1
|
Phetlum S, Champasri C. Purification and characterization of amylases from three freshwater fish species providing new insight application as enzyme molecular markers for zymography. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1257-1276. [PMID: 37889390 DOI: 10.1007/s10695-023-01255-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Purification of amylases from digestive tracts of three freshwater fish species with Q-Sepharose Fast Flow and Sephacryl S-200 columns displayed two isoforms of amylases from Osteochilus hasselti (O1, O2) and three isoforms of those from both Hampala dispar (UB, H1, H2) and Puntioplites proctozystron (P1, P2, P3). The optimum pH values displayed at 7.0 and 8.0, while the optimum temperatures revealed at 40 and 50 °C. Almost isoenzyme activities were activated by NaCl and CaCl2, whereas EDTA and SDS strongly inhibited all enzymatic activities. Verification with an atomic absorption spectrophotometry exhibited the presence of Ca2+ ions in the range of 0.02-13.53 ppm per mg protein indicating that amylases are Ca2+ dependent. Molecular weight analysis revealed 12 to 147 kDa. The UB, O1, and H2 amylases with appropriate molecular masses of 64, 49, and 25 kDa validated with LC-MS/MS were selected. Three certain enzymes revealed high stability in a sample buffer after five cycles of freeze-thawing process upon storage at - 20 °C for 12 weeks. No protein degradation was observed on polyacrylamide gel, and the enzymes still displayed sharp and clear bands on zymograms. The result suggested that the purified fish amylases, which expressed high activities and stabilities, were potentially used as enzyme molecular weight markers for zymography.
Collapse
Affiliation(s)
- Suthathip Phetlum
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chamaiporn Champasri
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
2
|
An Y, Tran PL, Yoo MJ, Song HN, Park KH, Kim TJ, Park JT, Woo EJ. The Distinctive Permutated Domain Structure of Periplasmic α-Amylase (MalS) from Glycoside Hydrolase Family 13 Subfamily 19. Molecules 2023; 28:molecules28103972. [PMID: 37241718 DOI: 10.3390/molecules28103972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Periplasmic α-amylase MalS (EC. 3.2.1.1), which belongs to glycoside hydrolase (GH) family 13 subfamily 19, is an integral component of the maltose utilization pathway in Escherichia coli K12 and used among Ecnterobacteriaceae for the effective utilization of maltodextrin. We present the crystal structure of MalS from E. coli and reveal that it has unique structural features of circularly permutated domains and a possible CBM69. The conventional C-domain of amylase consists of amino acids 120-180 (N-terminal) and 646-676 (C-terminal) in MalS, and the whole domain architecture shows the complete circular permutation of C-A-B-A-C in domain order. Regarding substrate interaction, the enzyme has a 6-glucosyl unit pocket binding it to the non-reducing end of the cleavage site. Our study found that residues D385 and F367 play important roles in the preference of MalS for maltohexaose as an initial product. At the active site of MalS, β-CD binds more weakly than the linear substrate, possibly due to the positioning of A402. MalS has two Ca2+ binding sites that contribute significantly to the thermostability of the enzyme. Intriguingly, the study found that MalS exhibits a high binding affinity for polysaccharides such as glycogen and amylopectin. The N domain, of which the electron density map was not observed, was predicted to be CBM69 by AlphaFold2 and might have a binding site for the polysaccharides. Structural analysis of MalS provides new insight into the structure-evolution relationship in GH13 subfamily 19 enzymes and a molecular basis for understanding the details of catalytic function and substrate binding of MalS.
Collapse
Affiliation(s)
- Yan An
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Phuong Lan Tran
- Department of Food Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Department of Food Technology, An Giang University, Long Xuyen 880000, Vietnam
- Vietnam National University-Ho Chi Minh City, Ho Chi Minh 700000, Vietnam
| | - Min-Jee Yoo
- Department of Food Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Hyung-Nam Song
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Kwang-Hyun Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Tae-Jip Kim
- Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jong-Tae Park
- Department of Food Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Eui-Jeon Woo
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Microbial amylolytic enzymes in foods: Technological importance of the Bacillus genus. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Matpan Bekler F, Güven K, Gül Güven R. Purification and characterization of novel α-amylase from Anoxybacillus ayderensis FMB1. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1856097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Fatma Matpan Bekler
- Department of Biology, Faculty of Science, Dicle University, Diyarbakır, Turkey
| | - Kemal Güven
- Department of Molecular Biology and Genetics, Faculty of Science, Dicle University, Diyarbakır, Turkey
| | - Reyhan Gül Güven
- Department of Science Teaching, Faculty of Education, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
5
|
Immobilization of endoglucanase Cel9A on chitosan nanoparticles leads to its stabilization against organic solvents: the use of polyols to improve the stability. 3 Biotech 2019; 9:269. [PMID: 31218180 DOI: 10.1007/s13205-019-1794-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022] Open
Abstract
The immobilization of enzymes improves their stability in non-conventional media such as organic solvents. In this work, the effects of solvents (DMSO, methanol, ethanol, and n-propanol) on the endoglucanase Cel9A activity and stability were studied. Then, the enzymes were stabilized by its immobilization on chitosan nanoparticles and also using polyols (sorbitol and glycerol) against organic solvents. The SEM results illustrated that the chitosan nanoparticles had about 40 nm diameter. The results indicated that the organic solvents, especially n-propanol, decreased the activity of the free and immobilized enzymes. The reduced activity of the immobilized enzyme was less than that of the free enzyme. Our studies about the enzymes' stability showed that the free and immobilized enzymes in hydrophobic solvents (with high log P) had the lowest stability compared to other solvents as we observed the half-life of the free enzyme in n-propanol solvent was 2.84 min, and the half-life of the immobilized enzyme was 4.98 min in n-propanol and ethanol solvents 4.50 min. Analysis of the combinatory effects of polyols (sorbitol and glycerol) and the solvents on the stability revealed that sorbitol and glycerol had the most stabilizing effect on the free enzyme in hydrophilic (DMSO) and hydrophobic (n-propanol) solvents, respectively. However, the stabilizing effects of polyols in the immobilized enzyme were independent of the solvents' hydrophobicity (or log P) due to the hydrophilic properties of chitosan nanoparticles. Therefore, one can conclude that the physiochemical properties of nanoparticles (such as hydrophilicity) influence the stabilizing effects of polyols on immobilized enzyme.
