1
|
Yuan G, Salipante PF, Hudson SD, Gillilan RE, Huang Q, Hatch HW, Shen VK, Grishaev AV, Pabit S, Upadhya R, Adhikari S, Panchal J, Blanco MA, Liu Y. Flow Activation Energy of High-Concentration Monoclonal Antibody Solutions and Protein-Protein Interactions Influenced by NaCl and Sucrose. Mol Pharm 2024; 21:4553-4564. [PMID: 39163212 DOI: 10.1021/acs.molpharmaceut.4c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
The solution viscosity and protein-protein interactions (PPIs) as a function of temperature (4-40 °C) were measured at a series of protein concentrations for a monoclonal antibody (mAb) with different formulation conditions, which include NaCl and sucrose. The flow activation energy (Eη) was extracted from the temperature dependence of solution viscosity using the Arrhenius equation. PPIs were quantified via the protein diffusion interaction parameter (kD) measured by dynamic light scattering, together with the osmotic second virial coefficient and the structure factor obtained through small-angle X-ray scattering. Both viscosity and PPIs were found to vary with the formulation conditions. Adding NaCl introduces an attractive interaction but leads to a significant reduction in the viscosity. However, adding sucrose enhances an overall repulsive effect and leads to a slight decrease in viscosity. Thus, the averaged (attractive or repulsive) PPI information is not a good indicator of viscosity at high protein concentrations for the mAb studied here. Instead, a correlation based on the temperature dependence of viscosity (i.e., Eη) and the temperature sensitivity in PPIs was observed for this specific mAb. When kD is more sensitive to the temperature variation, it corresponds to a larger value of Eη and thus a higher viscosity in concentrated protein solutions. When kD is less sensitive to temperature change, it corresponds to a smaller value of Eη and thus a lower viscosity at high protein concentrations. Rather than the absolute value of PPIs at a given temperature, our results show that the temperature sensitivity of PPIs may be a more useful metric for predicting issues with high viscosity of concentrated solutions. In addition, we also demonstrate that caution is required in choosing a proper protein concentration range to extract kD. In some excipient conditions studied here, the appropriate protein concentration range needs to be less than 4 mg/mL, remarkably lower than the typical concentration range used in the literature.
Collapse
Affiliation(s)
- Guangcui Yuan
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Paul F Salipante
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Steven D Hudson
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Richard E Gillilan
- Center for High-Energy X-ray Sciences at CHESS, Cornell University, Ithaca, New York 14853, United States
| | - Qingqiu Huang
- Center for High-Energy X-ray Sciences at CHESS, Cornell University, Ithaca, New York 14853, United States
| | - Harold W Hatch
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Vincent K Shen
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Alexander V Grishaev
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Suzette Pabit
- Analytical Enabling Capabilities, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Rahul Upadhya
- Analytical Enabling Capabilities, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Sudeep Adhikari
- Analytical Enabling Capabilities, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jainik Panchal
- Sterile and Specialty Products, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Marco A Blanco
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Yun Liu
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
2
|
Ferreira J, Domínguez-Arca V, Carneiro J, Prieto G, Taboada P, Moreira de Campos J. Classical and Nonclassical Nucleation Mechanisms of Insulin Crystals. ACS OMEGA 2024; 9:23364-23376. [PMID: 38854527 PMCID: PMC11154923 DOI: 10.1021/acsomega.3c10052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 06/11/2024]
Abstract
Although the Classical Nucleation Theory (CNT) is the most consensual theory to explain protein nucleation mechanisms, experimental observations during the shear-induced assays suggest that the CNT does not always describe the insulin nucleation process. This is the case at intermediate precipitant (ZnCl2) solution concentrations (2.3 mM) and high-temperature values (20 and 40 °C) as well as at low precipitant solution concentrations (1.6 mM) and low-temperature values (5 °C). In this work, crystallization events following the CNT registered at high precipitant solution concentrations (3.1 and 4.7 mM) are typically described by a Newtonian response. On the other hand, crystallization events following a nonclassical nucleation pathway seem to involve the formation of a metastable intermediate state before crystal formation and are described by a transition from Newtonian to shear-thinning responses. A dominant shear-thinning behavior (shear viscosity values ranging more than 6 orders of magnitude) is found during aggregation/agglomeration events. The rheological analysis is complemented with different characterization techniques (Dynamic Light Scattering, Energy-Dispersive Spectroscopy, Circular Dichroism, and Differential Scanning Calorimetry) to understand the insulin behavior in solution, especially during the occurrence of aggregation/agglomeration events. To the best of our knowledge, the current work is the first study describing nonclassical nucleation mechanisms during shear-induced crystallization experiments, which reveals the potential of the interdisciplinary approach herein described and opens a window for a clear understanding of protein nucleation mechanisms.
Collapse
Affiliation(s)
- Joana Ferreira
- CEFT—Transport
Phenomena Research Center, Department of Chemical Engineering, Faculty
of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate
Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Vicente Domínguez-Arca
- Grupo
de Física de Coloides y Polímeros, Departamento de Física
de Partículas, Facultad de Física e Instituto de Materiales
(iMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidad de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
- Grupo
de Biosistemas e Inginería de Bioprocesos, Instituto de Investigaciones Marinas (IIM-CSIC), Rúa Eduardo Cabello 6, 36208 Vigo, Spain
| | - João Carneiro
- CEFT—Transport
Phenomena Research Center, Department of Chemical Engineering, Faculty
of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate
Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Gerardo Prieto
- Grupo
de Física de Coloides y Polímeros, Departamento de Física
de Partículas, Facultad de Física e Instituto de Materiales
(iMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidad de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Pablo Taboada
- Grupo
de Física de Coloides y Polímeros, Departamento de Física
de Partículas, Facultad de Física e Instituto de Materiales
(iMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidad de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - João Moreira de Campos
- CEFT—Transport
Phenomena Research Center, Department of Chemical Engineering, Faculty
of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate
Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
3
|
Cochard-Marchewka P, Bremond N, Baudry J. Droplet-based microfluidic platform for viscosity measurement over extended concentration range. LAB ON A CHIP 2023; 23:2276-2285. [PMID: 37070737 DOI: 10.1039/d3lc00073g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Rheology of concentrated protein solutions is crucial for the understanding of macromolecular crowding dynamics as well as the formulation of protein therapeutics. The cost and scarcity of most protein samples prevents wide-scale rheological studies as conventional viscosity measurement methods require large sample volume. There is a growing need for a precise and robust viscosity measurement tool that minimizes consumption and simplifies the handling of highly concentrated protein solutions. This objective is achieved by combining microfluidics and microrheology: we developed a specific microsystem to study the viscosity of aqueous solutions at high concentrations. The PDMS chip allows in situ production, storing and monitoring of water-in-oil nanoliter droplets. We perform precise viscosity measurements inside individual droplets by particle-tracking microrheology of fluorescent probes. Pervaporation of water through a PDMS membrane induces aqueous droplet shrinking, concentrating the sample up to 150 times, thus allowing viscosity measurements along an extended concentration range in just one experiment. The methodology is precisely validated by studying the viscosity of sucrose solutions. Two model proteins are also studied with sample consumption reduced to as little as 1 μL of diluted solution, showcasing the viability of our approach for the study of biopharmaceuticals.
