1
|
Somuncu S, Somuncu ÖS. A Comprehensive Review: Molecular and Genetic Background of Indirect Inguinal Hernias. Visc Med 2021; 37:349-357. [PMID: 34722718 DOI: 10.1159/000515275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 02/15/2021] [Indexed: 11/19/2022] Open
Abstract
Background The occurrence of indirect inguinal hernias (IIH) is 5 times more prevalent than that of direct inguinal hernias (IH) and it is 7 times more common in males, owing to the attendance of the processus vaginalis (PV) throughout testicular descent. Summary In children, the immense mainstream of IH is indirect. The progress of IIH development in children is instigated with a patent PV, which is mostly treated by simple herniorrhaphy. Syndromes of the collagen, microfibril, elastin, and glycosaminoglycan constituents of the extracellular matrix may attend to the development of IH. Our recent research showed that the lack of epithelial-mesenchymal transition (EMT) in children contributes to the development of IIH, while the scenario is defined as the opposite in adults. However, there is still a lack of knowledge on all of the genetic and molecular causes of the disease. Key Messages Here we aimed to review the published genetic background of IH, the deficiencies of connective tissue causing the disease, recently defined molecular pathways involved including EMT, and possible recurrence reasons. This comprehensive study can deliver an analytic outline aiding to define patients with IH combined with fundamental genetic diseases.
Collapse
Affiliation(s)
- Salih Somuncu
- Department of Pediatric Surgery, Bezmialem Vakıf University Faculty of Medicine, İstanbul, Turkey
| | | |
Collapse
|
2
|
Roles of GATA6 during Gonadal Development in Japanese Flounder: Gonadogenesis, Regulation of Gender-Related Genes, Estrogen Formation and Gonadal Function Maintenance. Int J Mol Sci 2017; 18:ijms18010160. [PMID: 28275215 PMCID: PMC5297793 DOI: 10.3390/ijms18010160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/22/2016] [Accepted: 01/09/2017] [Indexed: 01/09/2023] Open
Abstract
GATA-binding protein 6 (GATA6), a highly-conserved transcription factor of the GATA family plays an important role in gonadal cell proliferation, differentiation and endoderm development. In this study, the full-length cDNA of GATA6 of Paralichthys olivaceus (Japanese flounder) was obtained. Phylogenetic, gene structure and synteny analyses demonstrated that GATA6 of P. olivaceus is homologous to that of teleosts and tetrapods. The P. olivaceus GATA6 transcript showed higher expression in testis than in ovary, demonstrating a sexually dimorphic gene expression. During embryonic development, the expression of P. olivaceus GATA6 increased at the blastula stage, demonstrating that GATA6 is involved in morphogenesis. Results of in situ hybridization showed that GATA6 signals were detected in Sertoli cells, oogonia and oocytes. Moreover, 17α methyl testosterone, a male hormone, could moderately upregulate P. olivaceus GATA6 and downregulate P. olivaceus aromatase CYP19A1 in testis cells. These results suggest that GATA6 may play an important role in gonadal development in P. olivaceus. This study provides valuable information on the function of P. olivaceus GATA6, laying the foundation for further development of breeding techniques in this species.
