1
|
Nishimiya D, Kawaguchi Y, Kodama S, Nasu H, Yano H, Yamaguchi A, Tamura M, Hashimoto R. A protein scaffold, engineered SPINK2, for generation of inhibitors with high affinity and specificity against target proteases. Sci Rep 2019; 9:11436. [PMID: 31391482 PMCID: PMC6686015 DOI: 10.1038/s41598-019-47615-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 07/19/2019] [Indexed: 12/21/2022] Open
Abstract
Proteases are one of attractive therapeutic targets to play key roles in pharmacological action. There are many protease inhibitors in nature, and most of them structurally have cystine knot motifs. Their structures are favorable for recognition of active pockets of proteases, leading to the potent inhibition. However, they also have drawbacks, such as broad cross-reactivity, on the therapeutic application. To create therapeutic proteins derived from a disulfide-rich scaffold, we selected human serine protease inhibitor Kazal type 2 (SPINK2) through a scaffold screening, as a protein scaffold with requirements for therapeutic proteins. We then constructed a diverse library of the engineered SPINK2 by introducing random mutations into its flexible loop region with the designed method. By phage panning against four serine proteases, we isolated potent inhibitors against each target with picomolar KD and sub-nanomolar Ki values. Also, they exhibited the desired specificities against target proteases without inhibiting non-target proteases. The crystal structure of kallikrein related peptidase 4 (KLK4)-engineered SPINK2 complex revealed the interface with extensive conformational complementarity. Our study demonstrates that engineered SPINK2 can serve as a scaffold to generate therapeutic molecules against target proteins with groove structures.
Collapse
Affiliation(s)
- Daisuke Nishimiya
- DAIICHI SANKYO CO., LTD., Biologics Division, Modality Research Laboratories, 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan.
| | - Yoshirou Kawaguchi
- DAIICHI SANKYO CO., LTD., Biologics Division, Modality Research Laboratories, 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan
| | - Shiho Kodama
- DAIICHI SANKYO CO., LTD., Biologics Division, Modality Research Laboratories, 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan
| | - Hatsumi Nasu
- DAIICHI SANKYO CO., LTD., Biologics Division, Modality Research Laboratories, 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan
| | - Hidenori Yano
- DAIICHI SANKYO CO., LTD., Biologics Division, Modality Research Laboratories, 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan
| | - Aya Yamaguchi
- DAIICHI SANKYO CO., LTD., Biologics Division, Modality Research Laboratories, 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan
| | - Masakazu Tamura
- DAIICHI SANKYO CO., LTD., Biologics Division, Modality Research Laboratories, 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan
| | - Ryuji Hashimoto
- DAIICHI SANKYO CO., LTD., Biologics Division, Modality Research Laboratories, 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan
| |
Collapse
|
2
|
Boros E, Sebák F, Héja D, Szakács D, Zboray K, Schlosser G, Micsonai A, Kardos J, Bodor A, Pál G. Directed Evolution of Canonical Loops and Their Swapping between Unrelated Serine Proteinase Inhibitors Disprove the Interscaffolding Additivity Model. J Mol Biol 2019; 431:557-575. [PMID: 30543823 DOI: 10.1016/j.jmb.2018.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 11/26/2018] [Accepted: 12/06/2018] [Indexed: 11/26/2022]
Abstract
Reversible serine proteinase inhibitors comprise 18 unrelated families. Each family has a distinct representative structure but contains a surface loop that adopts the same, canonical conformation in the enzyme-inhibitor complex. The Laskowski mechanism universally applies for the action of all canonical inhibitors independent of their scaffold, but it has two nontrivial extrapolations. Intrascaffolding additivity states that all enzyme-contacting loop residues act independently of each other, while interscaffolding additivity claims that these residues act independently of the scaffold. These theories have great importance for engineering proteinase inhibitors but have not been comprehensively challenged. Therefore, we tested the interscaffolding additivity theory by hard-randomizing all enzyme-contacting canonical loop positions of a Kazal- and a Pacifastin-scaffold inhibitor, displaying the variants on M13 phage, and selecting the libraries on trypsin and chymotrypsin. Directed evolution delivered different patterns on both scaffolds against both enzymes, which contradicts interscaffolding additivity. To quantitatively assess the extent of non-additivity, we measured the affinities of the optimal binding loop variants and their binding loop-swapped versions. While optimal variants have picomolar affinities, swapping the evolved loops results in up to 200,000-fold affinity loss. To decipher the underlying causes, we characterized the stability, overall structure and dynamics of the inhibitors with differential scanning calorimetry, circular dichroism and NMR spectroscopy and molecular dynamic simulations. These studies revealed that the foreign loop destabilizes the lower-stability Pacifastin scaffold, while the higher-stability Kazal scaffold distorts the foreign loop. Our findings disprove interscaffolding additivity and show that loop and scaffold form one integrated unit that needs to be coevolved to provide high-affinity inhibition.