Collapse
Affiliation(s)
- Paul Cochard-Marchewka
- Laboratoire Colloïdes et Matériaux Divisés, Institut Chimie, Biologie, Innovation, UMR 8231, ESPCI Paris, CNRS, Université Paris Sciences et Lettres, 75005 Paris, France.
| | - Nicolas Bremond
- Laboratoire Colloïdes et Matériaux Divisés, Institut Chimie, Biologie, Innovation, UMR 8231, ESPCI Paris, CNRS, Université Paris Sciences et Lettres, 75005 Paris, France.
| | - Jean Baudry
- Laboratoire Colloïdes et Matériaux Divisés, Institut Chimie, Biologie, Innovation, UMR 8231, ESPCI Paris, CNRS, Université Paris Sciences et Lettres, 75005 Paris, France.
| |
Collapse
|
4
|
Singh AK, Burada PS, Roy A. Biomolecular response to hour-long ultralow field microwave radiation: An effective coarse-grained model simulation. Phys Rev E 2021; 103:042416. [PMID: 34005990 DOI: 10.1103/physreve.103.042416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 03/16/2021] [Indexed: 11/07/2022]
Abstract
Various electronic devices, which we commonly use, radiate microwaves. Such external perturbation influences the functionality of biomolecules. In an ultralow field, the cumulative response of a molecule is expected only over a time scale of hours. To study the structural dynamics of biomolecules over hours, we adopt a simple methodology for constructing the coarse-grained structure of the protein molecule and solve the Langevin equation under different working potentials. In this approach, each amino acid residue of a biomolecule is mapped onto a number of beads, a few for the backbone, and few for the side chain, depending on the complexity of its chemical structure. We choose the force field in such a way that the dynamics of the protein molecule in the presence of ultralow radiation field of microvolt/nm could be followed over the time frame of 2 h. We apply the model to describe a biomolecule, hen egg white lysozyme, and simulate its structural evolution under ultralow strength electromagnetic radiation. The simulation revealed the finer structural details, like the extent of exposure of bioactive residues and the state of the secondary structures of the molecule, further confirmed from spectroscopic measurements [details are available in Phys. Rev. E 97, 052416 (2018)10.1103/PhysRevE.97.052416 and briefly described here]. Though tested for a specific system, the model is quite general. We believe that it harnesses the potential in studying the structural dynamics of any biopolymer under external perturbation over an extended time scale.
Collapse
Affiliation(s)
- Anang Kumar Singh
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - P S Burada
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Anushree Roy
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
5
|
Mieczkowski C, Cheng A, Fischmann T, Hsieh M, Baker J, Uchida M, Raghunathan G, Strickland C, Fayadat-Dilman L. Characterization and Modeling of Reversible Antibody Self-Association Provide Insights into Behavior, Prediction, and Correction. Antibodies (Basel) 2021; 10:antib10010008. [PMID: 33671864 PMCID: PMC7931086 DOI: 10.3390/antib10010008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/24/2020] [Accepted: 02/01/2021] [Indexed: 12/20/2022] Open
Abstract
Reversible antibody self-association, while having major developability and therapeutic implications, is not fully understood or readily predictable and correctable. For a strongly self-associating humanized mAb variant, resulting in unacceptable viscosity, the monovalent affinity of self-interaction was measured in the low μM range, typical of many specific and biologically relevant protein-protein interactions. A face-to-face interaction model extending across both the heavy-chain (HC) and light-chain (LC) Complementary Determining Regions (CDRs) was apparent from biochemical and mutagenesis approaches as well as computational modeling. Light scattering experiments involving individual mAb, Fc, Fab, and Fab'2 domains revealed that Fabs self-interact to form dimers, while bivalent mAb/Fab'2 forms lead to significant oligomerization. Site-directed mutagenesis of aromatic residues identified by homology model patch analysis and self-docking dramatically affected self-association, demonstrating the utility of these predictive approaches, while revealing a highly specific and tunable nature of self-binding modulated by single point mutations. Mutagenesis at these same key HC/LC CDR positions that affect self-interaction also typically abolished target binding with notable exceptions, clearly demonstrating the difficulties yet possibility of correcting self-association through engineering. Clear correlations were also observed between different methods used to assess self-interaction, such as Dynamic Light Scattering (DLS) and Affinity-Capture Self-Interaction Nanoparticle Spectroscopy (AC-SINS). Our findings advance our understanding of therapeutic protein and antibody self-association and offer insights into its prediction, evaluation and corrective mitigation to aid therapeutic development.
Collapse
Affiliation(s)
- Carl Mieczkowski
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., South San Francisco, CA 94080, USA; (C.M.); (M.H.); (J.B.); (M.U.); (G.R.); (L.F.-D.)
| | - Alan Cheng
- Discovery Chemistry, Modeling and Informatics, Merck & Co., Inc., South San Francisco, CA 94080, USA
- Correspondence: ; Tel.: +1-650-496-4834
| | - Thierry Fischmann
- Department of Chemistry, Modeling and Informatics, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (T.F.); (C.S.)
| | - Mark Hsieh
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., South San Francisco, CA 94080, USA; (C.M.); (M.H.); (J.B.); (M.U.); (G.R.); (L.F.-D.)
| | - Jeanne Baker
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., South San Francisco, CA 94080, USA; (C.M.); (M.H.); (J.B.); (M.U.); (G.R.); (L.F.-D.)
| | - Makiko Uchida
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., South San Francisco, CA 94080, USA; (C.M.); (M.H.); (J.B.); (M.U.); (G.R.); (L.F.-D.)
| | - Gopalan Raghunathan
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., South San Francisco, CA 94080, USA; (C.M.); (M.H.); (J.B.); (M.U.); (G.R.); (L.F.-D.)
| | - Corey Strickland
- Department of Chemistry, Modeling and Informatics, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (T.F.); (C.S.)
| | - Laurence Fayadat-Dilman
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., South San Francisco, CA 94080, USA; (C.M.); (M.H.); (J.B.); (M.U.); (G.R.); (L.F.-D.)