Collapse
|
6
|
Liao SM, Liang G, Zhu J, Lu B, Peng LX, Wang QY, Wei YT, Zhou GP, Huang RB. Influence of Calcium Ions on the Thermal Characteristics of α-amylase from Thermophilic Anoxybacillus sp. GXS-BL. Protein Pept Lett 2019; 26:148-157. [PMID: 30652633 PMCID: PMC6416487 DOI: 10.2174/0929866526666190116162958] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND α-Amylases are starch-degrading enzymes and used widely, the study on thermostability of α-amylase is a central requirement for its application in life science and biotechnology. OBJECTIVE In this article, our motivation is to study how the effect of Ca2+ ions on the structure and thermal characterization of α-amylase (AGXA) from thermophilic Anoxybacillus sp.GXS-BL. METHODS α-Amylase activity was assayed with soluble starch as the substrate, and the amount of sugar released was determined by DNS method. For AGXA with calcium ions and without calcium ions, optimum temperature (Topt), half-inactivation temperature (T50) and thermal inactivation (halflife, t1/2) was evaluated. The thermal denaturation of the enzymes was determined by DSC and CD methods. 3D structure of AGXA was homology modeled with α-amylase (5A2A) as the template. RESULTS With calcium ions, the values of Topt, T50, t1/2, Tm and ΔH in AGXA were significantly higher than those of AGXA without calcium ions, showing calcium ions had stabilizing effects on α-amylase structure with the increased temperature. Based on DSC measurements AGXA underwent thermal denaturation by adopting two-state irreversible unfolding processes. Based on the CD spectra, AGXA without calcium ions exhibited two transition states upon unfolding, including α- helical contents increasing, and the transition from α-helices to β-sheet structures, which was obviously different in AGXA with Ca2+ ions, and up to 4 Ca2+ ions were located on the inter-domain or intra-domain regions according to the modeling structure. CONCLUSION These results reveal that Ca2+ ions have pronounced influences on the thermostability of AGXA structure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guo-Ping Zhou
- Address correspondence to these authors at the Department of Bioengineering, College of Life Science and Technology, Guangxi University, Nanning, 530004, China; E-mail: , Gordon Life Science Institute, 53 South Cottage Road Belmont, MA, 02478, USA; Tel/Fax: +1-9199875774/ +1-9195215550; E-mail:
| | - Ri-Bo Huang
- Address correspondence to these authors at the Department of Bioengineering, College of Life Science and Technology, Guangxi University, Nanning, 530004, China; E-mail: , Gordon Life Science Institute, 53 South Cottage Road Belmont, MA, 02478, USA; Tel/Fax: +1-9199875774/ +1-9195215550; E-mail:
| |
Collapse
|
7
|
Improving the stability of chondroitinase ABC I via interaction with gold nanorods. Int J Biol Macromol 2018; 107:297-304. [DOI: 10.1016/j.ijbiomac.2017.08.167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 01/19/2023]
|
8
|
You S, Chen CC, Tu T, Wang X, Ma R, Cai HY, Guo RT, Luo HY, Yao B. Insight into the functional roles of Glu175 in the hyperthermostable xylanase XYL10C-ΔN through structural analysis and site-saturation mutagenesis. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:159. [PMID: 29930705 PMCID: PMC5992652 DOI: 10.1186/s13068-018-1150-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/23/2018] [Indexed: 05/16/2023]
Abstract
BACKGROUND Improving the hydrolytic performance of hemicellulases to degrade lignocellulosic biomass is of considerable importance for second-generation biorefinery. Xylanase, as the crucial hemicellulase, must be thermostable and have high activity for its potential use in the bioethanol industry. To obtain excellent xylanase candidates, it is necessary to understand the structure-function relationships to provide a meaningful reference to improve the enzyme properties. This study aimed to investigate the catalytic mechanism of a highly active hyperthermophilic xylanase variant, XYL10C-ΔN, for hemicellulose degradation. RESULTS By removing the N-terminal 66 amino acids, the variant XYL10C-ΔN showed a 1.8-fold improvement in catalytic efficiency and could hydrolyze corn stover more efficiently in hydrolysis of corn stover; however, it retained similar thermostability to the wild-type XYL10C. Based on the crystal structures of XYL10C-ΔN and its complex with xylobiose, Glu175 located on loop 3 was found to be specific to GH10 xylanases and probably accounts for the excellent enzyme properties by interacting with Lys135 and Met137 on loop 2. Site-saturation mutagenesis confirmed that XYL10C-ΔN with glutamate acid at position 175 had the highest catalytic efficiency, specific activity, and the broadest pH-activity profile. The functional roles of Glu175 were also verified in the mutants of another two GH10 xylanases, XylE and XynE2, which showed increased catalytic efficiencies and wider pH-activity profiles. CONCLUSIONS XYL10C-ΔN, with excellent thermostability, high catalytic efficiency, and great lignocellulose-degrading capability, is a valuable candidate xylanase for the biofuel industry. The mechanism underlying improved activity of XYN10C-ΔN was thus investigated through structural analysis and functional verification, and Glu175 was identified to play the key role in the improved catalytic efficiency. This study revealed the importance of a key residue (Glu175) in XYN10C-ΔN and provides a reference to modify GH10 xylanases for improved catalytic performance.