Collapse
Affiliation(s)
- Eszter Boros
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Fanni Sebák
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary; Doctoral School of Pharmaceutical Sciences, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Dávid Héja
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Dávid Szakács
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Katalin Zboray
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Gitta Schlosser
- Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - András Micsonai
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - József Kardos
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Andrea Bodor
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary.
| |
Collapse
|
3
|
Sabellastarte magnifica Carboxypeptidase Inhibitor: The first Kunitz inhibitor simultaneously interacting with carboxypeptidases and serine proteases. Biochimie 2018; 150:37-47. [PMID: 29730302 DOI: 10.1016/j.biochi.2018.04.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/29/2018] [Indexed: 01/14/2023]
Abstract
Multi-domain inhibitors capable to block the activity of different classes of proteases are not very common in nature. However, these kinds of molecules are attractive systems for biomedical or biotechnological applications, where two or more different targets need to be neutralized. SmCI, the Sabellastarte magnifica Carboxypeptidase Inhibitor, is a tri-domain BPTI-Kunitz inhibitor capable to inhibit serine proteases and A-like metallocarboxypeptidases. The BPTI-Kunitz family of proteins includes voltage gated channel blockers and inhibitors of serine proteases. SmCI is therefore, the only BPTI-Kunitz protein capable of inhibiting metallocarboxypeptidases. The X-ray structure of the SmCI-carboxypeptidase A complex previously obtained by us, revealed that this enzyme interacts with SmCI N-tail. In the complex, the reactive loops for serine protease inhibition remain fully exposed to the solvent in each domain, suggesting SmCI can simultaneously interact with multiple serine proteases. The twofold goals of this study were: i) to establish serine proteases-SmCI binding stoichiometry, given that the inhibitor is comprised of three potential binding domains; and ii) to determine whether or not SmCI can simultaneously bind both classes of enzymes, to which it binds individually. Our experimental approach included a variety of techniques for the study of protein-protein interactions, using as model enzymes pancreatic trypsin, elastase and carboxypeptidase A. In particular, we combined information obtained from gel filtration chromatography, denaturing electrophoresis, nuclear magnetic resonance spectroscopy and enzyme inhibition assays. Our results show that SmCI is able to bind three trypsin molecules under saturating conditions, but only one elastase interacts with the inhibitor. Additionally, we demonstrated that SmCI can bind serine proteases and carboxypeptidases at the same time (at least in the ratio 1:1:1), becoming the first protease inhibitor that simultaneously blocks these two mechanistic classes of enzymes.
Collapse
|
4
|
Vanhercke T, Ampe C, Tirry L, Denolf P. Rescue and In Situ Selection and Evaluation (RISE): A Method for High-Throughput Panning of Phage Display Libraries. ACTA ACUST UNITED AC 2016; 10:108-17. [PMID: 15799954 DOI: 10.1177/1087057104271956] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phage display has proven to be an invaluable instrument in the search for proteins and peptides with optimized or novel functions. The amplification and selection of phage libraries typically involve several operations and handling large bacterial cultures during each round. Purification of the assembled phage particles after rescue adds to the labor and time demand. The authors therefore devised a method, termed rescue and in situ selection and evaluation (RISE), which combines all steps from rescue to binding in a single microwell. To test this concept, wells were precoated with different antibodies, which allowed newly formed phage particles to be captured directly in situ during overnight rescue. Following 6 washing steps, the retained phages could be easily detected in an enzyme-linked immunosorbent assay (ELISA), thus eliminating the need for purification or concentration of the viral particles. As a consequence, RISE enables a rapid characterization of phage-displayed proteins. In addition, this method allowed for the selective enrichment of phages displaying a hemagglutinin (HA) epitope tag, spiked in a 104-fold excess of wild-type background. Because the combination of phage rescue, selection, or evaluation in a single microwell is amenable to automation, RISE may boost the high-throughput screening of smaller sized phage display libraries.