| |
Collapse
|
6
|
Woldeyes MA, Qi W, Razinkov VI, Furst EM, Roberts CJ. Temperature Dependence of Protein Solution Viscosity and Protein-Protein Interactions: Insights into the Origins of High-Viscosity Protein Solutions. Mol Pharm 2020; 17:4473-4482. [PMID: 33170708 DOI: 10.1021/acs.molpharmaceut.0c00552] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein solution viscosity (η) as a function of temperature was measured at a series of protein concentrations under a range of formulation conditions for two monoclonal antibodies (MAbs) and a globular protein (aCgn). Based on theoretical arguments, a strong temperature dependence for protein-protein interactions (PPI) indicates highly anisotropic, short-ranged attractions that could lead to higher solution viscosities. The semi-empirical Ross-Minton model was used to determine the apparent intrinsic viscosity, shape, and "crowding" factors for each protein as a function of temperature and formulation conditions. The apparent intrinsic viscosity was independent of temperature for aCgn, while a slight decrease with increasing temperature was observed for the MAbs. The temperature dependence of solution viscosity was analyzed using the Andrade-Eyring equation to determine the effective activation energy of viscous flow (Ea,η). While Ea,η values were different for each protein, they were independent of formulation conditions for a given protein. PPI were quantified via the osmotic second virial coefficient (B22) and the protein diffusion interaction parameter (kD) as a function of temperature under the same formulation conditions as the viscosity measurements. Net interactions ranged from strongly attractive to repulsive by changing formulation pH and ionic strength for each protein. Overall, larger activation energies for PPI corresponded to larger activation energies for η, and those were predictive of the highest η values at higher protein concentrations.
Collapse
Affiliation(s)
- Mahlet A Woldeyes
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Wei Qi
- Drug Product Development, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Vladimir I Razinkov
- Drug Product Development, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Eric M Furst
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Christopher J Roberts
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
7
|
Stadmiller SS, Aguilar JS, Parnham S, Pielak GJ. Protein–Peptide Binding Energetics under Crowded Conditions. J Phys Chem B 2020; 124:9297-9309. [DOI: 10.1021/acs.jpcb.0c05578] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Samantha S. Stadmiller
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jhoan S. Aguilar
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Stuart Parnham
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Gary J. Pielak
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
8
|
Schwenger W, Pellet C, Attonaty D, Authelin JR. An Empirical Quantitative Model Describing Simultaneously Temperature and Concentration Effects on Protein Solution Viscosity. J Pharm Sci 2019; 109:1281-1287. [PMID: 31821824 DOI: 10.1016/j.xphs.2019.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/27/2019] [Accepted: 12/03/2019] [Indexed: 11/17/2022]
Abstract
The viscosity of high-concentration protein solutions can lead to a range of challenges in drug product manufacturing and administration. Accurately modeling the viscosity of biologics solutions in response to changes in the formulation and surrounding environment is of significant interest and remains a challenge. Here, we show a practical method of modeling the viscosity of a therapeutic solution in response to changes in temperature and protein concentration. Our viscosity model consists of a Ross-Minton model of concentration dependence and a modified Arrhenius temperature dependence. We measured the viscosity as a function of concentration and temperature of 4 therapeutic antibodies in a range of potential clinical formulations. With these data, our model shows surprising generality, proving effective with different types of antibodies, formulations, and a range of more than 2 orders of magnitude in viscosity. Our approach is built on existing theory but provides a practical approach to modeling the viscosity of formulated drug product over the range of process-relevant concentrations and temperatures to better mitigate challenges in the drug manufacturing process.
Collapse
Affiliation(s)
- Walter Schwenger
- Biologics Drug Product Development, SANOFI, Framingham, Massachusetts 01701
| | - Charlotte Pellet
- Biologics Drug Product Development, SANOFI, Vitry-sur-Seine, France
| | | | | |
Collapse
|
9
|
Zou M, Yang R, Gu Z, Wang P. Heat-triggered polymerization of frozen gluten: The micro-morphology and thermal characteristic study. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Singh AK, Burada PS, Bhattacharya S, Bag S, Bhattacharya A, Dasgupta S, Roy A. Microwave-radiation-induced molecular structural rearrangement of hen egg-white lysozyme. Phys Rev E 2018; 97:052416. [PMID: 29906821 DOI: 10.1103/physreve.97.052416] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Indexed: 11/07/2022]
Abstract
We have investigated the nonthermal effect of 10 GHz/22 dBm microwave radiation on hen egg-white lysozyme (HEWL) over different irradiation times, ranging from 2 min to 1 h. To ensure a control over the radiation parameters, a pair of microwave rectangular waveguides is used to irradiate the samples. Optical spectroscopic measurements, which include UV-visible absorption spectroscopy, Raman spectroscopy, and far UV CD spectroscopy, reveal the exposure of the buried tryptophan (Trp) residues of the native molecule between 15 and 30 min of radiation. The higher duration of the perturbation leads to a compact structure of the protein and Trp residues are buried again. Interestingly, we do not find any change in the secondary structure of the protein even for 1 h duration of radiation. The relaxation dynamics of the irradiated molecules also has been discussed. We have shown that the molecules relax to their native configuration in 7-8 h after the radiation field is turned off. The structural rearrangement over the above timescale has further been probed by a model calculation, based on a modified Langevin equation. Our coarse-grained simulation approach utilizes the mean of atomic positions and net atomic charge of each amino acid of native HEWL to mimic the initial conformation of the molecule. The modified positions of the residues are then calculated for the given force fields. The simulation results reveal the nonmonotonous change in overall size of the molecule, as observed experimentally. The radiation parameters used in our experiments are very similar to those of some of the electronic devices we often come across. Thus, we believe that the results of our studies on a simple protein structure may help us in understanding the effect of radiation on complex biological systems as well.
Collapse
Affiliation(s)
- Anang K Singh
- Department of Physics, Indian Institute of Technology, Kharagpur 721302, India
| | - P S Burada
- Department of Physics, Indian Institute of Technology, Kharagpur 721302, India
| | | | - Sudipta Bag
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Amitabha Bhattacharya
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Anushree Roy
- Department of Physics, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
11
|
Zuk PJ, Cichocki B, Szymczak P. GRPY: An Accurate Bead Method for Calculation of Hydrodynamic Properties of Rigid Biomacromolecules. Biophys J 2018; 115:782-800. [PMID: 30144937 PMCID: PMC6127458 DOI: 10.1016/j.bpj.2018.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 07/08/2018] [Accepted: 07/16/2018] [Indexed: 10/28/2022] Open
Abstract
Two main problems that arise in the context of hydrodynamic bead modeling are an inaccurate treatment of bead overlaps and the necessity of using volume corrections when calculating intrinsic viscosity. We present a formalism based on the generalized Rotne-Prager-Yamakawa approximation that successfully addresses both of these issues. The generalized Rotne-Prager-Yamakawa method is shown to be highly effective for the calculation of transport properties of rigid biomolecules represented as assemblies of spherical beads of different sizes, both overlapping and nonoverlapping. We test the method on simple molecular shapes as well as real protein structures and compare its performance with other computational approaches.