Collapse
|
3
|
Pu Y, Yi Q, Zhao F, Wang H, Cai W, Cai S. MiR-20a-5p represses multi-drug resistance in osteosarcoma by targeting the KIF26B gene. Cancer Cell Int 2016; 16:64. [PMID: 27499703 PMCID: PMC4974744 DOI: 10.1186/s12935-016-0340-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 07/19/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Chemoresistance hinders curative cancer chemotherapy in osteosarcoma (OS), resulting in only an approximately 20 % survival rate in patients with metastatic disease at diagnosis. Identifying the mechanisms responsible for regulating chemotherapy resistance is crucial for improving OS treatment. METHODS This study was performed in two human OS cell lines (the multi-chemosensitive OS cell line G-292 and the multi-chemoresistant OS cell line SJSA-1). The levels of miR-20a-5p and KIF26B mRNA expression were determined by quantitative real-time PCR. KIF26B protein levels were determined by western blot analysis. Cell viability was assessed by MTT assay. Apoptosis was evaluated by flow cytometry. RESULTS We found that miR-20a-5p was more highly expressed in G-292 cells than in SJSA-1 cells. Forced expression of miR-20a-5p counteracted OS cell chemoresistance in both cell culture and tumor xenografts in nude mice. One of miR-20a-5p's targets, kinesin family member 26B (KIF26B), was found to mediate the miR-20a-5p-induced reduction in OS chemoresistance by modulating the activities of the MAPK/ERK and cAMP/PKA signaling pathways. CONCLUSIONS In addition to providing mechanistic insights, our study revealed that miR-20a-5p and KIF26B contribute to OS chemoresistance and determined the roles of these genes in this process, which may be critical for characterizing drug responsiveness and overcoming chemoresistance in OS patients.
Collapse
Affiliation(s)
- Youguang Pu
- Cancer Epigenetics Program, Anhui Cancer Hospital, West District of Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230031 Anhui China
| | - Qiyi Yi
- Department of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230031 Anhui China
| | - Fangfang Zhao
- Cancer Epigenetics Program, Anhui Cancer Hospital, West District of Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230031 Anhui China
| | - Haiyan Wang
- Department of Clinical Geriatrics, Anhui Provincial Hospital of Anhui Medical University, Hefei, 230031 Anhui China
| | - Wenjing Cai
- Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Shanbao Cai
- Cancer Epigenetics Program, Anhui Cancer Hospital, West District of Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230031 Anhui China.,Department of Orthopedic Surgery, Anhui Cancer Hospital, West District of Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230031 Anhui China
| |
Collapse
|
4
|
Two functional sequence variants of the GATA6 gene promoter in patients with indirect inguinal hernia. Gene 2014; 547:86-90. [PMID: 24949533 DOI: 10.1016/j.gene.2014.06.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/11/2014] [Accepted: 06/16/2014] [Indexed: 10/25/2022]
Abstract
Inguinal hernia is a common surgical disease, majority of which are indirect inguinal hernia (IIH). A positive family history has indicated that genetic factors play important roles in the IIH development. To date, genetic causes and underlying mechanisms for inguinal hernia remain largely unknown. During the embryonic development, GATA transcription factor 6 (GATA6) plays an essential role. Mutations in GATA6 gene and changed GATA6 levels have been associated with human diseases. As GATA6 acts in a dosage-dependent manner, we speculated that changed GATA6 levels, resulting from DNA sequence variants (DSVs) within the gene regulatory regions, may mediate the IIH development. In this study, the GATA6 gene promoter was genetically and functionally analyzed in IIH patients and ethnic-matched controls. Eleven DNA sequence variants (DSVs), including four SNPs and seven new variants, within the GATA6 gene promoter were identified. Two heterozygous DSVs, g.22168361C>A and g.22169106C>T, were identified in two IIH patients, but in none of controls. In cultured human fibroblast, these DSVs significantly reduced the GATA6 gene promoter activities. In addition, three heterozygous DSVs were only found in three controls. Five DSVs, including four SNPs and one new variant, were found in both IIH patients and controls with similar frequencies. Therefore, the DSVs within the GATA6 gene promoter may contribute to the IIH development as a risk factor by changing the GATA6 levels.
Collapse
|
5
|
Aronson BE, Stapleton KA, Krasinski SD. Role of GATA factors in development, differentiation, and homeostasis of the small intestinal epithelium. Am J Physiol Gastrointest Liver Physiol 2014; 306:G474-90. [PMID: 24436352 PMCID: PMC3949026 DOI: 10.1152/ajpgi.00119.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 01/07/2014] [Indexed: 01/31/2023]
Abstract
The small intestinal epithelium develops from embryonic endoderm into a highly specialized layer of cells perfectly suited for the digestion and absorption of nutrients. The development, differentiation, and regeneration of the small intestinal epithelium require complex gene regulatory networks involving multiple context-specific transcription factors. The evolutionarily conserved GATA family of transcription factors, well known for its role in hematopoiesis, is essential for the development of endoderm during embryogenesis and the renewal of the differentiated epithelium in the mature gut. We review the role of GATA factors in the evolution and development of endoderm and summarize our current understanding of the function of GATA factors in the mature small intestine. We offer perspective on the application of epigenetics approaches to define the mechanisms underlying context-specific GATA gene regulation during intestinal development.
