1
|
Cheung P, Xiol J, Dill MT, Yuan WC, Panero R, Roper J, Osorio FG, Maglic D, Li Q, Gurung B, Calogero RA, Yilmaz ÖH, Mao J, Camargo FD. Regenerative Reprogramming of the Intestinal Stem Cell State via Hippo Signaling Suppresses Metastatic Colorectal Cancer. Cell Stem Cell 2020; 27:590-604.e9. [PMID: 32730753 PMCID: PMC10114498 DOI: 10.1016/j.stem.2020.07.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 04/01/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
Although the Hippo transcriptional coactivator YAP is considered oncogenic in many tissues, its roles in intestinal homeostasis and colorectal cancer (CRC) remain controversial. Here, we demonstrate that the Hippo kinases LATS1/2 and MST1/2, which inhibit YAP activity, are required for maintaining Wnt signaling and canonical stem cell function. Hippo inhibition induces a distinct epithelial cell state marked by low Wnt signaling, a wound-healing response, and transcription factor Klf6 expression. Notably, loss of LATS1/2 or overexpression of YAP is sufficient to reprogram Lgr5+ cancer stem cells to this state and thereby suppress tumor growth in organoids, patient-derived xenografts, and mouse models of primary and metastatic CRC. Finally, we demonstrate that genetic deletion of YAP and its paralog TAZ promotes the growth of these tumors. Collectively, our results establish the role of YAP as a tumor suppressor in the adult colon and implicate Hippo kinases as therapeutic vulnerabilities in colorectal malignancies.
Collapse
Affiliation(s)
- Priscilla Cheung
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jordi Xiol
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Michael T Dill
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Wei-Chien Yuan
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Riccardo Panero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Jatin Roper
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Fernando G Osorio
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Dejan Maglic
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Qi Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Basanta Gurung
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Raffaele A Calogero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Ömer H Yilmaz
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Fernando D Camargo
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
2
|
Tremblay MA, Mendoza-Villarroel RE, Robert NM, Bergeron F, Tremblay JJ. KLF6 cooperates with NUR77 and SF1 to activate the human INSL3 promoter in mouse MA-10 leydig cells. J Mol Endocrinol 2016; 56:163-73. [PMID: 26874000 DOI: 10.1530/jme-15-0139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/10/2016] [Indexed: 01/22/2023]
Abstract
Insulin-like 3 (INSL3), a Leydig cell-specific hormone, is essential for testis descent during foetal life and bone metabolism in adults. Despite its essential roles in male reproductive and bone health, very little is known regarding its transcriptional regulation in Leydig cells. To date, few transcription factors have been shown to activate INSL3 promoter activity: the nuclear receptors AR, NUR77, COUP-TFII and SF1. To identify additional regulators, we have isolated and performed a detailed analysis of a 1.1 kb human INSL3 promoter fragment. Through 5' progressive deletions and site-directed mutagenesis, we have mapped a 10 bp element responsible for about 80% of INSL3 promoter activity in Leydig cells. This element is identical to the CPE element of the placental-specific glycoprotein-5 (PSG5) promoter that is recognized by the developmental regulator Krüppel-like factor 6 (KLF6). Using PCR and western blotting, we found that KLF6 is expressed in several Leydig and Sertoli cell lines. Furthermore, immunohistochemistry on adult mouse testis revealed the presence of KLF6 in the nuclei of both Leydig and Sertoli cells. KLF6 binds to the 10 bp KLF element at -108 bp and activates the -1.1 kb human, but not the mouse, INSL3 promoter. KLF6-mediated activation of the human INSL3 promoter required an intact KLF element as well as Leydig/Sertoli-enriched factors because KLF6 did not stimulate the human INSL3 promoter activity in CV-1 fibroblast cells. Consistent with this, we found that KLF6 transcriptionally cooperates with NUR77 and SF1. Collectively, our results identify KLF6 as a regulator of human INSL3 transcription.
