1
|
Reimer JM, Samollow PB, Hellman L. High degree of conservation of the multigene tryptase locus over the past 150-200 million years of mammalian evolution. Immunogenetics 2010; 62:369-82. [PMID: 20383634 DOI: 10.1007/s00251-010-0443-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 03/16/2010] [Indexed: 01/25/2023]
Abstract
Activated mast cells release a number of potent inflammatory mediators including histamine, proteoglycans, cytokines, and serine proteases. The proteases constitute the majority of the mast cell granule proteins, and they belong to either the chymase or the tryptase family. In mammals, these enzymes are encoded by two different loci, the mast cell chymase and the multigene tryptase loci. In mice and humans, a relatively large number of tryptic enzymes are encoded from the latter locus. These enzymes can be grouped into two subfamilies, the group 1 tryptases, with primarily membrane-anchored enzymes, and the group 2 tryptases, consisting of the soluble mast cell tryptases. In order to study the appearance of these enzymes during vertebrate evolution, we have analyzed the dog, cattle, opossum, and platypus genomes and sought orthologues in the genomes of several bird, frog, and fish species as well. Our results show that the overall structure and the number of genes within this locus have been well conserved from marsupial to placental mammals. In addition, two relatively distantly related group 2 tryptase genes and several direct homologues of some of the group 1 genes are present in the genome of the platypus, a monotreme. However, no direct homologues of the individual genes of either group 1 or 2 enzymes were identified in bird, amphibian, or fish genomes. Our results indicate that the individual genes within the multigene tryptase locus, in their present form, are essentially mammal-specific.
Collapse
Affiliation(s)
- Jenny M Reimer
- Department of Cell and Molecular Biology, Program for Immunology, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
2
|
Stevens RL, Adachi R. Protease-proteoglycan complexes of mouse and human mast cells and importance of their beta-tryptase-heparin complexes in inflammation and innate immunity. Immunol Rev 2007; 217:155-67. [PMID: 17498058 DOI: 10.1111/j.1600-065x.2007.00525.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Approximately 50% of the weight of a mature mast cell (MC) consists of varied neutral proteases stored in the cell's secretory granules ionically bound to serglycin proteoglycans that contain heparin and/or chondroitin sulfate E/diB chains. Mouse MCs express the exopeptidase carboxypeptidase A3 and at least 15 serine proteases [designated as mouse MC protease (mMCP) 1-11, transmembrane tryptase/tryptase gamma/protease serine member S (Prss) 31, cathepsin G, granzyme B, and neuropsin/Prss19]. mMCP-6, mMCP-7, mMCP-11/Prss34, and Prss31 are the four members of the chromosome 17A3.3 family of tryptases that are preferentially expressed in MCs. One of the challenges ahead is to understand why MCs express so many different protease-proteoglycan macromolecular complexes. MC-like cells that contain tryptase-heparin complexes in their secretory granules have been identified in the Ciona intestinalis and Styela plicata urochordates that appeared approximately 500 million years ago. Because sea squirts lack B cells and T cells, it is likely that MCs and their tryptase-proteoglycan granule mediators initially appeared in lower organisms as part of their innate immune system. The conservation of MCs throughout evolution suggests that some of these protease-proteoglycan complexes are essential to our survival. In support of this conclusion, no human has been identified that lacks MCs. Moreover, transgenic mice lacking the beta-tryptase mMCP-6 are unable to combat a Klebsiella pneumoniae infection effectively. Here we summarize the nature and function of some of the tryptase-serglycin proteoglycan complexes found in mouse and human MCs.
Collapse
Affiliation(s)
- Richard L Stevens
- Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA.
| | | |
Collapse
|
3
|
Verghese GM, Gutknecht MF, Caughey GH. Prostasin regulates epithelial monolayer function: cell-specific Gpld1-mediated secretion and functional role for GPI anchor. Am J Physiol Cell Physiol 2006; 291:C1258-70. [PMID: 16822939 PMCID: PMC2271112 DOI: 10.1152/ajpcell.00637.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prostasin, a trypsinlike serine peptidase, is highly expressed in prostate, kidney, and lung epithelia, where it is bound to the cell surface, secreted, or both. Prostasin activates the epithelial sodium channel (ENaC) and suppresses invasion of prostate and breast cancer cells. The studies reported here establish mechanisms of membrane anchoring and secretion in kidney and lung epithelial cells and demonstrate a critical role for prostasin in regulating epithelial monolayer function. We report that endogenous mouse prostasin is glycosylphosphatidylinositol (GPI) anchored to the cell surface and is constitutively secreted from the apical surface of kidney cortical collecting duct cells. Using site-directed mutagenesis, detergent phase separation, and RNA interference approaches, we show that prostasin secretion depends on GPI anchor cleavage by endogenous GPI-specific phospholipase D1 (Gpld1). Secretion of prostasin by kidney and lung epithelial cells, in contrast to prostate epithelium, does not depend on COOH-terminal processing at conserved Arg(322). Using stably transfected M-1 cells expressing wild-type, catalytically inactive, or chimeric transmembrane (not GPI)-anchored prostasins we establish that prostasin regulates transepithelial resistance, current, and paracellular permeability by GPI anchor- and protease activity-dependent mechanisms. These studies demonstrate a novel role for prostasin in regulating epithelial monolayer resistance and permeability in kidney epithelial cells and, furthermore, show specifically that prostasin is a critical regulator of transepithelial ion transport in M-1 cells. These functions depend on the GPI anchor as well as the peptidase activity of prostasin. These studies suggest that cell-specific Gpld1- or peptidase-dependent pathways for prostasin secretion may control prostasin functions in a tissue-specific manner.