Collapse
Affiliation(s)
- Shuai You
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Chun-Chi Chen
- National Engineering Laboratory of Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- College of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Tao Tu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xiaoyu Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Rui Ma
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Hui-yi Cai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Rey-Ting Guo
- National Engineering Laboratory of Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- College of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Hui-ying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
9
|
Wang X, Ge H, Zhang D, Wu S, Zhang G. Oligomerization triggered by foldon: a simple method to enhance the catalytic efficiency of lichenase and xylanase. BMC Biotechnol 2017; 17:57. [PMID: 28673305 PMCID: PMC5496177 DOI: 10.1186/s12896-017-0380-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/28/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Effective and simple methods that lead to higher enzymatic efficiencies are highly sough. Here we proposed a foldon-triggered trimerization of the target enzymes with significantly improved catalytic performances by fusing a foldon domain at the C-terminus of the enzymes via elastin-like polypeptides (ELPs). The foldon domain comprises 27 residues and can forms trimers with high stability. RESULTS Lichenase and xylanase can hydrolyze lichenan and xylan to produce value added products and biofuels, and they have great potentials as biotechnological tools in various industrial applications. We took them as the examples and compared the kinetic parameters of the engineered trimeric enzymes to those of the monomeric and wild type ones. When compared with the monomeric ones, the catalytic efficiency (k cat /K m ) of the trimeric lichenase and xylanase increased 4.2- and 3.9- fold. The catalytic constant (k cat ) of the trimeric lichenase and xylanase increased 1.8- fold and 5.0- fold than their corresponding wild-type counterparts. Also, the specific activities of trimeric lichenase and xylanase increased by 149% and 94% than those of the monomeric ones. Besides, the recovery of the lichenase and xylanase activities increased by 12.4% and 6.1% during the purification process using ELPs as the non-chromatographic tag. The possible reason is the foldon domain can reduce the transition temperature of the ELPs. CONCLUSION The trimeric lichenase and xylanase induced by foldon have advantages in the catalytic performances. Besides, they were easier to purify with increased purification fold and decreased the loss of activities compared to their corresponding monomeric ones. Trimerizing of the target enzymes triggered by the foldon domain could improve their activities and facilitate the purification, which represents a simple and effective enzyme-engineering tool. It should have exciting potentials both in industrial and laboratory scales.
Collapse
Affiliation(s)
- Xinzhe Wang
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Huihua Ge
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Dandan Zhang
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Shuyu Wu
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Guangya Zhang
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian, 361021, China.
| |
Collapse
|
10
|
Halim AAA, Zaroog MS, Kadir HA, Tayyab S. Alcohol-induced structural transitions in the acid-denatured Bacillus licheniformis α-amylase. JOURNAL OF SAUDI CHEMICAL SOCIETY 2017. [DOI: 10.1016/j.jscs.2014.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Mehta D, Satyanarayana T. Bacterial and Archaeal α-Amylases: Diversity and Amelioration of the Desirable Characteristics for Industrial Applications. Front Microbiol 2016; 7:1129. [PMID: 27516755 PMCID: PMC4963412 DOI: 10.3389/fmicb.2016.01129] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/06/2016] [Indexed: 11/13/2022] Open
Abstract
Industrial enzyme market has been projected to reach US$ 6.2 billion by 2020. Major reasons for continuous rise in the global sales of microbial enzymes are because of increase in the demand for consumer goods and biofuels. Among major industrial enzymes that find applications in baking, alcohol, detergent, and textile industries are α-amylases. These are produced by a variety of microbes, which randomly cleave α-1,4-glycosidic linkages in starch leading to the formation of limit dextrins. α-Amylases from different microbial sources vary in their properties, thus, suit specific applications. This review focuses on the native and recombinant α-amylases from bacteria and archaea, their production and the advancements in the molecular biology, protein engineering and structural studies, which aid in ameliorating their properties to suit the targeted industrial applications.
Collapse
Affiliation(s)
- Deepika Mehta
- Department of Microbiology, University of Delhi New Delhi, India
| | | |
Collapse
|
12
|
Rehman HU, Aman A, Nawaz MA, Karim A, Ghani M, Baloch AH, Qader SAU. Immobilization of pectin depolymerising polygalacturonase using different polymers. Int J Biol Macromol 2016; 82:127-33. [DOI: 10.1016/j.ijbiomac.2015.10.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
|
13
|
Pierre B, Labonte JW, Xiong T, Aoraha E, Williams A, Shah V, Chau E, Helal KY, Gray JJ, Kim JR. Molecular Determinants for Protein Stabilization by Insertional Fusion to a Thermophilic Host Protein. Chembiochem 2015; 16:2392-402. [DOI: 10.1002/cbic.201500310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Brennal Pierre
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Jason W. Labonte
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; 3400 North Charles Street Baltimore MD 21218 USA
| | - Tina Xiong
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; 3400 North Charles Street Baltimore MD 21218 USA
| | - Edwin Aoraha
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Asher Williams
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Vandan Shah
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Edward Chau
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Kazi Yasin Helal
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Jeffrey J. Gray
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; 3400 North Charles Street Baltimore MD 21218 USA
| | - Jin Ryoun Kim
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| |
Collapse
|
14
|
Pazhang M, Mehrnejad F, Pazhang Y, Falahati H, Chaparzadeh N. Effect of sorbitol and glycerol on the stability of trypsin and difference between their stabilization effects in the various solvents. Biotechnol Appl Biochem 2015; 63:206-13. [DOI: 10.1002/bab.1366] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 03/05/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Mohammad Pazhang
- Department of Cellular and Molecular Biology; Faculty of Sciences, Azarbaijan Shahid Madani University; Tabriz Iran
| | - Faramarz Mehrnejad
- Department of Life Science Engineering; Faculty of New Sciences & Technologies, University of Tehran; Tehran Iran
| | - Yaghub Pazhang
- Department of Biology; Faculty of Science, Urmia University; Urmia Iran
| | - Hanieh Falahati
- Department of Quantitative and Computational Biology; Princeton University; Princeton NJ USA
| | - Nader Chaparzadeh
- Department of Cellular and Molecular Biology; Faculty of Sciences, Azarbaijan Shahid Madani University; Tabriz Iran
| |
Collapse
|
15
|
Li L, Yang J, Li J, Long L, Xiao Y, Tian X, Wang F, Zhang S. Role of two amino acid residues’ insertion on thermal stability of thermophilic α-amylase AMY121 from a deep sea bacterium Bacillus sp. SCSIO 15121. Bioprocess Biosyst Eng 2014; 38:871-9. [DOI: 10.1007/s00449-014-1330-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/10/2014] [Indexed: 12/07/2022]
|
16
|
Molten globule-like partially folded state of Bacillus licheniformis α-amylase at low pH induced by 1,1,1,3,3,3-hexafluoroisopropanol. ScientificWorldJournal 2014; 2014:824768. [PMID: 24977228 PMCID: PMC3996958 DOI: 10.1155/2014/824768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 02/17/2014] [Indexed: 11/24/2022] Open
Abstract
Effect of 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) on acid-denatured Bacillus licheniformis α-amylase (BLA) at pH 2.0 was investigated by far-UV CD, intrinsic fluorescence, and ANS fluorescence measurements. Addition of increasing HFIP concentrations led to an increase in the mean residue ellipticity at 222 nm (MRE222 nm) up to 1.5 M HFIP concentration beyond which it sloped off. A small increase in the intrinsic fluorescence and a marked increase in the ANS fluorescence were also observed up to 0.4 M HFIP concentration, both of which decreased thereafter. Far- and near-UV CD spectra of the HFIP-induced state observed at 0.4 M HFIP showed significant retention of the secondary structures closer to native BLA but a disordered tertiary structure. Increase in the ANS fluorescence intensity was also observed with the HFIP-induced state, suggesting exposure of the hydrophobic clusters to the solvent. Furthermore, thermal denaturation of HFIP-induced state showed a non-cooperative transition. Taken together, all these results suggested that HFIP-induced state of BLA represented a molten globule-like state at pH 2.0.