Collapse
Affiliation(s)
- Pawel J Zuk
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland; Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey
| | - Bogdan Cichocki
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Piotr Szymczak
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
12
|
Zhang Q, Fassihi MA, Fassihi R. Delivery Considerations of Highly Viscous Polymeric Fluids Mimicking Concentrated Biopharmaceuticals: Assessment of Injectability via Measurement of Total Work Done "W T". AAPS PharmSciTech 2018; 19:1520-1528. [PMID: 29464592 DOI: 10.1208/s12249-018-0963-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/23/2018] [Indexed: 11/30/2022] Open
Abstract
An account is given of the recent development of the highly viscous complex biopharmaceuticals in relation to syringeability and injectability. The specific objective of this study is to establish a convenient method to examine problem of the injectability for the needle-syringe-formulation system when complex formulations with diverse viscosities are used. This work presents the inter-relationship between needle size, syringe volume, viscosity, and injectability of polymeric solutions having typical viscosities encountered in concentrated biologics, by applying a constant probe crosshead speed on the plunger-syringe needle assembly and continuously recording the force-distance profiles. A computerized texture analyzer was used to accurately capture, display, and store force, displacement, and time data. The force-distance curve and area under the curve are determined, and total work done for complete extrusion of the syringe content was calculated automatically by applying an established Matlab program. Various concentrations (i.e., 0.5-4% w/v of polymeric fluids/dispersions) of polyethylene oxide (PEO) and hydroxypropyl methylcellulose (HPMC) with viscosity ranges of 5-100 cP mimicking concentrated monoclonal antibody solutions and complex biopharmaceutical formulations are investigated. Results indicate that calculated values of total work done to completely extrude the syringe content are the most appropriate parameter that describes viscosity-injection force of dispersed formulations. Additionally, the rheological properties of HPMC and PEO fluids in the context of syringeability and injectability are discussed.
Collapse
|
13
|
|
14
|
Challenges in Predicting Protein-Protein Interactions from Measurements of Molecular Diffusivity. Biophys J 2017; 111:1831-1842. [PMID: 27806265 DOI: 10.1016/j.bpj.2016.09.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/26/2016] [Accepted: 09/14/2016] [Indexed: 01/11/2023] Open
Abstract
Dynamic light scattering can be used to measure the diffusivity of a protein within a formulation. The dependence of molecular diffusivity on protein concentration (traditionally expressed in terms of the interaction parameter kD) is often used to infer whether protein-protein interactions are repulsive or attractive, resulting in solutions that are colloidally stable or unstable, respectively. However, a number of factors unrelated to intermolecular forces can also impact protein diffusion, complicating this interpretation. Here, we investigate the influence of multicomponent diffusion in a ternary protein-salt-water system on protein diffusion and kD in the context of Nernst-Planck theory. This analysis demonstrates that large changes in protein diffusivity with protein concentration can result even for hard-sphere systems in the absence of protein-protein interactions. In addition, we show that dynamic light scattering measurements of diffusivity made at low ionic strength cannot be reliably used to detect protein conformational changes. We recommend comparing experimentally determined kD values to theoretically predicted excluded-volume contributions, which will allow a more accurate assessment of protein-protein interactions.
Collapse
|
15
|
Molchanov S, Faizullin DA, Nesmelova IV. Theoretical and Experimental Investigation of the Translational Diffusion of Proteins in the Vicinity of Temperature-Induced Unfolding Transition. J Phys Chem B 2016; 120:10192-10198. [PMID: 27628181 DOI: 10.1021/acs.jpcb.6b05834] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Translational diffusion is the most fundamental form of transport in chemical and biological systems. The diffusion coefficient is highly sensitive to changes in the size of the diffusing species; hence, it provides important information on the variety of macromolecular processes, such as self-assembly or folding-unfolding. Here, we investigate the behavior of the diffusion coefficient of a macromolecule in the vicinity of heat-induced transition from folded to unfolded state. We derive the equation that describes the diffusion coefficient of the macromolecule in the vicinity of the transition and use it to fit the experimental data from pulsed-field-gradient nuclear magnetic resonance (PFG NMR) experiments acquired for two globular proteins, lysozyme and RNase A, undergoing temperature-induced unfolding. A very good qualitative agreement between the theoretically derived diffusion coefficient and experimental data is observed.
Collapse
Affiliation(s)
- Stanislav Molchanov
- National Research University "Higher School of Economics" , Moscow 101000, Russia
| | | | | |
Collapse
|
16
|
Josephson LL, Galush WJ, Furst EM. Parallel temperature-dependent microrheological measurements in a microfluidic chip. BIOMICROFLUIDICS 2016; 10:043503. [PMID: 27375825 PMCID: PMC4912560 DOI: 10.1063/1.4953863] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/01/2016] [Indexed: 05/07/2023]
Abstract
Microfluidic stickers are used as a sample environment to measure the microrheology of monoclonal antibody (mAb) protein solutions. A Peltier-based microscope stage is implemented and validated, and is capable of controlling the sample temperature over the range 0.9-40 °C. The design accounts for heat transfer to and from the objective, controls the sample environment humidity to mitigate condensation, and provides adequate damping to reduce vibration from the cooling system. A concentrated sucrose solution is used as a standard sample to provide an in situ temperature measurement by the Stokes-Einstein-Sutherland relation. By combining microfluidic stickers and microrheology, 72 temperature-concentration viscosity measurements of mAb solutions can be made in 1 day, a significant increase in throughput over conventional rheometry.
Collapse
Affiliation(s)
- Lilian Lam Josephson
- Department of Chemical and Biomolecular Engineering, University of Delaware , Newark, Delaware 19716, USA
| | - William J Galush
- Early Stage Pharmaceutical Development, Genentech, Inc. , South San Francisco, California 94080, USA
| | - Eric M Furst
- Department of Chemical and Biomolecular Engineering, University of Delaware , Newark, Delaware 19716, USA
| |
Collapse
|
17
|
Hahn DK, Aragon SR. Intrinsic Viscosity of Proteins and Platonic Solids by Boundary Element Methods. J Chem Theory Comput 2015; 2:1416-28. [PMID: 26626849 DOI: 10.1021/ct600062y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The boundary element (BE) method is used to implement a very precise computation of the intrinsic viscosity for rigid molecules of arbitrary shape. The formulation, included in our program BEST, is tested against the analytical Simha formula for ellipsoids of revolution, and the results are essentially numerically exact. Previously unavailable, very precise results for a series of Platonic solids are also presented. The formulation includes the optional determination of the center of viscosity; however, for globular proteins, the difference compared to the computation based on the centroid is insignificant. The main application is to a series of 30 proteins ranging in molecular weight from 12 to 465 kD. The computation starts from the crystal structure as obtained from the Protein Data Bank, and a hydration thickness of 1.1 Å obtained in previous work with BEST was used. The results (extrapolated to an infinite number of triangular boundary elements) for the proteins are separated into two groups: monomeric and multimeric proteins. The agreement with experimental measurements of the intrinsic viscosity in the case of monomeric proteins is excellent and within experimental error of 5%, demonstrating that the solution and crystal structure are hydrodynamically equivalent. However, for some multimeric proteins, we observe strong systematic deviations around -20%, which we interpret as a systematic deviation of the solution structure from the crystal structure. A possible description of the structural change is deduced by using simple ellipsoid model parameters. A method to obtain intrinsic viscosity values for proteins to 1-2% accuracy (better than experimental error) on the basis of a single BE computation (avoiding the need for an extrapolation on the number of surface triangles) is also presented.