Collapse
Affiliation(s)
- George M Verghese
- Department of Medicine, University of Virginia, Charlottesville, Virginia 22908-0546, USA.
| | | | | |
Collapse
|
4
|
Wong GW, Stevens RL. Identification of a subgroup of glycosylphosphatidylinositol-anchored tryptases. Biochem Biophys Res Commun 2005; 336:579-84. [PMID: 16143303 DOI: 10.1016/j.bbrc.2005.08.137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Accepted: 08/16/2005] [Indexed: 11/23/2022]
Abstract
The tryptase locus on mouse chromosome 17A3.3 contains 13 genes that encode enzymatically active serine proteases with different tissue expression profiles and substrate specificities. Mouse mast cell protease (mMCP) 6, mMCP-7, mMCP-11/protease serine member S (Prss) 34, tryptase 6/Prss33, tryptase epsilon/Prss22, implantation serine protease (Isp) 1/Prss28, and Isp-2 are constitutively exocytosed enzymes. We now demonstrate that tryptase 5/Prss32, pancreasin/Prss27, and testis serine protease-1 are inserted into plasma membranes via glycosylphosphatidylinositol (GPI) anchors analogous to Prss21, and that these serine proteases can be released from the cell's surface by a phosphatidylinositol-specific phospholipase C. These data suggest that the C-terminal residues play key roles in determining where tryptases compartmentalize in cells. GPI-anchored proteins are targeted to lipid rafts. Thus, our identification of a number of GPI-anchored tryptases whose genes reside at mouse chromosome 17A3.3 also implicates important biological functions for this new family of serine proteases on the surfaces of cells.
Collapse
Affiliation(s)
- G William Wong
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | |
Collapse
|
5
|
Verghese GM, Tong ZY, Bhagwandin V, Caughey GH. Mouse prostasin gene structure, promoter analysis, and restricted expression in lung and kidney. Am J Respir Cell Mol Biol 2004; 30:519-29. [PMID: 12959947 DOI: 10.1165/rcmb.2003-0251oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human prostasin is a membrane-anchored serine peptidase hypothesized to regulate lung epithelial sodium transport. It belongs to a unique family of genes on chromosome 16p11.2/13.3. Here we describe genomic cloning, promoter analysis, and expression of prostasin's mouse ortholog. The 4.3-kb mouse prostasin gene (prss8) has a six-exon organization identical to human prostasin. Prss8 spans two signal tagged-sites localized to chromosome 7. Multiple mRNA transcripts arise from two consensus initiator elements of a TATA-less promoter and an alternatively spliced, 5' untranslated region intron. Reporter assay establishes that the initiator elements and a GC-rich domain comprise the core promoter and identifies 5' flanking regions with strong enhancer and repressor activity. The 3' untranslated region overlaps the 3' untranslated region of the Myst1 gene oriented tail-to-tail at this locus. Prss8 is highly transcribed in pancreas, kidney, submaxillary gland, lung, thyroid, prostate, and epididymis, and is developmentally regulated. Using selective riboprobes and antibodies to mouse prostasin, we localized its expression to lung airway epithelial and alveolar type II cells and kidney cortical tubule epithelium. Mouse prostasin highly resembles its human ortholog in gene organization and tissue specificity, including strong expression in pulmonary epithelium, suggesting that mice will be useful for probing prostasin's functions in vivo.