Collapse
|
17
|
Chand N, Nateri AS, Sajedi RH, Mahdavi A, Rassa M. Enzymatic desizing of cotton fabric using a Ca2+-independent α-amylase with acidic pH profile. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Yadav JK. A differential behavior of α-amylase, in terms of catalytic activity and thermal stability, in response to higher concentration CaCl2. Int J Biol Macromol 2012; 51:146-52. [PMID: 22542853 DOI: 10.1016/j.ijbiomac.2012.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/08/2012] [Accepted: 04/12/2012] [Indexed: 11/28/2022]
Abstract
A differential relationship was observed between thermal stability and catalytic activity of α-amylase in the presence of different concentrations of CaCl(2). The enzyme displays optimum catalytic activity in the presence of 1.0-2.0 mM CaCl(2). Further addition of CaCl(2) leads to inhibition of the enzyme, however, at the same time the enzyme gains an additional resistance against thermal denaturation. It was evident that the enzyme is thermodynamically more stable (compared to the active enzyme) in the presence of inhibitory concentration of CaCl(2). For example, the thermal transition temperature (T(m)) of optimally active α-amylase was found to be 64±1°C, whereas, for the less active enzyme (in the presence 10 mM CaCl(2)) the value was determined to be 71±1°C. Similarly, the activation energy of thermal inactivation (Ea) was found to be 228±12 kJ/mol and 291±15 kJ/mol for the optimally active enzyme and the enzyme in the presence of 10 mM CaCl(2), respectively. Biophysical analysis of different states of the enzymes in response to variable calcium level indicates no significant change in the secondary structure in response to different concentration of CaCl(2), however the less active but thermodynamically stable enzyme (in the presence of higher concentration of CaCl(2)) was shown to have relatively more compact structure. The results suggest that the enzyme has separate catalytic and structure stabilizing domains and they significantly vary in their functional attributes in response to calcium level.
Collapse
Affiliation(s)
- Jay Kant Yadav
- Department of Protein Chemistry and Technology, Central Food Technological Research Institute, Mysore, India.
| |
Collapse
|
19
|
Moghadam TT, Ranjbar B, Khajeh K, Etezad SM, Khalifeh K, Ganjalikhany MR. Interaction of lysozyme with gold nanorods: conformation and activity investigations. Int J Biol Macromol 2011; 49:629-36. [DOI: 10.1016/j.ijbiomac.2011.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 06/18/2011] [Accepted: 06/21/2011] [Indexed: 12/15/2022]
|
20
|
Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme Microb Technol 2011; 49:326-46. [PMID: 22112558 DOI: 10.1016/j.enzmictec.2011.06.023] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 12/20/2022]
Abstract
The immobilization of proteins (mostly typically enzymes) onto solid supports is mature technology and has been used successfully to enhance biocatalytic processes in a wide range of industrial applications. However, continued developments in immobilization technology have led to more sophisticated and specialized applications of the process. A combination of targeted chemistries, for both the support and the protein, sometimes in combination with additional chemical and/or genetic engineering, has led to the development of methods for the modification of protein functional properties, for enhancing protein stability and for the recovery of specific proteins from complex mixtures. In particular, the development of effective methods for immobilizing large multi-subunit proteins with multiple covalent linkages (multi-point immobilization) has been effective in stabilizing proteins where subunit dissociation is the initial step in enzyme inactivation. In some instances, multiple benefits are achievable in a single process. Here we comprehensively review the literature pertaining to immobilization and chemical modification of different enzyme classes from thermophiles, with emphasis on the chemistries involved and their implications for modification of the enzyme functional properties. We also highlight the potential for synergies in the combined use of immobilization and other chemical modifications.
Collapse
|
21
|
Cheong KW, Leow TC, Rahman RNZRA, Basri M, Rahman MBA, Salleh AB. Reductive Alkylation Causes the Formation of a Molten Globule-Like Intermediate Structure in Geobacillus zalihae Strain T1 Thermostable Lipase. Appl Biochem Biotechnol 2010; 164:362-75. [DOI: 10.1007/s12010-010-9140-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 11/29/2010] [Indexed: 11/28/2022]
|
22
|
alpha-Amylase: an ideal representative of thermostable enzymes. Appl Biochem Biotechnol 2009; 160:2401-14. [PMID: 19763902 DOI: 10.1007/s12010-009-8735-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 07/28/2009] [Indexed: 10/20/2022]
Abstract
The conditions prevailing in the industrial applications in which enzymes are used are rather extreme, especially with respect to temperature and pH. Therefore, there is a continuing demand to improve the stability of enzymes and to meet the requirements set by specific applications. In this respect, thermostable enzymes have been proposed to be industrially relevant. In this review, alpha-amylase, a well-established representative of thermostable enzymes, providing an attractive model for the investigation of the structural basis of thermostability of proteins, has been discussed.