Collapse
Affiliation(s)
- Boaz E Aronson
- Division of Gastroenterology and Nutrition, Department of Medicine, Children's Hospital Boston, and Harvard Medical School, Boston, Massachusetts
| | | | | |
Collapse
|
6
|
GATA6 loss-of-function mutation in atrial fibrillation. Eur J Med Genet 2012; 55:520-6. [PMID: 22750565 DOI: 10.1016/j.ejmg.2012.06.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 06/09/2012] [Indexed: 01/05/2023]
Abstract
Atrial fibrillation (AF) is the most common type of sustained cardiac arrhythmia and is associated with substantial morbidity and mortality. Increasing evidence demonstrates that hereditary defects are involved in the pathogenesis of AF. However, AF is of remarkable genetic heterogeneity, and the heritable components responsible for AF in the majority of patients remain unclear. In this study, the entire coding region of the GATA6 gene, which encodes a zinc-finger transcription factor crucial for cardiogenesis, was sequenced in 138 unrelated patients with lone AF, and a novel heterozygous GATA6 mutation, c.704A > C equivalent to p.Y235S, was identified in a patient. The detected substitution, which altered the amino acid highly conserved evolutionarily across species, was absent in 200 unrelated ethnically matched healthy individuals, and was predicted to be disease-causing by MutationTaster. Genetic analysis of the available relatives of the mutation carrier showed that in the family the variation co-segregated with the disease transmitted as an autosomal dominant trait, with complete penetrance. The functional analysis performed using a luciferase reporter assay system revealed that the mutant GATA6 protein resulted in significantly decreased transcriptional activity compared with its wild-type counterpart. These findings provide novel insight into the molecular pathophysiology implicated in AF, suggesting the potential implications in the prophylactic strategy and effective therapy for this common arrhythmia.
Collapse
|
7
|
GATA6 is required for proliferation, migration, secretory cell maturation, and gene expression in the mature mouse colon. Mol Cell Biol 2012; 32:3392-402. [PMID: 22733991 DOI: 10.1128/mcb.00070-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Controlled renewal of the epithelium with precise cell distribution and gene expression patterns is essential for colonic function. GATA6 is expressed in the colonic epithelium, but its function in the colon is currently unknown. To define GATA6 function in the colon, we conditionally deleted Gata6 throughout the epithelium of small and large intestines of adult mice. In the colon, Gata6 deletion resulted in shorter, wider crypts, a decrease in proliferation, and a delayed crypt-to-surface epithelial migration rate. Staining techniques and electron microscopy indicated deficient maturation of goblet cells, and coimmunofluorescence demonstrated alterations in specific hormones produced by the endocrine L cells and serotonin-producing cells. Specific colonocyte genes were significantly downregulated. In LS174T, the colonic adenocarcinoma cell line, Gata6 knockdown resulted in a significant downregulation of a similar subset of goblet cell and colonocyte genes, and GATA6 was found to occupy active loci in enhancers and promoters of some of these genes, suggesting that they are direct targets of GATA6. These data demonstrate that GATA6 is necessary for proliferation, migration, lineage maturation, and gene expression in the mature colonic epithelium.