Collapse
Affiliation(s)
- Thomas Vanhercke
- Department of Crop Protection, Faculty of Agricultural and Applied Biological Sciences, Ghent University, Ghent, Belgium, Bayer BioScience N.V., Ghent, Belgium.
| | | | | | | |
Collapse
|
5
|
Poth AG, Chan LY, Craik DJ. Cyclotides as grafting frameworks for protein engineering and drug design applications. Biopolymers 2016; 100:480-91. [PMID: 23893608 DOI: 10.1002/bip.22284] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 04/30/2013] [Accepted: 05/07/2013] [Indexed: 11/08/2022]
Abstract
Cyclotides are a family of naturally occurring backbone-cyclized macrocyclic mini-proteins from plants that have a knotted trio of intramolecular disulfide bonds. Their structural features imbue cyclotides with extraordinary stability against degradation at elevated temperatures or in the presence of proteolytic enzymes. The plasticity of their intracysteine loop sequences is exemplified by the more than 250 natural cyclotides sequenced to date, and this tolerance to sequence variation, along with their diverse bioactivities, underpins the suitability of the cyclic cystine knot motif as a valuable drug design scaffold and research tool for protein engineering studies. Here, we review the recent literature on applications of cyclotides for the stabilization of peptide epitopes and related protein engineering studies. Possible future directions in this field are also described.
Collapse
Affiliation(s)
- Aaron G Poth
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | | | | |
Collapse
|
6
|
Polar Desolvation and Position 226 of Pancreatic and Neutrophil Elastases Are Crucial to their Affinity for the Kunitz-Type Inhibitors ShPI-1 and ShPI-1/K13L. PLoS One 2015; 10:e0137787. [PMID: 26372354 PMCID: PMC4570792 DOI: 10.1371/journal.pone.0137787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/21/2015] [Indexed: 11/19/2022] Open
Abstract
The Kunitz-type protease inhibitor ShPI-1 inhibits human neutrophil elastase (HNE, Ki = 2.35·10−8 M) but does not interact with the porcine pancreatic elastase (PPE); whereas its P1 site variant, ShPI-1/K13L, inhibits both HNE and PPE (Ki = 1.3·10−9 M, and Ki = 1.2·10−8 M, respectively). By employing a combination of molecular modeling tools, e.g., structural alignment, molecular dynamics simulations and Molecular Mechanics Generalized-Born/Poisson-Boltzmann Surface Area free energy calculations, we showed that D226 of HNE plays a critical role in the interaction of this enzyme with ShPI-1 through the formation of a strong salt bridge and hydrogen bonds with K13 at the inhibitor’s P1 site, which compensate the unfavorable polar-desolvation penalty of the latter residue. Conversely, T226 of PPE is unable to establish strong interactions with K13, thereby precluding the insertion of K13 side-chain into the S1 subsite of this enzyme. An alternative conformation of K13 site-chain placed at the entrance of the S1 subsite of PPE, similar to that observed in the crystal structure of ShPI-1 in complex with chymotrypsin (PDB: 3T62), is also unfavorable due to the lack of stabilizing pair-wise interactions. In addition, our results suggest that the higher affinity of ShPI-1/K13L for both elastases mainly arises from the lower polar-desolvation penalty of L13 compared to that of K13, and not from stronger pair-wise interactions of the former residue with those of each enzyme. These results provide insights into the PPE and HNE inhibition and may contribute to the design of more potent and/or specific inhibitors toward one of these proteases.