Collapse
|
23
|
Ghasemi A, Khajeh K, Ranjbar B. Stabilization of Bacillus licheniformis alpha-amylase by specific antibody which recognizes the N-terminal fragment of the enzyme. Int J Biol Macromol 2007; 41:162-7. [PMID: 17324453 DOI: 10.1016/j.ijbiomac.2007.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 01/24/2007] [Accepted: 01/24/2007] [Indexed: 11/23/2022]
Abstract
Bacillus licheniformis alpha-amylase (BLA) is an industrially important extracellular enzyme with a number of applications. In the present work, an investigation was carried out on the tryptolytic digestion of BLA which produced two fragments, TF18K and TF38K, and no further fragments could be seen after 6h incubation of BLA with trypsin. The fragments were isolated by preparative gel electrophoresis and reverse phase HPLC. The N-terminal sequencing of fragments showed that trypsin attacks on Arg(127)-Val(128) peptide bond in BLA. Intrinsic and acrylamide quenching fluorescence experiments and Far-UV circular dichroism studies showed that substantial changes in the secondary and tertiary structures of the TF18K and TF38K have occurred. Subsequently, polyclonal antibody was raised against TF18K. After purification of the antibody by protein A Sepharose, thermal stability of BLA in the presence of this antibody was determined. Results showed that the presence of antiTF18K leads to significant stabilization of BLA. For example, after 30 min incubation at 90 degrees C, residual activity of the enzyme in the presence of antibody (40 microg/ml) was determined as 40% while the enzyme showed no activity in the absence of antibody after incubating in the same condition. In addition, it has been proved that calcium enhances the thermal stability of BLA and a synergistic stabilization of BLA has been seen with antiTF18K and calcium, simultaneously.
Collapse
Affiliation(s)
- Atiyeh Ghasemi
- Department of Biochemistry, Faculty of Science, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran
| | | | | |
Collapse
|
24
|
Sajedi RH, Taghdir M, Naderi-Manesh H, Khajeh K, Ranjbar B. Nucleotide Sequence, Structural Investigation and Homology Modeling Studies of a Ca2+-independent α-amylase with Acidic pH-profile. BMB Rep 2007; 40:315-24. [PMID: 17562282 DOI: 10.5483/bmbrep.2007.40.3.315] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The novel alpha-amylase purified from locally isolated strain, Bacillus sp. KR-8104, (KRA) (Enzyme Microb Technol; 2005; 36: 666-671) is active in a wide range of pH. The enzyme maximum activity is at pH 4.0 and it retains 90% of activity at pH 3.5. The irreversible thermoinactivation patterns of KRA and the enzyme activity are not changed in the presence and absence of Ca(2+) and EDTA. Therefore, KRA acts as a Ca(2+)-independent enzyme. Based on circular dichroism (CD) data from thermal unfolding of the enzyme recorded at 222 nm, addition of Ca(2+) and EDTA similar to its irreversible thermoinactivation, does not influence the thermal denaturation of the enzyme and its T(m). The amino acid sequence of KRA was obtained from the nucleotide sequencing of PCR products of encoding gene. The deduced amino acid sequence of the enzyme revealed a very high sequence homology to Bacillus amyloliquefaciens (BAA) (85% identity, 90% similarity) and Bacillus licheniformis alpha-amylases (BLA) (81% identity, 88% similarity). To elucidate and understand these characteristics of the alpha-amylase, a model of 3D structure of KRA was constructed using the crystal structure of the mutant of BLA as the platform and refined with a molecular dynamics (MD) simulation program. Interestingly enough, there is only one amino acid substitution for KRA in comparison with BLA and BAA in the region involved in the calcium-binding sites. On the other hand, there are many amino acid differences between BLA and KRA at the interface of A and B domains and around the metal triad and active site area. These alterations could have a role in stabilizing the native structure of the loop in the active site cleft and maintenance and stabilization of the putative metal triad-binding site. The amino acid differences at the active site cleft and around the catalytic residues might affect their pKa values and consequently shift its pH profile. In addition, the intrinsic fluorescence intensity of the enzyme at 350 nm does not show considerable change at pH 3.5-7.0.
Collapse
Affiliation(s)
- Reza Hassan Sajedi
- Department of Biochemistry and Biophysics, Faculty of Science, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|
25
|
Thermal denaturation of yeast alcohol dehydrogenase and protection of secondary and tertiary structural changes by sugars: CD and fluorescence studies. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Pazhang M, Khajeh K, Ranjbar B, Hosseinkhani S. Effects of water-miscible solvents and polyhydroxy compounds on the structure and enzymatic activity of thermolysin. J Biotechnol 2006; 127:45-53. [PMID: 16860424 DOI: 10.1016/j.jbiotec.2006.05.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 05/16/2006] [Accepted: 05/31/2006] [Indexed: 11/22/2022]
Abstract
The effect of organic solvents (n-propanol, isopropanol, dimethylformamide and dimethylsulfoxide) on the structure, activity and stability of thermolysin was the focus of this investigation. Results show the ability of the solvents to cause mixed inhibition of thermolysin, which was indicated by kinetic and structural studies (near-UV CD spectra and intrinsic fluorescence). Inhibitory effect of the solvents increased with increments in solvents logP. Thermoinactivation of thermolysin was studied at 80 degrees C in 50% of solvents and showed that with the increase in solvent hydrophobicity, thermal stability of the enzyme decreased. For the stabilization of thermolysin at high temperature, additives such as glycerol, sorbitol and trehalose were employed. In the presence of DMF with a relatively low logP, trehalose was shown to be a good stabilizer, whereas glycerol had a marked stabilization effect in the presence of n-propanol and isopropanol with a relatively high logP. Consequently, it was concluded that the stabilizing effect of additives can be correlated with the logP of solvents.