Collapse
Affiliation(s)
- David K Hahn
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Ave., San Francisco, California 94132
| | - Sergio R Aragon
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Ave., San Francisco, California 94132
| |
Collapse
|
18
|
Tardani F, La Mesa C. Effects of single-walled carbon nanotubes on lysozyme gelation. Colloids Surf B Biointerfaces 2014; 121:165-70. [DOI: 10.1016/j.colsurfb.2014.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/26/2014] [Accepted: 06/02/2014] [Indexed: 11/15/2022]
|
19
|
Lysozyme binds onto functionalized carbon nanotubes. Colloids Surf B Biointerfaces 2013; 108:16-22. [DOI: 10.1016/j.colsurfb.2013.02.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 01/23/2013] [Accepted: 02/19/2013] [Indexed: 11/17/2022]
|
20
|
Birkholz M, Ehwald KE, Basmer T, Kulse P, Reich C, Drews J, Genschow D, Haak U, Marschmeyer S, Matthus E, Schulz K, Wolansky D, Winkler W, Guschauski T, Ehwald R. Sensing glucose concentrations at GHz frequencies with a fully embedded Biomicro-electromechanical system (BioMEMS). JOURNAL OF APPLIED PHYSICS 2013; 113:244904. [PMID: 25332510 PMCID: PMC3977869 DOI: 10.1063/1.4811351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 05/30/2013] [Indexed: 06/04/2023]
Abstract
The progressive scaling in semiconductor technology allows for advanced miniaturization of intelligent systems like implantable biosensors for low-molecular weight analytes. A most relevant application would be the monitoring of glucose in diabetic patients, since no commercial solution is available yet for the continuous and drift-free monitoring of blood sugar levels. We report on a biosensor chip that operates via the binding competition of glucose and dextran to concanavalin A. The sensor is prepared as a fully embedded micro-electromechanical system and operates at GHz frequencies. Glucose concentrations derive from the assay viscosity as determined by the deflection of a 50 nm TiN actuator beam excited by quasi-electrostatic attraction. The GHz detection scheme does not rely on the resonant oscillation of the actuator and safely operates in fluidic environments. This property favorably combines with additional characteristics-(i) measurement times of less than a second, (ii) usage of biocompatible TiN for bio-milieu exposed parts, and (iii) small volume of less than 1 mm3-to qualify the sensor chip as key component in a continuous glucose monitor for the interstitial tissue.
Collapse
Affiliation(s)
- M Birkholz
- IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
| | - K-E Ehwald
- IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
| | - T Basmer
- IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
| | - P Kulse
- IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
| | - C Reich
- IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
| | - J Drews
- IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
| | - D Genschow
- IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
| | - U Haak
- IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
| | - S Marschmeyer
- IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
| | - E Matthus
- IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
| | - K Schulz
- IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
| | - D Wolansky
- IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
| | - W Winkler
- Silicon Radar, Im Technologiepark 1, 15236 Frankfurt (Oder), Germany
| | - T Guschauski
- Humboldt Universität zu Berlin, Institut für Biologie, Invalidenstr. 42, 10115 Berlin, Germany
| | - R Ehwald
- Humboldt Universität zu Berlin, Institut für Biologie, Invalidenstr. 42, 10115 Berlin, Germany
| |
Collapse
|
21
|
Study of Bovine Serum Albumin Solubility in Aqueous Solutions by Intrinsic Viscosity Measurements. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/360239] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The behavior of bovine serum albumin (BSA) in water is scarcely studied, and the thermodynamic properties arising from the experimental measurements have not been reported. Intrinsic viscosity measurements are very useful in assessing the interaction between the solute and solvent. This work discussed in a simple determination of the enthalpy of BSA in aqueous solution when the concentration ranges from 0.2 to 36.71% wt. and the temperature from 35 to 40°C. The relationship between the concentration and intrinsic viscosity is determined according to the method of Huggins. The temperature increase reduces the ratio between inherent viscosity and concentration (ηi/c). This is reflected in the Van't Hoff curve. Furthermore, this work proposes hydrodynamic cohesion value as an indicator of the degree of affinity of protein with water and thermodynamic implications in conformational changes.
Collapse
|
22
|
Rheological properties of wheat gliadins in aqueous propanol. CHINESE JOURNAL OF POLYMER SCIENCE 2013. [DOI: 10.1007/s10118-013-1271-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Rathore N, Pranay P, Bernacki J, Eu B, Ji W, Walls E. Characterization of protein rheology and delivery forces for combination products. J Pharm Sci 2012; 101:4472-80. [DOI: 10.1002/jps.23297] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 07/03/2012] [Accepted: 07/31/2012] [Indexed: 11/06/2022]
|
24
|
High-dose monoclonal antibodies via the subcutaneous route: challenges and technical solutions, an industry perspective. Ther Deliv 2012; 3:889-900. [DOI: 10.4155/tde.12.68] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This review summarizes the various challenges in product development involved in subcutaneous administration of high-dose monoclonal antibodies and attempts to provide an industry perspective of some of the available technologies and potential avenues to overcome these challenges.
Collapse
|
25
|
Meza BE, Verdini RA, Rubiolo AC. Temperature dependency of linear viscoelastic properties of a commercial low-fat soft cheese after frozen storage. J FOOD ENG 2012. [DOI: 10.1016/j.jfoodeng.2011.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Nishimoto M, Komatsu U, Tamai N, Yamanaka M, Kaneshina S, Ogli K, Matsuki H. Intrinsic interaction mode of an inhalation anesthetic with globular proteins: a comparative study on ligand recognition. Colloid Polym Sci 2011. [DOI: 10.1007/s00396-011-2491-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
An improved capillary model for describing the microstructure characteristics, fluid hydrodynamics and breakthrough performance of proteins in cryogel beds. J Chromatogr A 2011; 1218:5487-97. [DOI: 10.1016/j.chroma.2011.06.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/19/2011] [Accepted: 06/09/2011] [Indexed: 11/23/2022]
|
28
|
A comparison of the activation energy of viscous flow for hen egg-white lysozyme obtained on the basis of different models of viscosity for glass-forming liquids. ACTA ACUST UNITED AC 2011. [DOI: 10.2478/v10214-011-0001-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A comparison of the activation energy of viscous flow for hen egg-white lysozyme obtained on the basis of different models of viscosity for glass-forming liquids
The paper presents the results of viscosity determinations on aqueous solutions of hen egg-white lysozyme at a wide range of concentrations and at temperatures ranging from 5°C to 55°C. On the basis of these measurements and different models of viscosity for glass-forming liquids, the activation energy of viscous flow for solutions and the studied protein, at different temperatures, was calculated. The analysis of the results obtained shows that the activation energy monotonically decreases with increasing temperature both for solutions and the studied protein. The numerical values of the activation energy for lysozyme, calculated on the basis of discussed models, are very similar in the range of temperatures from 5°C to 35°C.