Collapse
Affiliation(s)
- Maxime A Tremblay
- ReproductionMother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec, Canada
| | - Raifish E Mendoza-Villarroel
- ReproductionMother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec, Canada
| | - Nicholas M Robert
- ReproductionMother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec, Canada
| | - Francis Bergeron
- ReproductionMother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec, Canada
| | - Jacques J Tremblay
- ReproductionMother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec, Canada Centre for Research in ReproductionDevelopment and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
3
|
Wilson SR, Joshi AD, Elferink CJ. The tumor suppressor Kruppel-like factor 6 is a novel aryl hydrocarbon receptor DNA binding partner. J Pharmacol Exp Ther 2013; 345:419-29. [PMID: 23512538 PMCID: PMC3657114 DOI: 10.1124/jpet.113.203786] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 03/18/2013] [Indexed: 01/17/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-mediated basic helix-loop-helix transcription factor of the Per/Arnt/Sim family that regulates adaptive and toxic responses to a variety of chemical pollutants, including polycyclic aromatic hydrocarbons and halogenated aromatic hydrocarbons, most notably 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Ligand activation leads to AhR nuclear translocation and binding to a xenobiotic response element (XRE) in association with the Arnt to regulate gene expression. Several recent genome-wide transcriptional studies identified numerous AhR target genes that lack the canonical XRE recognition site in the promoter regions. Characterization of one such target gene, the plasminogen activator inhibitor 1, identified a novel nonconsensus XRE (NC-XRE) that confers TCDD responsiveness independently of the Arnt protein. Studies reported here show that the NC-XRE is a recognition site for the AhR and a new binding partner, the Kruppel-like factor (KLF) family member KLF6. In vivo chromatin immunoprecipitations and in vitro DNA binding studies demonstrate that the AhR and KLF6 proteins form an obligatory heterodimer necessary for NC-XRE binding. Mutational analyses show that the protein-protein interactions involve the AhR C terminus and KLF6 N terminus, respectively. Moreover, NC-XRE binding depends on the 5' basic region in KLF6 rather than the previously characterized zinc finger DNA binding domain. Collectively, the results unmask a novel AhR signaling mechanism distinct from the canonical XRE-driven process that will enrich our future understanding of AhR biology.
Collapse
Affiliation(s)
- Shelly R Wilson
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, USA
| | | | | |
Collapse
|
4
|
Wu T, Zhang Z, Yuan Z, Lo LJ, Chen J, Wang Y, Peng J. Distinctive genes determine different intramuscular fat and muscle fiber ratios of the longissimus dorsi muscles in Jinhua and landrace pigs. PLoS One 2013; 8:e53181. [PMID: 23301040 PMCID: PMC3536781 DOI: 10.1371/journal.pone.0053181] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/26/2012] [Indexed: 02/04/2023] Open
Abstract
Meat quality is determined by properties such as carcass color, tenderness and drip loss. These properties are closely associated with meat composition, which includes the types of muscle fiber and content of intramuscular fat (IMF). Muscle fibers are the main contributors to meat mass, while IMF not only contributes to the sensory properties but also to the plethora of physical, chemical and technological properties of meat. However, little is known about the molecular mechanisms that determine meat composition in different pig breeds. In this report we show that Jinhua pigs, a Chinese breed, contains much higher levels of IMF than do Landrace pigs, a Danish breed. We analyzed global gene expression profiles in the longissimus dorsi muscles in Jinhua and Landrace breeds at the ages of 30, 90 and 150 days. Cross-comparison analysis revealed that genes that regulate fatty acid biosynthesis (e.g., fatty acid synthase and stearoyl-CoA desaturase) are expressed at higher levels in Jinhua pigs whereas those that regulate myogenesis (e.g., myogenic factor 6 and forkhead box O1) are expressed at higher levels in Landrace pigs. Among those genes which are highly expressed in Jinhua pigs at 90 days (d90), we identified a novel gene porcine FLJ36031 (pFLJ), which functions as a positive regulator of fat deposition in cultured intramuscular adipocytes. In summary, our data showed that the up-regulation of fatty acid biosynthesis regulatory genes such as pFLJ and myogenesis inhibitory genes such as myostatin in the longissimus dorsi muscles of Jinhua pigs could explain why this local breed produces meat with high levels of IMF.