Collapse
|
7
|
García-Fernández R, Perbandt M, Rehders D, Ziegelmüller P, Piganeau N, Hahn U, Betzel C, Chávez MDLÁ, Redecke L. Three-dimensional Structure of a Kunitz-type Inhibitor in Complex with an Elastase-like Enzyme. J Biol Chem 2015; 290:14154-65. [PMID: 25878249 DOI: 10.1074/jbc.m115.647586] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Indexed: 11/06/2022] Open
Abstract
Elastase-like enzymes are involved in important diseases such as acute pancreatitis, chronic inflammatory lung diseases, and cancer. Structural insights into their interaction with specific inhibitors will contribute to the development of novel anti-elastase compounds that resist rapid oxidation and proteolysis. Proteinaceous Kunitz-type inhibitors homologous to the bovine pancreatic trypsin inhibitor (BPTI) provide a suitable scaffold, but the structural aspects of their interaction with elastase-like enzymes have not been elucidated. Here, we increased the selectivity of ShPI-1, a versatile serine protease inhibitor from the sea anemone Stichodactyla helianthus with high biomedical and biotechnological potential, toward elastase-like enzymes by substitution of the P1 residue (Lys(13)) with leucine. The variant (rShPI-1/K13L) exhibits a novel anti-porcine pancreatic elastase (PPE) activity together with a significantly improved inhibition of human neuthrophil elastase and chymotrypsin. The crystal structure of the PPE·rShPI-1/K13L complex determined at 2.0 Å resolution provided the first details of the canonical interaction between a BPTI-Kunitz-type domain and elastase-like enzymes. In addition to the essential impact of the variant P1 residue for complex stability, the interface is improved by increased contributions of the primary and secondary binding loop as compared with similar trypsin and chymotrypsin complexes. A comparison of the interaction network with elastase complexes of canonical inhibitors from the chelonian in family supports a key role of the P3 site in ShPI-1 in directing its selectivity against pancreatic and neutrophil elastases. Our results provide the structural basis for site-specific mutagenesis to further improve the binding affinity and/or direct the selectivity of BPTI-Kunitz-type inhibitors toward elastase-like enzymes.
Collapse
Affiliation(s)
- Rossana García-Fernández
- From the Centro de Estudio de Proteínas, Facultad de Biología, Universidad de la Habana, 20146 Habana, Cuba
| | - Markus Perbandt
- the Institute of Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 22761 Hamburg, Germany, the Hamburg Centre for Ultrafast Imaging, 22761 Hamburg, Germany, and
| | - Dirk Rehders
- the Joint Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany, and Institute of Biochemistry, University of Lübeck, c/o Deutsches Elektronen Synchrotron (DESY), 22603 Hamburg, Germany
| | - Patrick Ziegelmüller
- the Institute of Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 22761 Hamburg, Germany
| | - Nicolas Piganeau
- the Institute of Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 22761 Hamburg, Germany
| | - Ulrich Hahn
- the Institute of Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 22761 Hamburg, Germany
| | - Christian Betzel
- the Institute of Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 22761 Hamburg, Germany
| | | | - Lars Redecke
- the Joint Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany, and Institute of Biochemistry, University of Lübeck, c/o Deutsches Elektronen Synchrotron (DESY), 22603 Hamburg, Germany
| |
Collapse
|
8
|
Szabó A, Salameh MA, Ludwig M, Radisky ES, Sahin-Tóth M. Tyrosine sulfation of human trypsin steers S2' subsite selectivity towards basic amino acids. PLoS One 2014; 9:e102063. [PMID: 25010489 PMCID: PMC4092071 DOI: 10.1371/journal.pone.0102063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 06/15/2014] [Indexed: 01/29/2023] Open
Abstract
Human cationic and anionic trypsins are sulfated on Tyr154, a residue which helps to shape the prime side substrate-binding subsites. Here, we used phage display technology to assess the significance of tyrosine sulfation for the specificity of human trypsins. The prime side residues P1′–P4′ in the binding loop of bovine pancreatic trypsin inhibitor (BPTI) were fully randomized and tight binding inhibitor phages were selected against non-sulfated and sulfated human cationic trypsin. The selection pattern for the two targets differed mostly at the P2′ position, where variants selected against non-sulfated trypsin contained primarily aliphatic residues (Leu, Ile, Met), while variants selected against sulfated trypsin were enriched also for Arg. BPTI variants carrying Arg, Lys, Ile, Leu or Ala at the P2′ position of the binding loop were purified and equilibrium dissociation constants were determined against non-sulfated and sulfated cationic and anionic human trypsins. BPTI variants harboring apolar residues at P2′ exhibited 3–12-fold lower affinity to sulfated trypsin relative to the non-sulfated enzyme, whereas BPTI variants containing basic residues at P2′ had comparable affinity to both trypsin forms. Taken together, the observations demonstrate that the tyrosyl sulfate in human trypsins interacts with the P2′ position of the substrate-like inhibitor and this modification increases P2′ selectivity towards basic side chains.