Collapse
|
29
|
Burckbuchler V, Mekhloufi G, Giteau AP, Grossiord JL, Huille S, Agnely F. Rheological and syringeability properties of highly concentrated human polyclonal immunoglobulin solutions. Eur J Pharm Biopharm 2010; 76:351-6. [PMID: 20719247 DOI: 10.1016/j.ejpb.2010.08.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 07/19/2010] [Accepted: 08/10/2010] [Indexed: 10/19/2022]
Abstract
This study of highly concentrated polyvalent immunoglobulin solutions, IgG, aimed at analyzing the relationships between protein concentration and aggregation on the one hand and viscosity on the other hand. Viscosity variations as a function of IgG concentration showed two well-defined behaviours: a Newtonian behaviour for low-concentrated solutions and a shear-thinning behaviour for highly concentrated ones. The viscosity data fitted very well with the Mooney model, suggesting the absence of intermolecular interactions in the IgG solutions that behaved like a non-interacting suspension of hard particles. The polyclonal nature of IgG seems to prevent intermolecular interaction. The shape factor, determined from Mooney fitting, revealed a non-spherical shape of the polyclonal IgG molecules. The rheological properties were also correlated with the injection force (F) through hypodermic needles by syringeability tests. Here, F was mainly affected by three parameters: the solution viscosity, the injection flow rate, and the needle characteristics. In fact, syringeability tests showed that F increased with IgG concentration and flow rate and decreased with the internal diameter of the needle. A zone for optimal injection conditions was then identified taking into account the different affecting parameters and mainly a maximum force for manual injection, which was fixed at 30N.
Collapse
Affiliation(s)
- V Burckbuchler
- Faculté de Pharmacie, Université Paris-Sud, UMR CNRS 8612, Châtenay-Malabry Cedex, France
| | | | | | | | | | | |
Collapse
|
30
|
Patel AR, Kerwin BA, Kanapuram SR. Viscoelastic characterization of high concentration antibody formulations using quartz crystal microbalance with dissipation monitoring. J Pharm Sci 2009; 98:3108-16. [PMID: 19025898 DOI: 10.1002/jps.21610] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With increasing protein concentrations, therapeutic protein formulations are increasingly demonstrating significant deviations from ideal dilute solution behavior due to protein-protein interactions. These interactions lead to unique biophysical challenges in the administration of biopharmaceuticals including high apparent viscosity and viscoelasticity as well as challenges in maintaining the physical stability of proteins in solution. Here, we describe a straightforward analytical method to calculate the complex modulus and viscosity of high concentration protein solutions from measurements made using quartz crystal microbalance with dissipation monitoring (QCM-D). Further, this methodology was used to investigate the dependence of the storage and loss moduli (G' and G'', respectively) of a humanized monoclonal antibody solution on solution pH. Unlike recent reports, the effect of protein deposition onto the surface of the quartz sensor crystal was measured and explicitly accounted for during analysis when determining the solution's complex modulus. It was found that the ratio G''/G' was significantly greater than unity for all solutions investigated, but demonstrated a distinct maximum at pH 5.5 indicating that the solution exhibited the greatest liquid-like behavior at this pH. In addition, measurements were made at higher frequencies, which were found to be more sensitive to the changes in pH than those made at lower frequencies. It was also found that the viscoelastic ratio was relatively insensitive to the frequency of measurement at lower pH, but showed greater dependence on frequency as pH increased. The characterization of the rheological properties of high concentration antibody solutions provides insight into protein-protein interactions, and the methodology presented here demonstrates a straightforward way to determine the viscoelastic properties using ultrasonic rheology without the drawbacks of numerical fitting.
Collapse
Affiliation(s)
- Ankit R Patel
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
31
|
|
32
|
Andreozzi P, Bonincontro A, La Mesa C. Electrostatic Interactions between a Protein and Oppositely Charged Micelles. J Phys Chem B 2008; 112:3339-45. [DOI: 10.1021/jp0742618] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Patrizia Andreozzi
- Dipartimento di Chimica, SOFT-INFM-CNR Research Center, and CNISM-Dipartimento di Fisica, La Sapienza University, Rome, Italy
| | - Adalberto Bonincontro
- Dipartimento di Chimica, SOFT-INFM-CNR Research Center, and CNISM-Dipartimento di Fisica, La Sapienza University, Rome, Italy
| | - Camillo La Mesa
- Dipartimento di Chimica, SOFT-INFM-CNR Research Center, and CNISM-Dipartimento di Fisica, La Sapienza University, Rome, Italy
| |
Collapse
|
33
|
Letizia C, Andreozzi P, Scipioni A, La Mesa C, Bonincontro A, Spigone E. Protein binding onto surfactant-based synthetic vesicles. J Phys Chem B 2007; 111:898-908. [PMID: 17249834 DOI: 10.1021/jp0646067] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synthetic vesicles were prepared by mixing anionic and cationic surfactants, aqueous sodium dodecylsulfate with didodecyltrimethylammonium or cetyltrimethylammonium bromide. The overall surfactant content and the (anionic/cationic) mole ratios allow one to obtain negatively charged vesicles. In the phase diagram, the vesicular region is located between a solution phase, a lamellar liquid crystalline dispersion, and a precipitate area. Characterization of the vesicles was performed by electrophoretic mobility, NMR, TEM, and DLS and we determined their uni-lamellar character, size, stability, and charge density. Negatively charged vesicular dispersions, made of sodium dodecylsulfate/didodecyltrimethylammonium bromide or sodium dodecylsulfate/cetyltrimethylammonium bromide, were mixed with lysozyme, to form lipoplexes. Depending on the protein/vesicle charge ratio, binding, surface saturation, and lipoplexes flocculation, or precipitation, occurs. The free protein in excess remains in solution, after binding saturation. The systems were investigated by thermodynamic (surface tension and solution calorimetry), DLS, CD, TEM, 1H NMR, transport properties, electrophoretic mobility, and dielectric relaxation. The latter two methods give information on the vesicle charge neutralization by adsorbed protein. Binding is concomitant to modifications in the double layer thickness of vesicles and in the surface charge density of the resulting lipoplexes. This is also confirmed by developing the electrophoretic mobility results in terms of a Langmuir-like adsorption isotherm. Charges in excess with respect to the amount required to neutralize the vesicle surface promote lipoplexes clustering and/or flocculation. Protein-vesicle interactions were observed by DLS, indicating changes in particle size (and in their distribution functions) upon addition of LYSO. According to CD, the bound protein retains its native conformation, at least in the SDS/CTAB vesicular system. In fact, changes in the alpha-helix and beta-sheet conformations are moderate, if any. Calorimetric methods indicate that the maximum heat effect for LYSO binding occurs at charge neutralization. They also indicate that enthalpic are by far the dominant contributions to the system stability. Accordingly, energy effects associated with charge neutralization and double-layer contributions are much higher than counterion exchange and dehydration terms.