Collapse
|
8
|
Activation of GATA binding protein 6 (GATA6) sustains oncogenic lineage-survival in esophageal adenocarcinoma. Proc Natl Acad Sci U S A 2012; 109:4251-6. [PMID: 22375031 DOI: 10.1073/pnas.1011989109] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gene amplification is a tumor-specific event during malignant transformation. Recent studies have proposed a lineage-dependency (addiction) model of human cancer whereby amplification of certain lineage transcription factors predisposes a survival mechanism in tumor cells. These tumor cells are derived from tissues where the lineage factors play essential developmental and maintenance roles. Here, we show that recurrent amplification at 18q11.2 occurs in 21% of esophageal adenocarcinomas (EAC). Utilization of an integrative genomic strategy reveals a single gene, the embryonic endoderm transcription factor GATA6, as the selected target of the amplification. Overexpression of GATA6 is found in EACs that contain gene amplification. We find that EAC patients whose tumors carry GATA6 amplification have a poorer survival. We show that ectopic expression of GATA6, together with FGFR2 isoform IIIb, increases anchorage-independent growth in immortalized Barrett's esophageal cells. Conversely, siRNA-mediated silencing of GATA6 significantly reduces both cell proliferation and anchorage-independent growth in EAC cells. We further demonstrate that induction of apoptotic/anoikis pathways is triggered upon silencing of GATA6 in EAC cells but not in esophageal squamous cells. We show that activation of p38α signaling and up-regulation of TNF-related apoptosis-inducing ligand are detected in apoptotic EAC cells upon GATA6 deprivation. We conclude that selective gene amplification of GATA6 during EAC development sustains oncogenic lineage-survival of esophageal adenocarcinoma.
Collapse
|
9
|
Ushijima H, Maeda M. Inhibitors of protein kinases affecting cAMP-dependent proteolysis of GATA-6. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/abc.2012.24051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Abstract
Mammalian GATA-6, which has conserved tandem zinc fingers (CVNC-X(17)-CNAC)-X(29)-(CXNC-X(17)-CNAC), is essential for the development and specific gene regulation of the heart, gastrointestinal tract and other tissues. GATA-6 recognizes the (A/T/C)GAT(A/T)(A) sequence, and interacts with other transcriptional regulators through its zinc-finger region. The mRNA of GATA-6 uses two Met codons in frame as translational initiation codons, and produces L- and S-type GATA-6 through leaky ribosome scanning. GATA-6 is subjected to cAMP-dependent proteolysis by a proteasome in a heterologous expression system. These protein-based characteristics of GATA-6 will be helpful for the identification of target genes, together with determination of the in vivo binding sites for GATA-6 and understanding of the complex network of gene regulation mediated by GATA-6.
Collapse
Affiliation(s)
- Masatomo Maeda
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | | | | |
Collapse
|
11
|
Siltanen S, Heikkilä P, Bielinska M, Wilson DB, Heikinheimo M. Transcription factor GATA-6 is expressed in malignant endoderm of pediatric yolk sac tumors and in teratomas. Pediatr Res 2003; 54:542-6. [PMID: 12867597 DOI: 10.1203/01.pdr.0000081295.56529.e9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transcription factors GATA-4 and GATA-6 play critical roles in mammalian yolk sac differentiation and function. Previously, we showed that GATA-4 is a potential marker for malignant yolk sac endoderm in pediatric germ cell tumors. This highly malignant tissue can cause diagnostic problems because yolk sac components may be difficult to differentiate from other, especially immature, tissue types in teratomas. In the search for new molecular markers for germ cell tumors, we have surveyed GATA-6 expression in benign and malignant pediatric germ cell tumors using mRNA in situ hybridization and immunohistochemistry. GATA-6 was expressed in most yolk sac tumors examined and also in nonmalignant tissues including gut/respiratory epithelium, sebocytes, and neuroepithelium in mature and immature teratomas. Given that GATA-6 has not been discovered in sebocytes before, this finding was confirmed by immunohistochemistry of normal mouse samples, indicating a function for this transcription factor in the mammalian skin. Taken together, GATA-6 can be used to identify yolk sac components in pediatric germ cell tumors. Furthermore, it is also expressed in specific tissues in teratomas. GATA-6, together with GATA-4, can thus be used as a novel molecular marker in characterizing of pediatric germ cell tumors.