Collapse
Affiliation(s)
- Ting Wu
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhenhai Zhang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - Zhangqin Yuan
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Li Jan Lo
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yizhen Wang
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jinrong Peng
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Wu Z, Wang S. Role of kruppel-like transcription factors in adipogenesis. Dev Biol 2012; 373:235-43. [PMID: 23142072 DOI: 10.1016/j.ydbio.2012.10.031] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 10/31/2012] [Accepted: 10/31/2012] [Indexed: 01/27/2023]
Abstract
The zinc-finger transcription factors of the kruppel-like factor family (KLF) are critical in many physiological and pathological processes including cell proliferation, differentiation, inflammation, and apoptosis. Recently, there is increasing evidence that suggests these KLFs have an important role in fat biology. This review summarizes the role of KLFs in lipid metabolism, especially in adipogenesis, and reveals the relationship networks among members of KLF family in differentiation.
Collapse
Affiliation(s)
- Zeni Wu
- School of Public Health, Wuhan University, Wuhan, China
| | | |
Collapse
|
6
|
Wu Y, Long Q, Feng B, Zhu X, Zheng Z, Gao S, Gao M, Gan L, Zhou L, Yang Z. Molecular cloning and characterization of the anti-obesity gene adipose in pig. Gene 2012; 509:110-119. [PMID: 23010425 DOI: 10.1016/j.gene.2012.07.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 07/22/2012] [Accepted: 07/30/2012] [Indexed: 11/20/2022]
Abstract
Obesity has become an epidemic health problem characterized by aberrant energy metabolism. As the major player in energy homeostasis, adipose tissue has a decisive role in the development of obesity. Many genes involved in adipogenesis are also correlated with obesity. Adipose (Adp) has been established as an anti-obesity gene to repress adipogenesis and fat accumulation in mice, which inhibits the transcriptional activity of PPARγ by forming a chromatin remodeling complex with histones and HDAC3. Here, we reported the cloning and characterization of the pig Adp gene. Pig Adp cDNA had an ORF of 2034 nucleotides and was highly conserved among various species. Genomic sequence analysis indicated that pig Adp gene contains 16 exons and 15 introns, spanning more than 60kb on chromosome 6q21-24. The expression of pig Adp was high in testis, lung, kidney and adipose tissues, and relatively low in skeletal muscle. Bioinformatic analysis of 5'-flanking region of Adp has identified several potential binding sites for pivotal transcriptional factors related to both adipocyte differentiation and inflammation, highlighting the significance of Adp in energy metabolism. We have confirmed that KLF6, a positive regulator of adipogenesis, can enhance the promoter activity of Adp and up-regulate its mRNA expression. Taken together, our results would be helpful for further study of Adp regulation in the process of fat accumulation.
Collapse
Affiliation(s)
- Yanling Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Adipose tissue is an important site for lipid storage, energy homeostasis, and whole-body insulin sensitivity. It is important to understand the mechanisms involved in adipose tissue development and function, which can be regulated by the endocrine actions of various peptide and steroid hormones. Recent studies have revealed that white and brown adipocytes can be derived from distinct precursor cells. This review will focus on transcriptional control of adipogenesis and its regulation by several endocrine hormones. The general functions and cellular origins of adipose tissue and how the modulation of adipocyte development pertains to metabolic disease states will also be considered.
Collapse
|
8
|
Krüppel-like factor 6 expression changes during trophoblast syncytialization and transactivates ßhCG and PSG placental genes. PLoS One 2011; 6:e22438. [PMID: 21799854 PMCID: PMC3142166 DOI: 10.1371/journal.pone.0022438] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 06/27/2011] [Indexed: 11/19/2022] Open
Abstract
Background Krüppel-like factor-6 (KLF6) is a widely expressed member of the Sp1/KLF family of transcriptional regulators involved in differentiation, cell cycle control and proliferation in several cell systems. Even though the highest expression level of KLF6 has been detected in human and mice placenta, its function in trophoblast physiology is still unknown. Methodology/Principal Findings Herein, we explored KLF6 expression and sub-cellular distribution in human trophoblast cells differentiating into the syncytial pathway, and its role in the regulation of genes associated with placental development and pregnancy maintenance. Confocal immunofluorescence microscopy demonstrated that KLF6 is expressed throughout human cytotrophoblast differentiation showing no evident modifications in its nuclear and cytoplasmic localization pattern. KLF6 transcript and protein peaked early during the syncytialization process as determined by qRT-PCR and western blot assays. Overexpression of KLF6 in trophoblast-derived JEG-3 cells showed a preferential nuclear signal correlating with enhanced expression of human β-chorionic gonadotropin (βhCG) and pregnancy-specific glycoprotein (PSG) genes. Moreover, KLF6 transactivated βhCG5, PSG5 and PSG3 gene promoters. Deletion of KLF6 Zn-finger DNA binding domain or mutation of the consensus KLF6 binding site abolished transactivation of the PSG5 promoter. Conclusions/Significance Results are consistent with KLF6 playing a role as transcriptional regulator of relevant genes for placental differentiation and physiology such as βhCG and PSG, in agreement with an early and transient increase of KLF6 expression during trophoblast syncytialization.