Collapse
Affiliation(s)
- Caterina Letizia
- Department of Chemistry, SOFT-INFM-CNR Research Centre, La Sapienza University, P. le A. Moro 5, I-00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Durand A. Aqueous solutions of amphiphilic polysaccharides: Concentration and temperature effect on viscosity. Eur Polym J 2007. [DOI: 10.1016/j.eurpolymj.2007.02.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Ciurleo A, Cinelli S, Guidi M, Bonincontro A, Onori G, Mesa CL. Some Properties of Lysozyme−Lithium Perfluorononanoate Complexes. Biomacromolecules 2006; 8:399-405. [PMID: 17291063 DOI: 10.1021/bm060609d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mixtures containing lysozyme, LYSO, and a fully fluorinated surfactant, lithium perfluorononanoate, LiPFN, were investigated in a wide range of concentrations and mole ratios. To ensure consistency to the data, a comparison was made, when possible, with the more conventional SDS as surfactant. Molecular solutions, precipitates, and micellar phases have been observed. The region of existence for each phase depends on the LiPFN/LYSO mole ratios, r, and was determined by different experimental methods. Optical absorbance, CD, 19F NMR, viscosity, electrical conductivity, and dielectric relaxation methods were used. Some methods give information on the protein conformation, others on the state of the surfactant or on the collective system properties, respectively. Addition of LiPFN gives rise to a solution, a poly phase dispersion (at low surfactant to protein ratios) and to a micelle-mediated redissolution of the precipitates. Concomitant to the above macroscopic properties, peculiar effects in the state of LYSO are observed. Low amounts of surfactant reduce significantly the amount of alpha-helix in favor of the beta-sheet conformation of the protein. The former is almost completely regained once micelle-assisted redissolution of the complex occurs. The tertiary structure of the protein, conversely, is lost at low surfactant content and never recovered. Such evidence suggests the occurrence of a molten globule conformation for LYSO in micellar media.
Collapse
|
36
|
Singh M. Structural interactions of globular proteins—Bovine serum albumin, egg albumin, and lysozyme, in aqueous medium, elucidated with molar volumes, viscosities, energy functions, and IR spectra from 293.15 to 303.15 K. J Appl Polym Sci 2006. [DOI: 10.1002/app.24626] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Yun J, Lin DQ, Yao SJ. Predictive modeling of protein adsorption along the bed height by taking into account the axial nonuniform liquid dispersion and particle classification in expanded beds. J Chromatogr A 2005; 1095:16-26. [PMID: 16275279 DOI: 10.1016/j.chroma.2005.07.120] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2005] [Revised: 07/22/2005] [Accepted: 07/25/2005] [Indexed: 11/24/2022]
Abstract
Expanded bed adsorption (EBA) is a special chromatography technique with perfect classification of adsorbent particles in the column, thus the performance of protein adsorption in expanded beds is particular, obviously nonuniform and complex along the column. Detailed description of the complex adsorption kinetics of proteins in expanded bed is essential for better analyzing of adsorptive mechanisms, the design of chromatographic processes and the optimization of operation parameters of EBA processes. In this work, a theoretical model for the prediction of protein adsorption kinetics in expanded beds was developed by taking into account the classified distribution of adsorbent particles along the bed height, the nonuniform behaviors of axial liquid dispersion, the axial variation of local bed voidage as well as the axial changes of target component mass transfer. The model was solved using the implicit finite difference scheme combining with the orthogonal collocation method, and then applied to predict the breakthrough behaviors of bovine serum albumin (BSA) on Streamline DEAE and lysozyme on Streamline SP along the bed height in expanded beds under various conditions. In addition, the experiments of front adsorption of BSA on Streamline DEAE at different axial column positions were carried out to reveal the adsorption kinetics of BSA along the bed height in a 20 mm I.D. expanded bed, and the influences of liquid velocity and feed concentration on the breakthrough behaviors were also analyzed. The breakthrough behaviors predicted by the present model were compared with the experimental data obtained in this work and in the literature published. The agreement between the prediction and the experimental breakthrough curves is satisfied.
Collapse
Affiliation(s)
- Junxian Yun
- Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou, PR China
| | | | | |
Collapse
|
38
|
Determination of some hydrodynamic parameters of ovine serum albumin solutions using viscometric measurements. J Biol Phys 2005; 31:219-32. [PMID: 23345893 DOI: 10.1007/s10867-005-1830-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The influence of protein concentration and temperature on the viscosity of ovine serum albumin (OSA) solutions was studied. The Mooney equation and a modified Arrhenius formula were used to described the viscosity-concentration and viscosity-temperature dependence of the solutions, respectively. The effective specific volume, the activation energy and entropy of viscous flow for hydrated OSA were calculated. The axial ratio and the dimensions of the main semi-axes of hydrated OSA were established. At low concentration limit, the temperature dependence of the intrinsic viscosity and Huggins coefficient is presented. Comparison of some hydrodynamic parameters obtained for different proteins has been made.
Collapse
|
39
|
Monkos K. A comparison of solution conformation and hydrodynamic properties of equine, porcine and rabbit serum albumin using viscometric measurements. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1748:100-9. [PMID: 15752698 DOI: 10.1016/j.bbapap.2004.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 11/19/2004] [Accepted: 12/20/2004] [Indexed: 10/26/2022]
Abstract
This paper presents the results of viscosity determinations on aqueous solutions of equine, porcine and rabbit serum albumin over a wide range of concentrations and at temperatures ranging from 5 degrees C to (42-45) degrees C. The results are compared with human and bovine serum albumin previously studied. Viscosity-temperature dependence is discussed on the basis of the modified Arrhenius formula. The effective specific volume, the activation energy and entropy of viscous flow for all investigated albumins are compared. Viscosity-concentration dependence, in turn, is discussed on the basis of Mooney equation. Based on the assumption that theoretical and experimental values of Simha factor--at high temperature limit--are equal to each other, the hydrodynamic volume of the studied albumins has been calculated. The numerical values of a self-crowding factor were also obtained. At low concentration limit, the numerical values of the intrinsic viscosity and of Huggins coefficient were compared.