Collapse
|
12
|
Abstract
This oversimplified view of foetal development and the risk to injury aims to highlight the following: assuming there is a normal environment, gene expression will generate a protein chain that should fold to the expected stereological shape to function normally. Here we must take into consideration the important role played by external (environmental) factors. Abnormal organogenesis or foetal injury are, in all likelihood, due to abnormal genes or genes expressing themselves 'out of sinc', that is to say 'outside' their time allocated for expression. This type of injury is difficult to correct. Morphogenesis, or the continuous remodelling of formed organ/systems can be more amenable to correction since the basic layout of the organ already exists. The common denominator to organogenesis and morphogenesis, at cellular/tissue levels, is the harmonic interplay between cell multiplication, cell migration, cell differentiation, cell death, the generation of intercellular matrix and its resorption. All of this must take place at the 'right time'. Any departure from it may lead to injury, whether clinically detectable or not.
Collapse
Affiliation(s)
- G Moscoso
- Early Human Development Research Unit, St George's Hospital Medical School, London, UK.
| |
Collapse
|
13
|
Tye AJ, Ghebrehiwet B, Guo N, Sastry KN, Chow BK, Peerschke EI, Lim BL. The human gC1qR/p32 gene, C1qBP. Genomic organization and promoter analysis. J Biol Chem 2001; 276:17069-75. [PMID: 11278463 DOI: 10.1074/jbc.m009064200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
gC1qR is an ubiquitously expressed cell protein that interacts with the globular heads of C1q (gC1q) and many other ligands. In this study, the 7.8-kilobase pair (kb) human gC1qR/p32 (C1qBP) gene was cloned and found to consist of 6 exons and 5 introns. Analysis of a 1.3-kb DNA fragment at the 5'-flanking region of this gene revealed the presence of multiple TATA, CCAAT, and Sp1 binding sites. Luciferase reporter assays performed in different human cell lines demonstrated that the reporter gene was ubiquitously driven by this 1.3-kb fragment. Subsequent 5' and 3' deletion of this fragment confined promoter elements to within 400 base pairs (bp) upstream of the translational start site. Because the removal of the 8-bp consensus TATATATA at -399 to -406 and CCAAT at -410 to -414 did not significantly affect the transcription efficiency of the promoter, GC-rich sequences between this TATA box and the translation start site may be very important for the promoter activity of the C1qBP gene. One of seven GC-rich sequences in this region binds specifically to PANC-1 nuclear extracts, and the transcription factor Sp1 was shown to bind to this GC-rich sequence by the supershift assay. Primer extension analysis mapped three major transcription start regions. The farthest transcription start site is 49 bp upstream of the ATG translation initiation codon and is in close proximity of the specific SP1 binding site.
Collapse
Affiliation(s)
- A J Tye
- Department of Zoology, University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Giannoni F, Müller HM, Vizioli J, Catteruccia F, Kafatos FC, Crisanti A. Nuclear factors bind to a conserved DNA element that modulates transcription of Anopheles gambiae trypsin genes. J Biol Chem 2001; 276:700-7. [PMID: 11016929 DOI: 10.1074/jbc.m005540200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Anopheles gambiae trypsin family consists of seven genes that are transcribed in the gut of female mosquitoes in a temporal coordinated and mutually exclusive manner, suggesting the involvement of a complex transcription regulatory mechanism. We identified a highly conserved 12-nucleotide motif present in all A. gambiae and Anopheles stephensi trypsin promoters. We investigated the role of this putative trypsin regulatory element (PTRE) in controlling the transcription of the trypsin genes. Gel shift experiments demonstrated that nuclear proteins of A. gambiae cell lines formed two distinct complexes with probes encompassing the PTRE sequence. Mapping of the binding sites revealed that one of the complex has the specificity of a GATA transcription factor. Promoter constructs containing mutations in the PTRE sequence that selectively abolished the binding of either one or both complexes exerted opposite effects on the transcriptional activity of trypsin promoters in A. gambiae and Aedes aegypti cell lines. In addition, the expression of a novel GATA gene was highly enriched in A. gambiae guts. Taken together our data prove that factors binding to the PTRE region are key regulatory elements possibly involved in the blood meal-induced repression and activation of transcription in early and late trypsin genes.