Collapse
Affiliation(s)
- George M Verghese
- Department of Medicine, University of Virginia, Charlottesville, Virginia 22908-0546, USA.
| | | | | | | |
Collapse
|
6
|
Wong GW, Yasuda S, Morokawa N, Li L, Stevens RL. Mouse chromosome 17A3.3 contains 13 genes that encode functional tryptic-like serine proteases with distinct tissue and cell expression patterns. J Biol Chem 2003; 279:2438-52. [PMID: 14583634 DOI: 10.1074/jbc.m308209200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Probing of the mouse EST data base at GenBank trade mark with known tryptase cDNAs resulted in the identification of undiscovered serine protease transcripts whose genes reside at a 1.5-Mb complex on mouse chromosome 17A3.3. Mouse tryptase-5 (mT5), tryptase-6 (mT6), and mast cell protease-11 (mMCP-11) are new members of this serine protease superfamily whose amino acid sequences are 36-54% identical to each other and to their other 10 family members. The 13 functional mouse proteases can be subdivided into two subgroups based on conserved features in their propeptides. Of the three new serine proteases, mT6 is most widely expressed in tissues. mT5 is preferentially expressed in smooth muscle, whereas mMCP-11 is preferentially expressed in the spleen and bone marrow. In contrast to mT5 and mT6, mMCP-11 is also expressed in mast cells. Although mT6 and mMCP-11 are constitutively secreted when expressed in mammalian and insect cells, mT5 remains membrane-associated. The fact that recombinant mT5, mT6, and mMCP-11 possess non-identical expression patterns and substrate specificities suggests that each protease has a unique function in vivo. Of the 13 functional mouse tryptase genes identified at the complex, 12 have orthologs that reside in the syntenic region of human chromosome 16p13.3. The establishment of these ortholog pairs helps clarify the evolutionary relationship of the serine protease locus in the two species. This information provides a useful framework for the functional analysis of each protease using gene targeting and other molecular approaches.
Collapse
Affiliation(s)
- Guang W Wong
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
7
|
Bhagwandin VJ, Hau LWT, Mallen-St Clair J, Wolters PJ, Caughey GH. Structure and activity of human pancreasin, a novel tryptic serine peptidase expressed primarily by the pancreas. J Biol Chem 2003; 278:3363-71. [PMID: 12441343 DOI: 10.1074/jbc.m209353200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a search for genes encoding the serine peptidases prostasin and testisin, which are expressed mainly in prostate and testis, respectively, we identified a related, novel gene. Sequencing of cDNA allowed us to deduce the full amino acid sequence of the human gene product, which we term "pancreasin" because it is transcribed strongly in the pancreas. The idiosyncratic 6-exon organization of the gene is shared by a small group of tryptic proteases, including prostasin, testisin, and gamma-tryptase. Like the other genes, the pancreasin gene resides on chromosome 16p. Pancreasin cDNA predicts a 290-residue, N-glycosylated, serine peptidase with a typical signal peptide, a 12-residue activation peptide cleaved by tryptic hydrolysis, and a 256-amino acid catalytic domain. Unlike prostasin and other close relatives, human pancreasin and a nearly identical chimpanzee homologue lack a carboxyl-terminal membrane anchor, although this is present in 328-residue mouse pancreasin, the cDNA of which we also cloned and sequenced. In marked contrast to prostasin, which is 43% identical in the catalytic domain, human pancreasin is transcribed strongly in pancreas (and in the pancreatic ductal adenocarcinoma line, HPAC) but weakly or not at all in kidney and prostate. Antibodies raised against pancreasin detect cytoplasmic expression in HPAC cells. Recombinant, epitope-tagged pancreasin expressed in Chinese hamster ovary cells is glycosylated and secreted as an active tryptic peptidase. Pancreasin's preferences for hydrolysis of extended peptide substrates feature a strong preference for P1 Arg and differ from those of trypsin. Pancreasin is inhibited by benzamidine and leupeptin but resists several classic inhibitors of trypsin. Thus, pancreasin is a secreted, tryptic serine protease of the pancreas with novel physical and enzymatic properties. These studies provide a rationale for exploring the natural targets and roles of this enzyme.
Collapse
Affiliation(s)
- Vikash J Bhagwandin
- Cardiovascular Research Institute and Department of Medicine, University of California at San Francisco, California 94143-0911, USA
| | | | | | | | | |
Collapse
|
8
|
Abstract
Study of the molecular and cellular biology of the small-intestinal mucosa is providing insights into the remarkable properties of this unique tissue. With its structured pattern of cell proliferation, differentiation, and apoptosis, and its ability to adapt following exposure to luminal nutrients or injury from surgery or pathogens, it functions in a regulated but responsive manner. We review recent publications on factors affecting development, gene expression, cell turnover, and adaptation.
Collapse
Affiliation(s)
- Paul A. Kitchen
- Gastroenterology Section, Department of Medicine, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | | |
Collapse
|