1
|
Frerich CA, Sedam HN, Kang H, Mitani Y, El-Naggar AK, Ness SA. N-Terminal Truncated Myb with New Transcriptional Activity Produced Through Use of an Alternative MYB Promoter in Salivary Gland Adenoid Cystic Carcinoma. Cancers (Basel) 2019; 12:E45. [PMID: 31877778 PMCID: PMC7016764 DOI: 10.3390/cancers12010045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/09/2019] [Accepted: 12/19/2019] [Indexed: 11/16/2022] Open
Abstract
Adenoid cystic carcinoma (ACC) is an aggressive salivary gland tumor that frequently displays perineural invasion and is often associated with translocations or overexpression of the MYB oncogene. Detailed analyses of MYB transcripts from ACC patient samples revealed that ACC tumors utilize an alternative MYB promoter, which is rarely used in normal cells or other tumor types. The alternative promoter transcripts produce N-terminally truncated Myb proteins lacking a highly conserved and phosphorylated domain, which includes the pS11 epitope that is frequently used to detect Myb proteins. In RNA-seq assays, Myb isoforms lacking the N-terminal domain displayed unique transcriptional activities, regulating many genes differently than full-length Myb. Thus, a regulatory pathway unique to ACC activates the alternative MYB promoter, leading to the production of a truncated Myb protein with altered transcriptional activities. This could provide new therapeutic opportunities for ACC patients.
Collapse
Affiliation(s)
- Candace A. Frerich
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Hailey N. Sedam
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Myriad Women’s Health, South San Francisco, CA 94080, USA
| | - Huining Kang
- Department of Internal Medicine, Division of Epidemiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Yoshitsugu Mitani
- Head and Neck Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA (A.K.E.-N.)
| | - Adel K. El-Naggar
- Head and Neck Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA (A.K.E.-N.)
| | - Scott A. Ness
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- UNM Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| |
Collapse
|
2
|
Zhang J, Han B, Li X, Bies J, Jiang P, Koller RP, Wolff L. Distal regulation of c-myb expression during IL-6-induced differentiation in murine myeloid progenitor M1 cells. Cell Death Dis 2016; 7:e2364. [PMID: 27607579 PMCID: PMC5059869 DOI: 10.1038/cddis.2016.267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/25/2016] [Accepted: 07/29/2016] [Indexed: 12/31/2022]
Abstract
The c-Myb transcription factor is a major regulator that controls differentiation and proliferation of hematopoietic progenitor cells, which is frequently deregulated in hematological diseases, such as lymphoma and leukemia. Understanding of the mechanisms regulating the transcription of c-myb gene is challenging as it lacks a typical promoter and multiple factors are involved. Our previous studies identified some distal regulatory elements in the upstream regions of c-myb gene in murine myeloid progenitor M1 cells, but the detailed mechanisms still remain unclear. In the present study, we found that a cell differentiation-related DNase1 hypersensitive site is located at a -28k region upstream of c-myb gene and that transcription factors Hoxa9, Meis1 and PU.1 bind to the -28k region. Circular chromosome conformation capture (4C) assay confirmed the interaction between the -28k region and the c-myb promoter, which is supported by the enrichment of CTCF and Cohesin. Our analysis also points to a critical role for Hoxa9 and PU.1 in distal regulation of c-myb expression in murine myeloid cells and cell differentiation. Overexpression of Hoxa9 disrupted the IL-6-induced differentiation of M1 cells and upregulated c-myb expression through binding of the -28k region. Taken together, our results provide an evidence for critical role of the -28k region in distal regulatory mechanism for c-myb gene expression during differentiation of myeloid progenitor M1 cells.
Collapse
Affiliation(s)
- Junfang Zhang
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fishery and Life Science, Shanghai Ocean University, No.999 Huchenghuan Road, Pudong New District, Shanghai 201306, China
| | - Bingshe Han
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fishery and Life Science, Shanghai Ocean University, No.999 Huchenghuan Road, Pudong New District, Shanghai 201306, China
| | - Xiaoxia Li
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fishery and Life Science, Shanghai Ocean University, No.999 Huchenghuan Road, Pudong New District, Shanghai 201306, China
| | - Juraj Bies
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Penglei Jiang
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fishery and Life Science, Shanghai Ocean University, No.999 Huchenghuan Road, Pudong New District, Shanghai 201306, China
| | - Richard P Koller
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Linda Wolff
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Palumbo SL, Memmott RM, Uribe DJ, Krotova-Khan Y, Hurley LH, Ebbinghaus SW. A novel G-quadruplex-forming GGA repeat region in the c-myb promoter is a critical regulator of promoter activity. Nucleic Acids Res 2008; 36:1755-69. [PMID: 18252774 PMCID: PMC2330228 DOI: 10.1093/nar/gkm1069] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The c-myb promoter contains multiple GGA repeats beginning 17 bp downstream of the transcription initiation site. GGA repeats have been previously shown to form unusual DNA structures in solution. Results from chemical footprinting, circular dichroism and RNA and DNA polymerase arrest assays on oligonucleotides representing the GGA repeat region of the c-myb promoter demonstrate that the element is able to form tetrad:heptad:heptad:tetrad (T:H:H:T) G-quadruplex structures by stacking two tetrad:heptad G-quadruplexes formed by two of the three (GGA)(4) repeats. Deletion of one or two (GGA)(4) motifs destabilizes this secondary structure and increases c-myb promoter activity, indicating that the G-quadruplexes formed in the c-myb GGA repeat region may act as a negative regulator of the c-myb promoter. Complete deletion of the c-myb GGA repeat region abolishes c-myb promoter activity, indicating dual roles of the c-myb GGA repeat element as both a transcriptional repressor and an activator. Furthermore, we demonstrated that Myc-associated zinc finger protein (MAZ) represses c-myb promoter activity and binds to the c-myb T:H:H:T G-quadruplexes. Our findings show that the T:H:H:T G-quadruplex-forming region in the c-myb promoter is a critical cis-acting element and may repress c-myb promoter activity through MAZ interaction with G-quadruplexes in the c-myb promoter.