Collapse
Affiliation(s)
- F Giannoni
- Department of Biology, Imperial College of Science, Technology and Medicine, Imperial College Road, London SW7 9AX, United Kingdom
| | | | | | | | | | | |
Collapse
|
15
|
Molkentin JD. The zinc finger-containing transcription factors GATA-4, -5, and -6. Ubiquitously expressed regulators of tissue-specific gene expression. J Biol Chem 2000; 275:38949-52. [PMID: 11042222 DOI: 10.1074/jbc.r000029200] [Citation(s) in RCA: 670] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- J D Molkentin
- Department of Pediatrics, University of Cincinnati, Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA.
| |
Collapse
|
16
|
Weber H, Symes CE, Walmsley ME, Rodaway AR, Patient RK. A role for GATA5 in Xenopus endoderm specification. Development 2000; 127:4345-60. [PMID: 11003835 DOI: 10.1242/dev.127.20.4345] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The endoderm gives rise to the gut and tissues that develop as outgrowths of the gut tube, including the lungs, liver and pancreas. Here we show that GATA5, a zinc-finger transcription factor, is expressed in the yolk-rich vegetal cells of Xenopus embryos from the early gastrula stage onwards, when these cells become committed to form endoderm. At mid-gastrula stages, GATA5 is restricted to the sub-blastoporal endoderm and is the first molecular marker for this subset of endodermal cells so far identified. We show that GATA4 and GATA5 are potent inducers of endodermal marker genes in animal cap assays, while other GATA factors induce these genes only weakly, if at all. When injected into the dorsal marginal zone, GATA5 respecifies prospective mesoderm towards an endodermal fate, thereby disrupting the convergence and extension movements normally undergone by the dorsal mesoderm. The resulting phenotype is very similar to those seen after injection of dominant negative versions of the FGF-receptor or the T-box transcription factor, Xbra and can be rescued by eFGF. The ability of GATA5 to respecify ectodermal and mesodermal cells towards endoderm suggests an important role for GATA5 in the formation of this germlayer. In animal cap assays, GATA5 is induced by concentrations of activin above those known to induce dorsal mesoderm and heart, in an FGF-independent manner. These data indicate that the emerging view for endodermal induction in general, namely that it is specified by high levels of TGF-beta in the absence of FGF signalling, is specifically true for sub-blastoporal endoderm.
Collapse
Affiliation(s)
- H Weber
- Developmental Biology Research Centre, The Randall Institute, King's College London, London WC2B 5RL, UK
| | | | | | | | | |
Collapse
|
17
|
Kamitani H, Kameda H, Kelavkar UP, Eling TE. A GATA binding site is involved in the regulation of 15-lipoxygenase-1 expression in human colorectal carcinoma cell line, caco-2. FEBS Lett 2000; 467:341-7. [PMID: 10675566 DOI: 10.1016/s0014-5793(00)01155-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The data presented implicate a GATA binding site in the transcriptional regulation of 15-lipoxygenase-1 (15-LO-1) gene expression in human colorectal carcinoma Caco-2 cells. High expression of GATA-6 mRNA and protein was observed, while GATA-4 mRNA was expressed at a very low level in Caco-2 cells. The expression of GATA-6 was down-regulated, while 15-LO-1 expression was dramatically up-regulated after treatment with sodium butyrate (NaBT). A study using an electrophoretic mobility shift assay indicated that a GATA binding site of the 15-LO-1 promoter region binds to GATA proteins present in both undifferentiated and, to a lesser extent, NaBT-treated (differentiated) Caco-2 cells. Moreover, that DNA binding shift band was disrupted after the addition of GATA-6 antibody in a supershift assay in the absence of NaBT, suggesting that GATA-6 is bound to the GATA binding site of the 15-LO-1 promoter in undifferentiated cells. In contrast, the addition of GATA-6 antibody did not affect the DNA binding ability in NaBT-induced differentiated cells. On the other hand, mutation of the GATA site of the 15-LO-1 promoter decreased the transactivation of the 15-LO-1 promoter as measured by luciferase activity in both FBS and NaBT cultured cells, indicating an unknown GATA binding protein to up-regulate 15-LO-1 expression. These implicate the GATA site at -240 of the proximal region of the 15-LO-1 promoter in the basic transcription of 15-LO-1 gene expression in Caco-2 cells, with GATA-6 acting to repress 15-LO-1 expression.