Collapse
Affiliation(s)
- Mohammad Pazhang
- Department of Biochemistry and Biophysics, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | | | | | | |
Collapse
|
27
|
Lee S, Mouri Y, Minoda M, Oneda H, Inouye K. Comparison of the wild-type alpha-amylase and its variant enzymes in Bacillus amyloliquefaciens in activity and thermal stability, and insights into engineering the thermal stability of bacillus alpha-amylase. J Biochem 2006; 139:1007-15. [PMID: 16788051 DOI: 10.1093/jb/mvj107] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The starch hydrolysis activity and thermal stability of Bacillus amyloliquefaciens alpha-amylase (wild-type enzyme or WT) and its variant enzymes, designated as M77, M111, and 21B, were compared. All have an optimal pH at around 6, as well as almost the same reaction rates and Km and kcat values. The optimal temperature in the absence of Ca2+ ions is 60 degrees C for WT and M77 and 40 degrees C for M111 and 21B. Those of M111 and 21B rose to 50-60 degrees C upon the addition of 5 mM CaCl2, while those of WT and M77 did not change. The dissociation constants Kd for Ca2+ to WT and M77 are much lower than those of M111 and 21B. Asp233 in WT is replaced by Asn in M111 and 21B, while it is retained in M77, suggesting that Asp233 is involved in the thermal stability of the enzyme through Ca2+ ion binding. These findings provide insight into engineering the thermal stability of B. amyloliquefaciens alpha-amylase, which would be useful for its applications in the baking industry and in glucose manufacturing.
Collapse
Affiliation(s)
- Seunjae Lee
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502
| | | | | | | | | |
Collapse
|
28
|
Mitidieri S, Souza Martinelli AH, Schrank A, Vainstein MH. Enzymatic detergent formulation containing amylase from Aspergillus niger: a comparative study with commercial detergent formulations. BIORESOURCE TECHNOLOGY 2006; 97:1217-24. [PMID: 16112858 DOI: 10.1016/j.biortech.2005.05.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Revised: 03/05/2005] [Accepted: 05/06/2005] [Indexed: 05/04/2023]
Abstract
There is a wide range of biotechnological applications for amylases, including the textile, pharmaceutical, food and laundry industries. Hydrolytic enzymes are 100% biodegradable and enzymatic detergents can achieve effective cleaning with lukewarm water. Microorganisms and culture media were tested for amylase production and the best producer was Aspergillus niger L119 (3.9 U ml(-1) +/- 0.2) in submerged culture and its amylase demonstrated excellent activity at 50-55 degrees C and pH 4.0, remaining stable at 53 degrees C for up to 200 h. In order to establish the potential uses of this enzyme in detergents, different formulations were tested using the A. niger amylase extract. Enzyme activity was compared with three commercial formulations. The detergents are used in hospitals to clean surgical and endoscopy equipment. The presence of amylase in the formulation is because of its action within hospital drainage system, whether or not it has any function in cleaning the equipment.
Collapse
Affiliation(s)
- Sydnei Mitidieri
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, P.O. Box 15005, CEP 91501-970, Porto Alegre, RS, Brazil.
| | | | | | | |
Collapse
|
29
|
Mossavarali S, Hosseinkhani S, Ranjbar B, Miroliaei M. Stepwise modification of lysine residues of glucose oxidase with citraconic anhydride. Int J Biol Macromol 2006; 39:192-6. [PMID: 16682074 DOI: 10.1016/j.ijbiomac.2006.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2006] [Revised: 03/18/2006] [Accepted: 03/18/2006] [Indexed: 12/01/2022]
Abstract
Structural properties of modified forms of glucose oxidase made by stepwise specific modification have been investigated. By a single step modification, one of the modified forms resulted in the conversion of native structure of glucose oxidase to molten globule like form [S. Hosseinkhani, B. Ranjbar, H. Naderi-Manesh, M. Nemat-Gorgani, FEBS Lett. 561 (2004) 213-216]. Chemical modification of lysine residues in glucose oxidase was carried out using different concentration of citraconic anhydride. Modification brought about changes in the tertiary structure with some degree of alteration in secondary structure. FTIR, far and near-UV CD spectropolarimetry, intrinsic and extrinsic fluorescence spectroscopy showed structural changes of glucose oxidase in a concentration dependent manner. This was supported by comparative study of secondary and tertiary structure.
Collapse
Affiliation(s)
- Shahla Mossavarali
- Department of Biochemistry, Faculty of Basic Sciences, Tarbiat Modarres University, Tehran, Iran
| | | | | | | |
Collapse
|
30
|
Shokri MM, Khajeh K, Alikhajeh J, Asoodeh A, Ranjbar B, Hosseinkhani S, Sadeghi M. Comparison of the molten globule states of thermophilic and mesophilic alpha-amylases. Biophys Chem 2006; 122:58-65. [PMID: 16516372 DOI: 10.1016/j.bpc.2005.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 12/17/2005] [Accepted: 12/21/2005] [Indexed: 11/23/2022]
Abstract
In recent years great interest has been generated in the process of protein folding, and the formation of intermediates during the folding process has been proven with new experimental strategies. In the present work, we have examined the molten globule state of Bacillus licheniformis alpha-amylase (BLA) by intrinsic fluorescence and circular dichroism spectra, 1-anilino naphthalene-8-sulfonate (ANS) binding and proteolytic digestion by pepsin, for comparison to its mesophilic counterpart, Bacillus amyloliquefaciens alpha-amylase (BAA). At pH 4.0, both enzymes acquire partially folded state which show characteristics of molten globule state. They unfold in such a way that their hydrophobic surfaces are exposed to a greater extent compared to the native forms. Chemical denaturation studies by guanidine hydrochloride and proteolytic digestion with pepsin show that molten globule state of BLA is more stable than from BAA. Results from gel filtration indicate that BAA has the same compactness at pH 4.0 and 7.5. However, molten globule state of BLA is less compact than its native state. The effects of polyols such as trehalose, sorbitol and glycerol on refolding of enzymes from molten globule to native state were also studied. These polyols are effective on refolding of mesophilic alpha-amylase but only slightly effect on BLA refolding. In addition, the folding pathway and stability of intermediate state of the thermophilic and the mesophilic alpha-amylases are discussed.