Collapse
Affiliation(s)
- András Szabó
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| | - Moh’d A. Salameh
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, Florida, United States of America
| | - Maren Ludwig
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
- Pediatric Nutritional Medicine & EKFZ, Technische Universität München (TUM), Munich, Germany
| | - Evette S. Radisky
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, Florida, United States of America
| | - Miklós Sahin-Tóth
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
9
|
da Silva MCM, Del Sarto RP, Lucena WA, Rigden DJ, Teixeira FR, Bezerra CDA, Albuquerque EVS, Grossi-de-Sa MF. Employing in vitro directed molecular evolution for the selection of α-amylase variant inhibitors with activity toward cotton boll weevil enzyme. J Biotechnol 2013; 167:377-85. [PMID: 23892157 DOI: 10.1016/j.jbiotec.2013.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/09/2013] [Accepted: 07/11/2013] [Indexed: 01/30/2023]
Abstract
Numerous species of insect pests attack cotton plants, out of which the cotton boll weevil (Anthonomus grandis) is the main insect in Brazil and must be controlled to avert large economic losses. Like other insect pests, A. grandis secretes a high level of α-amylases in the midgut lumen, which are required for digestion of carbohydrates. Thus, α-amylase inhibitors (α-AIs) represent a powerful tool to apply in the control of insect pests. Here, we applied DNA shuffling and phage display techniques and obtained a combinatorial library containing 10⁸ α-AI variant forms. From this library, variants were selected exhibiting in vitro affinity for cotton boll weevil α-amylases. Twenty-six variant sequences were cloned into plant expression vectors and expressed in Arabidopsis thaliana. Transformed plant extracts were assayed in vitro to select specific and potent α-amylase inhibitors against boll weevil amylases. While the wild type inhibitors, used to create the shuffled library, did not inhibit the A. grandis α-amylases, three α-AI mutants, named α-AIC3, α-AIA11 and α-AIG4 revealed high inhibitory activities against A. grandis α-amylases in an in vitro assay. In summary, data reported here shown the potential biotechnology of new α-AI variant genes for cotton boll weevil control.
Collapse
Affiliation(s)
- Maria Cristina Mattar da Silva
- Embrapa Recursos Genéticos e Biotecnologia, Laboratório Interação Molecular Planta Praga, Asa Norte, Brasília, DF 70770-917, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Oliveira GR, Silva MCM, Lucena WA, Nakasu EYT, Firmino AAP, Beneventi MA, Souza DSL, Gomes JE, de Souza JDA, Rigden DJ, Ramos HB, Soccol CR, Grossi-de-Sa MF. Improving Cry8Ka toxin activity towards the cotton boll weevil (Anthonomus grandis). BMC Biotechnol 2011; 11:85. [PMID: 21906288 PMCID: PMC3179717 DOI: 10.1186/1472-6750-11-85] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 09/09/2011] [Indexed: 11/13/2022] Open
Abstract
Background The cotton boll weevil (Anthonomus grandis) is a serious insect-pest in the Americas, particularly in Brazil. The use of chemical or biological insect control is not effective against the cotton boll weevil because of its endophytic life style. Therefore, the use of biotechnological tools to produce insect-resistant transgenic plants represents an important strategy to reduce the damage to cotton plants caused by the boll weevil. The present study focuses on the identification of novel molecules that show improved toxicity against the cotton boll weevil. In vitro directed molecular evolution through DNA shuffling and phage display screening was applied to enhance the insecticidal activity of variants of the Cry8Ka1 protein of Bacillus thuringiensis. Results Bioassays carried out with A. grandis larvae revealed that the LC50 of the screened mutant Cry8Ka5 toxin was 3.15-fold higher than the wild-type Cry8Ka1 toxin. Homology modelling of Cry8Ka1 and the Cry8Ka5 mutant suggested that both proteins retained the typical three-domain Cry family structure. The mutated residues were located mostly in loops and appeared unlikely to interfere with molecular stability. Conclusions The improved toxicity of the Cry8Ka5 mutant obtained in this study will allow the generation of a transgenic cotton event with improved potential to control A. grandis.