Collapse
Affiliation(s)
- H Kamitani
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, PO Box 12233, Research Triangle Park, NC, USA
| | | | | | | |
Collapse
|
18
|
Brewer A, Gove C, Davies A, McNulty C, Barrow D, Koutsourakis M, Farzaneh F, Pizzey J, Bomford A, Patient R. The human and mouse GATA-6 genes utilize two promoters and two initiation codons. J Biol Chem 1999; 274:38004-16. [PMID: 10608869 DOI: 10.1074/jbc.274.53.38004] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GATA-6 has been implicated in the regulation of myocardial differentiation during cardiogenesis. To determine how its expression is controlled, we have characterized the human and mouse genes. We have mapped their transcriptional start sites and demonstrate that two alternative promoters and 5' noncoding exons are utilized. Both transcript isoforms are expressed in the same tissue-specific and developmental stage-specific pattern, and their ratio appears similar wherever examined. The more upstream noncoding exon showed a substantial degree of homology between the two mammalian species, suggesting a conserved regulatory function. Moreover, in transfection assays we show that elements within this exon act to promote its transcription. Positive regulatory elements that effect transcription from the more downstream exon were not apparent in this assay, revealing a regulatory distinction between the two promoters. We also demonstrate alternative initiator codon usage in both the human and mouse GATA-6 genes. Both isoforms of the protein are synthesized in vitro regardless of which 5' noncoding exon is present in the RNA, although the larger protein has greater transcriptional activation potential in transfection assays. Thus, GATA-6 function in the cell is controlled by a complex interplay of transcriptional and translational regulation.
Collapse
Affiliation(s)
- A Brewer
- Department of Molecular Medicine, The Rayne Institute, GKT, 123 Coldharbour Lane, London SE5 9NU, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ho PK, Fong RS, Kai HS, Lau EH, Ngan ES, Cotton CU, Chow BK. The human secretin receptor gene: genomic organization and promoter characterization. FEBS Lett 1999; 455:209-14. [PMID: 10437774 DOI: 10.1016/s0014-5793(99)00864-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Secretin is the most potent regulator of pancreatic bicarbonate, electrolyte and volume secretion. In this report, the organization of the human secretin receptor (hSR) gene was characterized by overlapping genomic phage clones. The hSR gene consists of 13 exons and 12 introns with all the splice donor and acceptor sites conforming to the canonical GT/AG rule. By transient reporter gene assays, the wild-type promoter, containing 3.0 kb of the hSR gene 5' flanking region, was able to drive 5.8 +/- 0.6 and 6.6 +/- 0.2-fold (P < 0.01) increases in luciferase activities in pancreatic ductule-derived PANC-1 and BPD-1 cells, respectively. By subsequent 5' and 3' deletion analysis, a promoter element was identified within -408 to -158, relative to the ATG codon. This promoter element was found to be cell-specific since it could drive reporter gene expression in PANC-1 and BPD-1 cells but not in Hs 262.St, Hs 746T and alphaT3-1 cells. The study of the transcriptional control of human secretin and its receptor should shed light on the pathological developments of pancreatic cancer and autism in the future.