Collapse
|
9
|
Jeong KH, Kim SK, Kim SY, Cho KO. Immunohistochemical localization of Krüppel-like factor 6 in the mouse forebrain. Neurosci Lett 2009; 453:16-20. [PMID: 19429007 DOI: 10.1016/j.neulet.2009.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 01/31/2009] [Accepted: 02/02/2009] [Indexed: 10/21/2022]
Abstract
Krüppel-like factor 6 (KLF6) is a transcriptional regulator that shows widespread distribution in the peripheral organs of the body. However, it remains uncertain where KLF6 is expressed in the adult forebrain under physiological conditions. Therefore, the present study investigated the spatial patterns of KLF6 expression and identified cell types expressing KLF6 in the forebrain. KLF6 immunoreactivity was widely seen throughout the forebrain including the olfactory bulb, cerebral cortex, hippocampus, septum, amygdala, basal ganglia, thalamus, and hypothalamus. Moreover, KLF6-positive cells were also detected in the radial migratory stream (RMS) and subventricular zone. Immunofluorescent double-labeling revealed that KLF6-immunoreactive cells were co-localized with neuronal nuclei or platelet endothelial cell adhesion molecule-1, a mature neuronal and endothelial marker, respectively, in most forebrain regions. In the RMS, KLF6 was co-expressed with polysialic neural cell adhesion molecule, a marker of neuronal progenitor cells. This is the first report showing that KLF6 protein is expressed in various regions of the adult forebrain and KLF6-positive cells manifest neuronal or endothelial phenotypes under physiological conditions.
Collapse
Affiliation(s)
- Kyoung Hoon Jeong
- Department of Pharmacology, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, 137-701 Seoul, Republic of Korea
| | | | | | | |
Collapse
|
10
|
Cullingford TE, Butler MJ, Marshall AK, Tham EL, Sugden PH, Clerk A. Differential regulation of Krüppel-like factor family transcription factor expression in neonatal rat cardiac myocytes: effects of endothelin-1, oxidative stress and cytokines. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1229-36. [PMID: 18406357 PMCID: PMC2396231 DOI: 10.1016/j.bbamcr.2008.03.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 03/11/2008] [Accepted: 03/12/2008] [Indexed: 02/03/2023]
Abstract
Krüppel-like transcription factors (Klfs) modulate fundamental cell processes. Cardiac myocytes are terminally-differentiated, but hypertrophy in response to stimuli such as endothelin-1. H2O2 or cytokines promote myocyte apoptosis. Microarray studies of neonatal rat myocytes identified several Klfs as endothelin-1-responsive genes. We used quantitative PCR for further analysis of Klf expression in neonatal rat myocytes. In response to endothelin-1, Klf2 mRNA expression was rapidly increased (∼ 9-fold; 15–30 min) with later increases in expression of Klf4 and Klf6 (∼ 5-fold; 30–60 min). All were regulated as immediate early genes (cycloheximide did not inhibit the increases in expression). Klf5 expression was increased at 1–2 h (∼ 13-fold) as a second phase response (cycloheximide inhibited the increase). These increases were transient and attenuated by U0126. H2O2 increased expression of Klf2, Klf4 and Klf6, but interleukin-1β or tumor necrosis factor α downregulated Klf2 expression with no effect on Klf4 or Klf6. Of the Klfs which repress transcription, endothelin-1 rapidly downregulated expression of Klf3, Klf11 and Klf15. The dynamic regulation of expression of multiple Klf family members in cardiac myocytes suggests that, as a family, they are actively involved in regulating phenotypic responses (hypertrophy and apoptosis) to extracellular stimuli.