Collapse
Affiliation(s)
- Gustavo R Oliveira
- Embrapa Recursos Genéticos e Biotecnologia, PqEB- Final W5 Norte -Brasília, DF, Brasil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Getz JA, Rice JJ, Daugherty PS. Protease-resistant peptide ligands from a knottin scaffold library. ACS Chem Biol 2011; 6:837-44. [PMID: 21615106 PMCID: PMC3158827 DOI: 10.1021/cb200039s] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Peptides within the knottin family have been shown to possess inherent stability, making them attractive scaffolds for the development of therapeutic and diagnostic agents. Given its remarkable stability to proteases, the cyclic peptide kalata B1 was employed as a scaffold to create a large knottin library displayed on the surface of E. coli. A library exceeding 10(9) variants was constructed by randomizing seven amino acids within a loop of the kalata B1 scaffold and screened using fluorescence-activated cell sorting to identify peptide ligands specific for the active site of human thrombin. Refolded thrombin binders exhibited high nanomolar affinities in solution and slow dissociation rates and were able to inhibit thrombin's enzymatic activity. Importantly, 80% of a knottin-based thrombin inhibitor remained intact after a 2 h incubation both with trypsin and with chymotrypsin, demonstrating that modifying the kalata B1 sequence did not compromise its stability properties. In addition, the knottin variant mediated 20-fold enhanced affinity for thrombin, when compared to the same seven residue binding epitope constrained by a single disulfide bond. Our results indicate that peptide libraries derived from the kalata B1 scaffold can yield high-affinity protein ligands that retain the remarkable protease resistance associated with the parent scaffold. More generally, this strategy may prove useful in the development of stable peptide ligands suitable for in vivo applications.
Collapse
Affiliation(s)
- Jennifer A. Getz
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106
| | - Jeffrey J. Rice
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106
| | - Patrick S. Daugherty
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106
- Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106
| |
Collapse
|
12
|
Phage display as a powerful tool to engineer protease inhibitors. Biochimie 2010; 92:1689-704. [DOI: 10.1016/j.biochi.2010.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 05/05/2010] [Indexed: 11/18/2022]
|
13
|
Ozawa M, Ohashi K, Onuma M. Identification and characterization of peptides binding to newcastle disease virus by phage display. J Vet Med Sci 2006; 67:1237-41. [PMID: 16397382 DOI: 10.1292/jvms.67.1237] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Three individual peptide sequences, EVSHPKVG, WVTTSNQW, and SGGSNRSP, which have potentials to bind to Newcastle disease virus (NDV), were identified by the biopanning method using phage display technology. The binding specificities of these peptides presented on phages were confirmed by ELISA competition assay using chicken anti-NDV antiserum. The synthetic peptides designed based on these results partially neutralized the infection of NDV in vitro. The peptide-motives identified here have the potential to lead to the identification of novel molecules that inhibit the NDV infection independent of the immune system.
Collapse
Affiliation(s)
- Makoto Ozawa
- Laboratory of Infectious Diseases, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
14
|
Gu Y, Zhang J, Wang YB, Li SW, Yang HJ, Luo WX, Xia NS. Selection of a peptide mimicking neutralization epitope of hepatitis E virus with phage peptide display technology. World J Gastroenterol 2004; 10:1583-8. [PMID: 15162530 PMCID: PMC4572759 DOI: 10.3748/wjg.v10.i11.1583] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To select the peptide mimicking the neutralization epitope of hepatitis E virus which bound to non-type-specific and conformational monoclonal antibodies (mAbs) 8C11 and 8H3 fromed 7-peptide phage display library, and expressed the peptide recombinant with HBcAg in E.coli, and to observe whether the recombinant HBcAg could still form virus like particle (VLP) and to test the activation of the recombinant polyprotein and chemo-synthesized peptide that was selected by mAb 8H3.
METHODS: 8C11 and 8H3 were used to screen for binding peptides through a 7-peptide phage display library. After 4 rounds of panning, monoclonal phages were selected and sequenced. The obtained dominant peptide coding sequences was then synthesized and inserted into amino acid 78 to 83 of hepatitis B core antigen (HBcAg), and then expressed in E.coli. Activity of the recombinant proteins was detected by Western blotting, VLPs of the recombinant polyproteins were tested by transmission electron microscopy and binding activity of the chemo-synthesized peptide was confirmed by BIAcore biosensor.
RESULTS: Twenty-one positive monoclonal phages (10 for 8C11, and 11 for 8H3) were selected and the inserted fragments were sequenced. The DNA sequence coding for the obtained dominant peptides 8C11 (N’-His-Pro-Thr-Leu-Leu-Arg-Ile-C’, named 8C11A) and 8H3 (N’-Ser-Ile-Leu-Pro- Tyr-Pro-Tyr-C’, named 8H3A) were then synthesized and cloned to the HBcAg vector, then expressed in E.coli. The recombinant proteins aggregated into homodimer or polymer on SDS-PAGE, and could bind to mAb 8C11 and 8H3 in Western blotting. At the same time, the recombinant polyprotein could form virus like particles (VLPs), which could be visualized on electron micrograph. The dominant peptide 8H3A selected by mAb 8H3 was further chemo-synthesized, and its binding to mAb 8H3 could be detected by BIAcore biosensor.