Collapse
Affiliation(s)
- SunMi L Palumbo
- Arizona Cancer Center, University of Arizona, 1515 N. Campbell Ave., Tucson, AZ 85724-5024, USA
| | | | | | | | | | | |
Collapse
|
4
|
Li S, Moore CL, Dobretsova A, Wight PA. Myelin proteolipid protein (Plp) intron 1 DNA is required to temporally regulate Plp gene expression in the brain. J Neurochem 2002; 83:193-201. [PMID: 12358743 DOI: 10.1046/j.1471-4159.2002.01142.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The myelin proteolipid protein (Plp) gene encodes the most abundant protein found in mature CNS myelin. Expression of the gene is regulated spatiotemporally, with maximal expression occurring in oligodendrocytes during the myelination period of CNS development. Plp gene expression is tightly controlled. Misregulation of the gene in humans can result in the dysmyelinating disorder Pelizaeus-Merzbacher disease, and in transgenic mice carrying a null mutation or extra copies of the gene can result in a variety of conditions, from late onset demyelination and axonopathy, to severe early onset dysmyelination. In this study we have examined the effects of Plp intron 1 DNA in mediating proper developmental expression of Plp-lacZ fusion genes in transgenic mice. Our results reveal the importance of Plp intron 1 sequences in instigating the expected surge in Plp-lacZ gene activity during (and following) the active myelination period of brain development. Transgene expression was also detected in the testis (Leydig cells), however, the presence or absence of Plp intron 1 sequences had no effect on the temporal profile in the testis. Surprisingly, expression of the transgene missing Plp intron 1 DNA was always higher in the testis, as compared to the brain, in all of the transgenic lines generated.
Collapse
Affiliation(s)
- Shenyang Li
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
5
|
Li S, Dobretsova A, Kokorina NA, Wight PA. Repression of myelin proteolipid protein gene expression is mediated through both general and cell type-specific negative regulatory elements in nonexpressing cells. J Neurochem 2002; 82:159-71. [PMID: 12091477 DOI: 10.1046/j.1471-4159.2002.00962.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The myelin proteolipid protein gene (Plp ) is expressed primarily in oligodendrocytes. Yet how the gene remains repressed in nonexpressing cells has not been defined, and potentially could cause adverse effects in an organism if the mechanism for repression was impaired. Previous studies suggest that the first intron contains element(s), which suppress expression in nonexpressing cells, although the identity of these elements within the 8 kb intron was not characterized. Here we report the localization of multiple negative regulatory elements that repress Plp gene expression in nonexpressing cells (+/+ Li). Two of these elements (regions) correspond to those used by Plp expressing cells (N20.1), whilst another acts in a cell type-specific manner (i.e. operational in +/+ Li liver cells, but not N20.1 cells). By gel-shift and DNase I footprinting analyses, the factor(s) that bind to the cell type-specific negative regulatory region appear to be far more abundant in +/+ Li cells than in N20.1 cells. Thus, Plp gene repression is mediated through the combinatorial action of both "general" and cell type-specific negative regulatory elements. Additionally, repression in +/+ Li cells cannot be overcome via an antisilencer/enhancer element, which previously has been shown to function in N20.1 cells.
Collapse
Affiliation(s)
- Shenyang Li
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
6
|
Abstract
Expression of the c-myb proto-oncogene is developmentally regulated at the level of transcription elongation. In pre-B cells, complete c-myb transcripts are produced, whereas transcripts are attenuated near or within a 300-base pair (bp) interval of the first c-myb intron in mature cells. Hypothesizing that transcription attenuation results from a protein complex that physically impedes the progress of RNA polymerase II through the intron, we used electrophoretic mobility shift assays (EMSA) to search for DNA-binding activities that correlated with downregulation of c-myb transcription. We identified a stage-specific DNA binding activity, termed ABF, present in mature B cells but not in pre-B cells. ABF binds to a 15-bp DNA element located within a 300-bp BstEII-XbaI fragment. DMSO-treatment of murine erythroleukemia cells results in rapid downregulation of c-myb transcription and upregulation of ABF DNA binding activity. Thus, ABF binding activity correlates with downregulation of c-myb transcription in two systems. Preliminary biochemical characterization of ABF from mature B cells demonstrates that its primary DNA-binding component is a 64-kDa-protein. We hypothesize that this factor may represent a member of the transcriptional attenuation complex.
Collapse
Affiliation(s)
- Jeffrey M Perkel
- Abramson Family Cancer Research Institute, University of Pennsylvania, Room 456, BRB 11/111, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|