Collapse
Affiliation(s)
- Timothy E Cullingford
- National Heart and Lung Institute (NHLI) Division, Faculty of Medicine, Imperial College London, Flowers Building (4th Floor), Armstrong Road, London SW7 2AZ, UK
| | | | | | | | | | | |
Collapse
|
11
|
Hansen TVO, Borup R, Marstrand T, Rehfeld JF, Nielsen FC. Cholecystokinin-2 receptor mediated gene expression in neuronal PC12 cells. J Neurochem 2007; 104:1450-65. [DOI: 10.1111/j.1471-4159.2007.05076.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Li D, Yea S, Dolios G, Martignetti JA, Narla G, Wang R, Walsh MJ, Friedman SL. Regulation of Kruppel-like factor 6 tumor suppressor activity by acetylation. Cancer Res 2005; 65:9216-25. [PMID: 16230382 DOI: 10.1158/0008-5472.can-05-1040] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Krüppel-like factor 6 (KLF6) is a zinc finger transcription factor and tumor suppressor that is inactivated in a number of human cancers by mutation, allelic loss, and/or promoter methylation. A key mechanism of growth inhibition by wild-type KLF6 is through p53-independent up-regulation of p21(WAF1/cip1) (CDKN1A), which is abrogated in several tumor-derived mutants. Here we show by chromatin immunoprecipitation that transactivation of p21(WAF1/cip1) by KLF6 occurs through its direct recruitment to the p21(WAF1/cip1) promoter and requires acetylation by histone acetyltransferase activity of either cyclic AMP-responsive element binding protein-binding protein or p300/CBP-associated factor. Direct lysine acetylation of KLF6 peptides can be shown by mass spectrometry. A single lysine-to-arginine point mutation (K209R) derived from prostate cancer reduces acetylation of KLF6 and abrogates its capacity to up-regulate endogenous p21(WAF1/cip1) and reduce cell proliferation. These data indicate that acetylation may regulate KLF6 function, and its loss in some tumor-derived mutants could contribute to its failure to suppress growth in prostate cancer.
Collapse
Affiliation(s)
- Dan Li
- Department of Human Genetics, Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Gehrau RC, D'Astolfo DS, Prieto C, Bocco JL, Koritschoner NP. Genomic organization and functional analysis of the gene encoding the Krüppel-like transcription factor KLF6. ACTA ACUST UNITED AC 2005; 1730:137-46. [PMID: 16054710 DOI: 10.1016/j.bbaexp.2005.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 06/08/2005] [Accepted: 06/10/2005] [Indexed: 12/31/2022]
Abstract
The Krüppel-like transcription Factor 6 (KLF6) is regulated during cell proliferation and differentiation events like mammalian development and tissue regeneration, while its aberrant expression is associated with tumor formation. To investigate KLF6 transcriptional control, the genomic organization of human KLF6 together with its cis-regulatory region was analyzed. A high sequence homology of KLF6 regulatory regions was found in mammals, which in turn predicts a high degree of evolutionary conserved transcriptional mechanisms. A transcription start site was identified at the first nucleotide downstream of a potential initiator element. Also, the role of KLF6 regulatory regions was determined by transfection experiments. A minimal promoter region lacking a TATA-box yet containing an Initiator was identified and found to be active in all cells analyzed. In addition, two strong activating sequences were located between positions -407/-344 and -307/-207, where the latter contained Sp1 and CAAT-box sites. Furthermore, ectopic expression of Sp1 increased the transcriptional activity of the KLF6 promoter. In conclusion, our data revealed that KLF6 gene transcription is under control of a TATA-box independent initiation mechanism together with an evolutionary conserved array of positive cis-acting elements.
Collapse
Affiliation(s)
- Ricardo C Gehrau
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000-Córdoba, Argentina
| | | | | | | | | |
Collapse
|
14
|
Li D, Yea S, Li S, Chen Z, Narla G, Banck M, Laborda J, Tan S, Friedman JM, Friedman SL, Walsh MJ. Krüppel-like Factor-6 Promotes Preadipocyte Differentiation through Histone Deacetylase 3-dependent Repression of DLK1. J Biol Chem 2005; 280:26941-52. [PMID: 15917248 DOI: 10.1074/jbc.m500463200] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Preadipocyte differentiation occurs during distinct periods of human development and is a key determinant of body mass. Transcriptional events underlying adipogenesis continue to emerge, but the link between chromatin remodeling of specific target loci and preadipocyte differentiation remains elusive. We have identified Krüppel-like factor-6 (KLF6), a recently described tumor suppressor gene, as a repressor of the proto-oncogene Delta-like 1 (Dlk1), a gene encoding a transmembrane protein that inhibits adipocyte differentiation. Forced expression of KLF6 strongly inhibits Dlk1 expression in preadipocytes and NIH 3T3 cells in vivo, whereas down-regulation of KLF6 in 3T3-L1 cells by small interfering RNA prevents adipogenesis. Repression of Dlk1 requires HDAC3 deacetylase activity, which is recruited to the endogenous Dlk1 promoter where it interacts with KLF6. Our studies identify the interaction between HDAC3 and KLF6 as a potential mechanism underlying human adipogenesis, and highlight the role of KLF6 as a multifunctional transcriptional regulator capable of mediating adipocyte differentiation through gene repression.