CONCLUSION: These results implicate that conformational neutralizing epitope can be partially modeled by a short peptide, which provides a feasible route for subunit vaccine development.
Collapse
Affiliation(s)
- Ying Gu
- The Key Laboratory of Ministry of Education for Cell Biology and Tumor Cell Engineering, Xiamen University, Xiamen 361005, Fujian Province, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Campos ITN, Silva MM, Azzolini SS, Souza AF, Sampaio CAM, Fritz H, Tanaka AS. Evaluation of phage display system and leech-derived tryptase inhibitor as a tool for understanding the serine proteinase specificities. Arch Biochem Biophys 2004; 425:87-94. [PMID: 15081897 DOI: 10.1016/j.abb.2004.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 02/28/2004] [Indexed: 10/26/2022]
Abstract
A small combinatorial library of LDTI mutants (5.2 x 10(4)) restricted to the P1-P4' positions of the reactive site was displayed on the pCANTAB 5E phagemid, and LDTI fusion phages were produced and selected for potent neutrophil elastase and plasmin inhibitors. Strong fusion phage binders were analyzed by ELISA on enzyme-coated microtiter plates and the positive phages had their DNA sequenced. The LDTI variants: 29E (K8A, I9A, L10F, and K11F) and 19E (K8A, K11Q, and P12Y) for elastase and 2Pl (K11W and P12N), 8Pl (I9V, K11W, and P12E), and 10Pl (I9T, K11L, and P12L) for plasmin were produced with a Saccharomyces cerevisiae expression system. New strong elastase and plasmin inhibitors were 29E and 2Pl, respectively. LDTI-29E was a potent and specific neutrophil elastase inhibitor K(i) =0.5 nM), affecting no other tested enzymes. LDTI-2Pl was the strongest plasmin inhibitor ( K(i) =1.7nM) in the LDTI mutant library. This approach allowed selection of new specific serine proteinase inhibitors for neutrophil elastase and plasmin (a thrombin inhibitor variant was previously described), from a unique template molecule, LDTI, a Kazal type one domain inhibitor, by only 2-4 amino acid replacements. Our data validate this small LDTI combinatorial library as a tool to generate specific serine proteinase inhibitors suitable for drug design and enzyme-inhibitor interaction studies.
Collapse
Affiliation(s)
- Ivan T N Campos
- Departamento de Bioquímica, UNIFESP-EPM, Rua Tres de Maio 100, São Paulo SP 04044-020, Brazil
| | | | | | | | | | | | | |
Collapse
|
16
|
Koscielska-Kasprzak K, Otlewski J. Amyloid-forming peptides selected proteolytically from phage display library. Protein Sci 2003; 12:1675-85. [PMID: 12876317 PMCID: PMC2323954 DOI: 10.1110/ps.0236103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We demonstrated that amyloid-forming peptides could be selected from phage-displayed library via proteolysis-based selection protocol. The library of 28-residue peptides based on a sequence of the second zinc finger domain of Zif268, and computationally designed betabetaalpha peptide, FSD-1, was presented monovalently on the surface of M13 phage. The library coupled the infectivity of phage particles to proteolytic stability of a peptide introduced into the coat protein III linker. It was designed to include variants with a strong potential to fold into betabetaalpha motif of zinc finger domains, as expected from secondary structure propensities, but with no structure stabilization via zinc ion coordination. As our primary goal was to find novel monomeric betabetaalpha peptides, the library was selected for stable domains with the assumption that folded proteins are resistant to proteolysis. After less than four rounds of proteolytic selection with trypsin, chymotrypsin, or proteinase K, we obtained a number of proteolysis-resistant phage clones containing several potential sites for proteolytic attack with the proteinases. Eight peptides showing the highest proteolysis resistance were expressed and purified in a phage-free form. When characterized, the peptides possessed proteolytic resistance largely exceeding that of the second zinc finger domain of Zif268 and FSD-1. Six of the characterized peptides formed fibrils when solubilized at high concentrations. Three of them assembled into amyloids as determined through CD measurements, Congo red and thioflavin T binding, and transmission electron microscopy.