Collapse
Affiliation(s)
- Maryam Monsef Shokri
- Department of Biochemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
31
|
Acidic and proteolytic digestion of α-amylases from Bacillus licheniformis and Bacillus amyloliquefaciens: Stability and flexibility analysis. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2005.06.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Duy C, Fitter J. Thermostability of Irreversible Unfolding α-Amylases Analyzed by Unfolding Kinetics. J Biol Chem 2005; 280:37360-5. [PMID: 16150692 DOI: 10.1074/jbc.m507530200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
For most multidomain proteins the thermal unfolding transitions are accompanied by an irreversible step, often related to aggregation at elevated temperatures. As a consequence the analysis of thermostabilities in terms of equilibrium thermodynamics is not applicable, at least not if the irreversible process is fast with respect the structural unfolding transition. In a comparative study we investigated aggregation effects and unfolding kinetics for five homologous alpha-amylases, all from mesophilic sources but with rather different thermostabilities. The results indicate that for all enzymes the irreversible process is fast and the precedent unfolding transition is the rate-limiting step. In this case the kinetic barrier toward unfolding, as measured by unfolding rates as function of temperature, is the key feature in thermostability. The investigated enzymes exhibit activation energies (E(a)) between 208 and 364 kJmol(-1) and pronounced differences in the corresponding unfolding rates. The most thermostable alpha-amylase from Bacillus licheniformis (apparent transition temperature, T(1/2) approximately 100 degrees C) shows an unfolding rate which is four orders of magnitude smaller as compared with the alpha-amylase from pig pancreas (T(1/2) approximately 65 degrees C). Even with respect to two other alpha-amylases from Bacillus species (T(1/2) approximately 86 degrees C) the difference in unfolding rates is still two orders of magnitude.
Collapse
Affiliation(s)
- Cihangir Duy
- Forschungszentrum Jülich, IBI-2, Biologische Strukturforschung, Jülich, Germany
| | | |
Collapse
|
33
|
Habibi AE, Khajeh K, Nemat-Gorgani M. Chemical modification of lysine residues in Bacillus licheniformis alpha-amylase: conversion of an endo- to an exo-type enzyme. BMB Rep 2005; 37:642-7. [PMID: 15607021 DOI: 10.5483/bmbrep.2004.37.6.642] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lysine residues of Bacillus licheniformis alpha-amylase (BLA) were chemically modified using citraconic anhydride or succinic anhydride. Modification caused fundamental changes in the enzymes specificity, as indicated by a dramatic increase in maltosidase and a reduction in amylase activity. These changes in substrate specificity were found to coincide with a change in the cleavage pattern of the substrates and with a conversion of the native endo- form of the enzyme to a modified exo- form. Progressive increases in the productions of rho-nitrophenol or glucose, when para nitrophenyl-maltoheptaoside or soluble starch, respectively, was used as substrate, were observed upon modification. The described changes were affected by the size of incorporated modified reagent: citraconic anhydride was more effective than succinic anhydride. Reasons for the observed changes are discussed and reasons for the effectivenesses of chemical modifications for tailoring enzyme specificities are suggested.
Collapse
Affiliation(s)
- Azadeh Ebrahim Habibi
- Institute of Biochemistry and Biophysics, University of Tehran. P. O. Box: 13145-1384, Tehran, Iran
| | | | | |
Collapse
|
34
|
Hashim SO, Kaul RH, Andersson M, Mulaa FJ, Mattiasson B. Differential scanning calorimetric studies of a Bacillus halodurans α-amylase. Biochim Biophys Acta Gen Subj 2005; 1723:184-91. [PMID: 15826839 DOI: 10.1016/j.bbagen.2005.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 02/26/2005] [Accepted: 03/03/2005] [Indexed: 10/25/2022]
Abstract
The thermal unfolding of Amy 34, a recombinant alpha-amylase from Bacillus halodurans, has been investigated using differential scanning calorimetry (DSC). The denaturation of Amy 34 involves irreversible processes with an apparent denaturation temperature (T(m)) of 70.8 degrees C at pH 9.0, with four transitions, as determined using multiple Gaussian curves. The T(m) increased by 5 degrees C in the presence of 100-fold molar excess of CaCl2 while the aggregation of Amy 34 was observed in the presence of 1000-fold molar excess of CaCl2. Increase in the calcium ion concentration from 1- to 5-fold molar excess resulted in an increase in calorimetric enthalpy (DeltaH(cal)), however, at higher concentrations of CaCl2 (up to 100-fold), DeltaH(cal) was found to decrease, accompanied by a decrease in entropy change (DeltaS), while the T(m) steadily increased. The presence of 100-fold excess of metal chelator, EDTA, resulted in a decrease in T(m) by 10.4 degrees C. T(m) was also decreased to 61.1 degrees C and 65.9 degrees C at pH 6.0 and pH 11.0, respectively.
Collapse
Affiliation(s)
- Suhaila O Hashim
- Department of Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden.