Collapse
Affiliation(s)
- Dan Li
- Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Mori T, Sakaue H, Iguchi H, Gomi H, Okada Y, Takashima Y, Nakamura K, Nakamura T, Yamauchi T, Kubota N, Kadowaki T, Matsuki Y, Ogawa W, Hiramatsu R, Kasuga M. Role of Krüppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J Biol Chem 2005; 280:12867-75. [PMID: 15664998 DOI: 10.1074/jbc.m410515200] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Krüppel-like zinc finger transcription factors (KLFs) play diverse roles during cell differentiation and development in mammals. We have now shown by microarray analysis that expression of the KLF15 gene is markedly up-regulated during the differentiation of 3T3-L1 preadipocytes into adipocytes. Inhibition of the function of KLF15, either by expression of a dominant negative mutant or by RNA interference, both reduced the expression of peroxisome proliferator-activated receptor gamma (PPARgamma) and blocked adipogenesis in 3T3-L1 preadipocytes exposed to inducers of adipocyte differentiation. However, the dominant negative mutant of KLF15 did not affect the expression of CCAAT/enhancer-binding protein beta (C/EBPbeta) elicited by inducers of differentiation in 3T3-L1 preadipocytes. In addition, ectopic expression of KLF15 in NIH 3T3 or C2C12 cells triggered both lipid accumulation and the expression of PPARgamma in the presence of inducers of adipocyte differentiation. Ectopic expression of C/EBPbeta, C/EBPdelta, or C/EBPalpha in NIH 3T3 cells also elicited the expression of KLF15 in the presence of inducers of adipocyte differentiation. Moreover, KLF15 and C/EBPalpha acted synergistically to increase the activity of the PPARgamma2 gene promoter in 3T3-L1 adipocytes. Our observations thus demonstrate that KLF15 plays an essential role in adipogenesis in 3T3-L1 cells through its regulation of PPAR gamma expression.
Collapse
Affiliation(s)
- Toshiyuki Mori
- Department of Clinical Molecular Medicine, Division of Diabetes and Digestive and Kidney Diseases, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Dang DT, Pevsner J, Yang VW. The biology of the mammalian Krüppel-like family of transcription factors. Int J Biochem Cell Biol 2000; 32:1103-21. [PMID: 11137451 PMCID: PMC2754176 DOI: 10.1016/s1357-2725(00)00059-5] [Citation(s) in RCA: 358] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent advances in molecular cloning have led to the identification of a large number of mammalian zinc finger-containing transcription factors that exhibit homology to the Drosophila melanogaster protein, Krüppel. Although the amino acid sequences in the zinc finger domains of these Krüppel-like factors (KLFs) are closely related to one another, the regions outside the zinc fingers of the proteins are usually unique. KLFs display seemingly different and broad biological properties with each functioning as an activator of transcription, a repressor or both. This review article provides a current phylogenetic classification of the identified KLFs to date. More importantly, the currently known biological activities of the KLFs in regulating transcription, cell proliferation, differentiation and development are summarized and compared. Further characterization of this interesting protein family should provide additional insights into the their respective regulatory role in various important biological processes.
Collapse
Affiliation(s)
- Duyen T. Dang
- Department of Medicine, The Johns Hopkins University School of Medicine, 918 Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Jonathan Pevsner
- Department of Neurology, Kennedy Krieger Research Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vincent W. Yang
- Department of Medicine, The Johns Hopkins University School of Medicine, 918 Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Corresponding author. Tel.: +1-410-955-9691; fax: +1-410-955-9677. E-mail address: (V.W. Yang)
| |
Collapse
|