Collapse
Affiliation(s)
- P K Ho
- Department of Zoology, The University of Hong Kong, SAR, PR China
| | | | | | | | | | | | | |
Collapse
|
20
|
Fox AH, Liew C, Holmes M, Kowalski K, Mackay J, Crossley M. Transcriptional cofactors of the FOG family interact with GATA proteins by means of multiple zinc fingers. EMBO J 1999; 18:2812-22. [PMID: 10329627 PMCID: PMC1171362 DOI: 10.1093/emboj/18.10.2812] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Friend of GATA-1 (FOG-1) is a zinc finger protein that has been shown to interact physically with the erythroid DNA-binding protein GATA-1 and modulate its transcriptional activity. Recently, two new members of the FOG family have been identified: a mammalian protein, FOG-2, that also associates with GATA-1 and other mammalian GATA factors; and U-shaped, a Drosophila protein that interacts with the Drosophila GATA protein Pannier. FOG proteins contain multiple zinc fingers and it has been shown previously that the sixth finger of FOG-1 interacts specifically with the N-finger but not the C-finger of GATA-1. Here we show that fingers 1, 5 and 9 of FOG-1 also interact with the N-finger of GATA-1 and that FOG-2 and U-shaped also contain multiple GATA-interacting fingers. We define the key contact residues and show that these residues are highly conserved in GATA-interacting fingers. We examine the effect of selectively mutating the four interacting fingers of FOG-1 and show that each contributes to FOG-1's ability to modulate GATA-1 activity. Finally, we show that FOG-1 can repress GATA-1-mediated activation and present evidence that this ability involves the recently described CtBP co-repressor proteins that recognize all known FOG proteins.
Collapse
Affiliation(s)
- A H Fox
- Department of Biochemistry, G08, University of Sydney, NSW, 2006, Australia
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Gene inactivation studies have shown that members of the GATA family of transcription factors are critical for endoderm differentiation in mice, flies and worms, yet how these proteins function in such a conserved developmental context has not been understood. We use in vivo footprinting of mouse embryonic endoderm cells to show that a DNA-binding site for GATA factors is occupied on a liver-specific, transcriptional enhancer of the serum albumin gene. GATA site occupancy occurs in gut endoderm cells at their pluripotent stage: the cells have the potential to initiate tissue development but they have not yet been committed to express albumin or other tissue-specific genes. The GATA-4 isoform accounts for about half of the nuclear GATA-factor-binding activity in the endoderm. GATA site occupancy persists during hepatic development and is necessary for the activity of albumin gene enhancer. Thus, GATA factors in the endoderm are among the first to bind essential regulatory sites in chromatin. Binding occurs prior to activation of gene expression, changes in cell morphology or functional commitment that would indicate differentiation. We suggest that GATA factors at target sites in chromatin may generally help potentiate gene expression and tissue specification in metazoan endoderm development.
Collapse
Affiliation(s)
- P Bossard
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
22
|
Fox AH, Kowalski K, King GF, Mackay JP, Crossley M. Key residues characteristic of GATA N-fingers are recognized by FOG. J Biol Chem 1998; 273:33595-603. [PMID: 9837943 DOI: 10.1074/jbc.273.50.33595] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-protein interactions play significant roles in the control of gene expression. These interactions often occur between small, discrete domains within different transcription factors. In particular, zinc fingers, usually regarded as DNA-binding domains, are now also known to be involved in mediating contacts between proteins. We have investigated the interaction between the erythroid transcription factor GATA-1 and its partner, the 9 zinc finger protein, FOG (Friend Of GATA). We demonstrate that this interaction represents a genuine finger-finger contact, which is dependent on zinc-coordinating residues within each protein. We map the contact domains to the core of the N-terminal zinc finger of GATA-1 and the 6th zinc finger of FOG. Using a scanning substitution strategy we identify key residues within the GATA-1 N-finger which are required for FOG binding. These residues are conserved in the N-fingers of all GATA proteins known to bind FOG, but are not found in the respective C-fingers. This observation may, therefore, account for the particular specificity of FOG for N-fingers. Interestingly, the key N-finger residues are seen to form a contiguous surface, when mapped onto the structure of the N-finger of GATA-1.
Collapse
Affiliation(s)
- A H Fox
- Department of Biochemistry, University of Sydney, New South Wales, 2006 Australia
| | | | | | | | | |
Collapse
|