| | | | | | | | | |
Collapse
|
35
|
A Ca-independent α-amylase that is active and stable at low pH from the Bacillus sp. KR-8104. Enzyme Microb Technol 2005. [DOI: 10.1016/j.enzmictec.2004.11.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Zhang J, Guo YL. A novel modification reagent for proteins: monitoring by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:2461-4. [PMID: 16059886 DOI: 10.1002/rcm.2070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
37
|
Fitter J, Haber-Pohlmeier S. Structural Stability and Unfolding Properties of Thermostable Bacterial α-Amylases: A Comparative Study of Homologous Enzymes. Biochemistry 2004; 43:9589-99. [PMID: 15274613 DOI: 10.1021/bi0493362] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In a comparative investigation on two thermostable alpha-amylases [Bacillus amyloliquefaciens (BAA), T(m) = 86 degrees C and Bacillus licheniformis (BLA), T(m) = 101 degrees C], we studied thermal and guanidine hydrochloride (GndHCl)-induced unfolding using fluorescence and CD spectroscopy, as well as dynamic light scattering. Depletion of calcium from specific ion-binding sites in the protein structures reduces the melting temperature tremendously for both alpha-amylases. The reduction is nearly the same for both enzymes, namely, in the order of 50 degrees C. Thus, the difference in thermostability between BLA and BAA (DeltaT(m) approximately 15 degrees C) is related to intrinsic properties of the respective protein structures themselves and is not related to the strength of ion binding. The thermal unfolding of both proteins is characterized by a full disappearance of secondary structure elements and by a concurrent expansion of the 3D structure. GndHCl-induced unfolding also yields a fully vanishing secondary structure but with more expanded 3D structures. Both alpha-amylases remain much more compact upon thermal unfolding as compared to the fully unfolded state induced by chemical denaturants. Such rather compact thermal unfolded structures lower the conformational entropy change during the unfolding transition, which principally can contribute to an increased thermal stability. Structural flexibilities of both enzymes, as measured with tryptophan fluorescence quenching, are almost identical for both enzymes in the native states, as well as in the unfolded states. Furthermore, we do not observe any difference in the temperature dependence of the structural flexibilities between BLA and BAA. These results indicate that conformational dynamics on the time scale of our studies seem not to be related to thermal stability or to thermal adaptation.
Collapse
Affiliation(s)
- J Fitter
- Forschungszentrum Jülich, IBI-2: Biologische Strukturforschung, D-52425 Jülich, Germany.
| | | |
Collapse
|
38
|
Acid-induced conformational changes in Bacillus amyloliquefaciens α-amylase: appearance of a molten globule like state. Enzyme Microb Technol 2004. [DOI: 10.1016/j.enzmictec.2004.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Asghari SM, Khajeh K, Ranjbar B, Sajedi RH, Naderi-Manesh H. Comparative studies on trifluoroethanol (TFE) state of a thermophilic α-amylase and its mesophilic counterpart: limited proteolysis, conformational analysis, aggregation and reactivation of the enzymes. Int J Biol Macromol 2004; 34:173-9. [PMID: 15225989 DOI: 10.1016/j.ijbiomac.2004.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2004] [Indexed: 11/21/2022]
Abstract
Detailed circular dichroism (CD), scattering and quenching studies, 1-anilinonaphthalene-8-sulfonate (ANS) binding, irreversible thermoinactivation, activity measurements and proteolytic digestion of bacterial alpha-amylases have been carried out to elucidate the effect of trifluoroethanol (TFE) on the structure of these enzymes. Under high concentrations of TFE both of the alpha-amylases, a thermostable alpha-amylase from Bacillus licheniformis (BLA) and its mesophilic counterpart from Bacillus amyloliquefaciens (BAA), acquire partially folded state characterized by an enhanced content of the secondary structure (helix) and reduced tertiary structures. According to ANS binding studies, we suggest that the TFE states induced by TFE/water mixture are not the molten globule state in the alpha-amylase folding pathway. In addition, data shows significant reversible aggregation of both enzymes in TFE/water mixtures with concentration between 10 and 60% (v/v). However, reversibility is more in case of BAA. As expected, in the absence of TFE, the thermophilic enzyme compared to mesophilic enzyme, shows a greater resistance to digestion by thermolysin. With respect to fluorescence quenching by acrylamide and potassium iodide, the thermophilic enzyme, BLA, is characterized by higher structural flexibility as compared to the BAA. On the other hand, in the presence of TFE, the enzymes are digested by protease to produce large protein fragments. It is proposed that highly helical secondary structures, acquired by BAA and BLA when dissolved in aqueous TFE, prevent binding and adaptation of the protein substrate at the active site of the protease.
Collapse
Affiliation(s)
- S Mohsen Asghari
- Department of Biochemistry and Biophysics, Faculty of Science, Tarbiat Modarres University, P.O. Box 14115-175, Tehran, Iran
| | | | | | | | | |
Collapse
|
40
|
Nielsen AD, Pusey ML, Fuglsang CC, Westh P. A proposed mechanism for the thermal denaturation of a recombinant Bacillus halmapalus α-amylase—the effect of calcium ions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2003; 1652:52-63. [PMID: 14580996 DOI: 10.1016/j.bbapap.2003.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The thermal stability of a recombinant alpha-amylase from Bacillus halmapalus alpha-amylase (BHA) has been investigated using circular dichroism spectroscopy (CD) and differential scanning calorimetry (DSC). This alpha-amylase is homologous to other Bacillus alpha-amylases where crystallographic studies have identified the existence of three calcium binding sites in the structure. Denaturation of BHA is irreversible with a T(m) of approximately 89 degrees C and DSC thermograms can be described using a one-step irreversible model. A 5 degrees C increase in T(m) in the presence of 10-fold excess CaCl(2) was observed. However, a concomitant increase in the tendency to aggregate was also observed. The presence of 30-40-fold excess calcium chelator (ethylenediaminetetraacetic acid (EDTA) or ethylene glycol-bis[beta-aminoethyl ether] N,N,N',N'-tetraacetic acid (EGTA)) results in a large destabilization of BHA, corresponding to about 40 degrees C lower T(m) as determined by both CD and DSC. Ten-fold excess EGTA reveals complex DSC thermograms corresponding to both reversible and irreversible transitions, which probably originate from different populations of BHA/calcium complexes. Combined interpretation of these observations and structural information on homologous alpha-amylases forms the basis for a suggested mechanism underlying the inactivation mechanism of BHA. The mechanism includes irreversible thermal denaturation of different BHA/calcium complexes and the calcium binding equilibria. Furthermore, the model accounts for a temperature-induced reversible structural change associated with calcium binding.
Collapse
Affiliation(s)
- Anders D Nielsen
- Department of Life Sciences and Chemistry, Roskilde University, P.O. Box 260, 1-Universitetsvej, DK-4000 Roskilde, Denmark
| | | | | | | |
Collapse
|
41
|
|