Collapse
Affiliation(s)
- Katarzyna Koscielska-Kasprzak
- Laboratory of Protein Engineering, Institute of Biochemistry and Molecular Biology, University of Wroclaw, Tamka 2, Wroclaw 50-137, Poland
| | | |
Collapse
|
17
|
Gong WD, Liu J, Ding J, Zhao Y, Li YH, Xue CF. Inhibition of HBV targeted ribonuclease enhanced by introduction of linker. World J Gastroenterol 2003; 9:1504-7. [PMID: 12854151 PMCID: PMC4615492 DOI: 10.3748/wjg.v9.i7.1504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct human eosinophil-derived neurotoxin(hEDN) and HBV core protein (HBVc) eukaryotic fusion expression vector with a linker (Gly4Ser)3 between them to optimize the molecule folding, which will be used to inhibit HBV replication in vitro.
METHODS: Previously constructed pcDNA3.1(-)/TR was used as a template. Linker sequence was synthesized and annealed to form dslinker, and cloned into pcDNA3.1(-)/TR to produce plasmid pcDNA3.1(-)/HBc-linker. Then the hEDN fragment was PCR amplified and inserted into pcDNA3.1(-)/HBc-linker to form pcDNA3.1(-)/TNL in which the effector molecule and the target molecule were separated by a linker sequence. pcDNA3.1(-)/TNL expression was identified by indirect immunofluorescence staining. Radioimmunoassay was used to analyse anti-HBV activity of pcDNA3.1(-)/TNL. Meanwhile, metabolism of cells was evaluated by MTT colorimetry.
RESULTS: hEDN and HBVc eukaryotic fusion expression vector with a linker (Gly4Ser)3 between them was successfully constructed. pcDNA3.1(-)/TNL was expressed in HepG2.2.15 cells efficiently. A significant decrease of HBsAg concentration from pcDNA3.1(-)/TNL transfectant was observed compared to pcDNA3.1(-)/TR (P = 0.036, P < 0.05). MTT assay suggested that there were no significant differences between groups (P = 0.08, P > 0.05).
CONCLUSION: Linker introduction enhances the inhibitory effect of HBV targeted ribonuclease significantly.
Collapse
Affiliation(s)
- Wei-Dong Gong
- Department of Pathogenic Organisms, Fourth Military Medical University, Xi'an 710033, Shaanxi Province, China
| | | | | | | | | | | |
Collapse
|
18
|
Cierpicki T, Otlewski J. NMR structures of two variants of bovine pancreatic trypsin inhibitor (BPTI) reveal unexpected influence of mutations on protein structure and stability. J Mol Biol 2002; 321:647-58. [PMID: 12206780 DOI: 10.1016/s0022-2836(02)00620-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Here we determined NMR solution structures of two mutants of bovine pancreatic trypsin inhibitor (BPTI) to reveal structural reasons of their decreased thermodynamic stability. A point mutation, A16V, in the solvent-exposed loop destabilizes the protein by 20 degrees C, in contrast to marginal destabilization observed for G, S, R, L or W mutants. In the second mutant introduction of eight alanine residues at proteinase-contacting sites (residues 11, 13, 17, 18, 19, 34, 37 and 39) provides a protein that denatures at a temperature about 30 degrees C higher than expected from additive behavior of individual mutations. In order to efficiently determine structures of these variants, we applied a procedure that allows us to share data between regions unaffected by mutation(s). NOAH/DYANA and CNS programs were used for a rapid assignment of NOESY cross-peaks, structure calculations and refinement. The solution structure of the A16V mutant reveals no conformational change within the molecule, but shows close contacts between V16, I18 and G36/G37. Thus, the observed 4.3kcal/mol decrease of stability results from a strained local conformation of these residues caused by introduction of a beta-branched Val side-chain. Contrary to the A16V mutation, introduction of eight alanine residues produces significant conformational changes, manifested in over a 9A shift of the Y35 side-chain. This structural rearrangement provides about 6kcal/mol non-additive stabilization energy, compared to the mutant in which G37 and R39 are not mutated to alanine residues.
Collapse
Affiliation(s)
- Tomasz Cierpicki
- Laboratory of Protein Engineering, Institute of Biochemistry and Molecular Biology, University of Wroclaw, Tamka 2, 50-137, Wroclaw, Poland
| | | |
Collapse
|