miyagi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Weilbaecher KN, Hershey CL, Takemoto CM, Horstmann MA, Hemesath TJ, Tashjian AH, Fisher DE. Age-resolving osteopetrosis: a rat model implicating microphthalmia and the related transcription factor TFE3. J Exp Med 1998; 187:775-85. [PMID: 9480987 PMCID: PMC2212164 DOI: 10.1084/jem.187.5.775] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Microphthalmia (Mi) is a basic helix-loop-helix-leucine zipper (b-HLH-ZIP) transcription factor implicated in pigmentation, mast cells, and bone development. Two dominant-negative mi alleles (mi/mi and Mior/Mior) in mice cause osteopetrosis. In contrast, osteopetrosis has not been observed in a number of recessive mi alleles, suggesting the existence of Mi protein partners important in osteoclast function. An osteopetrotic rat of unknown genetic defect (mib) has been described whose skeletal sclerosis improves dramatically with age and that is associated with pigmentation defects reminiscent of mouse mi alleles. Here we report that this rat strain harbors a large genomic deletion encompassing the 3' half of mi including most of the b-HLH-ZIP region. Osteoclasts from these animals lack Mi protein in contrast to wild-type rat, mouse, and human osteoclasts. Mi is not detectable in primary osteoblasts. In addition TFE3, a b-HLH-ZIP transcription factor related to Mi, was found to be expressed in osteoclasts, but not osteoblasts, and to coimmunoprecipitate with Mi. These results demonstrate the existence of members of a family of biochemically related transcription factors that may cooperate to play a central role in osteoclast function and possibly in age-related osteoclast homeostasis.
Collapse
Affiliation(s)
- K N Weilbaecher
- Dana Farber Cancer Institute, Department of Pediatric Oncology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|