Collapse
Affiliation(s)
- Karol Monkos
- Department of Biophysics, Silesian Medical Academy, H. Jordana 19, 41-808 Zabrze 8, Poland.
| |
Collapse
|
40
|
Cherepanov AV, De Vries S. Microsecond freeze-hyperquenching: development of a new ultrafast micro-mixing and sampling technology and application to enzyme catalysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1656:1-31. [PMID: 15136155 DOI: 10.1016/j.bbabio.2004.02.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Revised: 02/17/2004] [Accepted: 02/17/2004] [Indexed: 11/21/2022]
Abstract
A novel freeze-quench instrument with a characteristic <<dead-time>> of 137 +/- 18 micros is reported. The prototype has several key features that distinguish it from conventional freeze-quench devices and provide a significant improvement in time resolution: (a) high operating pressures (up to 400 bar) result in a sample flow with high linear rates (up to 200 m s(-1)); (b) tangential micro-mixer with an operating volume of approximately 1 nl yields short mixing times (up to 20 micros); (c) fast transport between the mixer and the cryomedium results in short reaction times: the ageing solution exits the mixer as a free-flowing jet, and the chemical reaction occurs "in-flight" on the way to the cryomedium; (d) a small jet diameter (approximately 20 microm) and a high jet velocity (approximately 200 m s(-1)) provide high sample-cooling rates, resulting in a short cryofixation time (up to 30 micros). The dynamic range of the freeze-quench device is between 130 micros and 15 ms. The novel tangential micro-mixer efficiently mixes viscous aqueous solutions, showing more than 95% mixing at eta < or = 4 (equivalent to protein concentrations up to 250 mg ml(-1)), which makes it an excellent tool for the preparation of pre-steady state samples of concentrated protein solutions for spectroscopic structure analysis. The novel freeze-quench device is characterized using the reaction of binding of azide to metmyoglobin from horse heart. Reaction samples are analyzed using 77 K optical absorbance spectroscopy, and X-band EPR spectroscopy. A simple procedure of spectral analysis is reported that allows (a) to perform a quantitative analysis of the reaction kinetics and (b) to identify and characterize novel reaction intermediates. The reduction of dioxygen by the bo3-type quinol oxidase from Escherichia coli is assayed using the MHQ technique. In these pilot experiments, low-temperature optical absorbance measurements show the rapid oxidation of heme o3 in the first 137 micros of the reaction, accompanied by the formation of an oxo-ferryl species. X-band EPR spectroscopy shows that a short-living radical intermediate is formed during the oxidation of heme o3. The radical decays within approximately 1 ms concomitant with the oxidation of heme b, and can be attributed to the PM reaction intermediate converting to the oxoferryl intermediate F. The general field of application of the freeze-quench methodology is discussed.
Collapse
Affiliation(s)
- Alexey V Cherepanov
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | | |
Collapse
|
41
|
Monkos K. On the hydrodynamics and temperature dependence of the solution conformation of human serum albumin from viscometry approach. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1700:27-34. [PMID: 15210122 DOI: 10.1016/j.bbapap.2004.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 02/24/2004] [Accepted: 03/12/2004] [Indexed: 10/26/2022]
Abstract
The paper presents the results of viscosity determinations on aqueous solutions of human serum albumin (HSA) at a wide range of concentrations and at temperatures ranging from 5 to 45 degrees C. On the basis of a modified Arrhenius formula and Mooney's equation, the viscosity-temperature and viscosity-concentration dependence of the solutions are discussed. The effective specific volume, the activation energy and entropy of viscous flow for hydrated HSA were calculated. Different models of HSA molecule are discussed and the best one-from the hydrodynamic point of view-was established. At low concentration limit, such rheological quantities as the intrinsic viscosity and Huggins coefficient were obtained. Using the dimensionless parameter [eta]c, the existence of three characteristic ranges of concentrations: diluted, semi-diluted and concentrated, was shown.
Collapse
Affiliation(s)
- Karol Monkos
- Department of Biophysics, Silesian Medical Academy, H. Jordana 19, 41-808 Zabrze 8, Poland.
| |
Collapse
|
42
|
Abstract
The viscosity of ovalbumin aqueous solutions was studied as a function of temperature and of protein concentration. Viscosity-temperature dependence was discussed on the basis of the modified Arrhenius formula at temperatures ranging from 5 to 55 degrees C. The activation energy of viscous flow for hydrated and unhydrated ovalbumin was calculated. Viscosity-concentration dependence, in turn, was discussed on the basis of Mooney equation. It has been shown that the shape parameter S decreases with increasing temperature, and self-crowding factor K does not depend on temperature. At low concentration limit the numerical values of the intrinsic viscosity and of Huggins coefficient were calculated. A master curve relating the specific viscosity etasp to the reduced concentration c[eta], over the whole range of temperature, was obtained and the three ranges of concentrations: diluted, semi-diluted and concentrated, are discussed. It has been proved that the Mark-Houvink-Kuhn-Sakurada (MHKS) exponent for ovalbumin does not depend on temperature.
Collapse
Affiliation(s)
- K Monkos
- Department of Biophysics, Silesian Medical Academy, Zabrze, Poland
| |
Collapse
|
43
|
Monkos K, Turczynski B. A comparative study on viscosity of human, bovine and pig IgG immunoglobulins in aqueous solutions. Int J Biol Macromol 1999; 26:155-9. [PMID: 10517523 DOI: 10.1016/s0141-8130(99)00080-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This paper presents the results of viscosity determinations on aqueous solutions of human, bovine and pig IgG immunoglobulins over a wide range of concentrations and at temperatures ranging from 5 degrees C to 55 degrees C. On the basis of the generalized Arrhenius formula, the viscosity temperature and the viscosity concentration dependence of the solutions are discussed. By applying an asymptotic form of the generalized Arrhenius formula, such rheological quantities as the intrinsic viscosity and Huggins coefficient were calculated.
Collapse
Affiliation(s)
- K Monkos
- Department of Biophysics, Silesian Medical Academy, Zabrze, Poland
| | | |
Collapse
|
44
|
Buxbaum E. Co-operating ATP sites in the multiple drug resistance transporter Mdr1. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:54-63. [PMID: 10491157 DOI: 10.1046/j.1432-1327.1999.00643.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The ATPase activity of the multiple drug resistance transporter Mdr1 (P-glycoprotein, gp170) depended on the concentration of ATP with both positive and negative co-operativity both in the absence and in the presence of verapamil. Four co-operating binding sites for ATP were required to adequately model the experimental findings. The activation energy for the ATPase activity increased from approximately 385 kJ x mol-1 at 10 microM ATP to 512 kJ x mol-1 at 1600 microM, while changes in verapamil concentration had little effect. This indicates that the reaction mechanism of ATP hydrolysis depends on ATP concentration and is further evidence for co-operation of ATP binding sites. Free ATP in higher concentration was inhibitory; however, this inhibition could be reduced by complexing the ATP with Mg2+. Free Mg2+ had little effect on Mdr1 apart from complexing ATP.
Collapse
Affiliation(s)
- E Buxbaum
- Department of Cell Physiology and Pharmacology, University of Leicester, UK.
| |
Collapse
|