1
|
Ali MA, Kaneko T. Syntheses of Aromatic/Heterocyclic Derived Bioplastics with High Thermal/Mechanical Performance. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mohammad Asif Ali
- Graduate School of Advanced Science and Technology, Energy and Environment Area, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923 1292, Japan
- Soft Matter Sciences and Engineering Laboratory, ESPCI Paris, PSL University, CNRS, 10 Rue Vauquelin, 75005 Paris, France
| | - Tatsuo Kaneko
- Graduate School of Advanced Science and Technology, Energy and Environment Area, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923 1292, Japan
| |
Collapse
|
2
|
Kaneko T, Tateyam S, Okajima M, Hojoon S, Takaya N. Ultrahigh Heat-resistant, Transparent Bioplastics from Exotic Amino Acid. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.matpr.2016.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
3
|
Kyndt JA, Meyer TE, Olson KT, Van Beeumen J, Cusanovich MA. Photokinetic, biochemical and structural features of chimeric photoactive yellow protein constructs. Photochem Photobiol 2012; 89:349-60. [PMID: 22958002 DOI: 10.1111/j.1751-1097.2012.01235.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/29/2012] [Indexed: 11/28/2022]
Abstract
Of the 10 photoactive yellow protein (PYPs) that have been characterized, the two from Rhodobacter species are the only ones that have an additional intermediate spectral form in the resting state (λmax = 375 nm), compared to the prototypical Halorhodospira halophila PYP. We have constructed three chimeric PYP proteins by replacing the first 21 residues from the N-terminus (Hyb1PYP), 10 from the β4-β5 loop (Hyb2PYP) and both (Hyb3PYP) in Hhal PYP with those from Rb. capsulatus PYP. The N-terminal chimera behaves both spectrally and kinetically like Hhal PYP, indicating that the Rcaps N-terminus folds against the core of Hhal PYP. A small fraction shows dimerization and slower recovery, possibly due to interaction at the N-termini. The loop chimera has a small amount of the intermediate spectral form and a photocycle that is 20 000 times slower than Hhal PYP. The third chimera, with both regions exchanged, resembles Rcaps PYP with a significant amount of intermediate spectral form (λmax = 380 nm), but has even slower kinetics. The effects are not strictly additive in the double chimera, suggesting that what perturbs one site, affects the other as well. These chimeras suggest that the intermediate spectral form has its origins in overall protein stability and solvent exposure.
Collapse
Affiliation(s)
- John A Kyndt
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA.
| | | | | | | | | |
Collapse
|
4
|
Meyer TE, Kyndt JA, Memmi S, Moser T, Colón-Acevedo B, Devreese B, Van Beeumen JJ. The growing family of photoactive yellow proteins and their presumed functional roles. Photochem Photobiol Sci 2012; 11:1495-514. [DOI: 10.1039/c2pp25090j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Nishiyama Y, Yun CS, Matsuda F, Sasaki T, Saito K, Tozawa Y. Expression of bacterial tyrosine ammonia-lyase creates a novel p-coumaric acid pathway in the biosynthesis of phenylpropanoids in Arabidopsis. PLANTA 2010; 232:209-18. [PMID: 20396902 DOI: 10.1007/s00425-010-1166-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 03/31/2010] [Indexed: 05/09/2023]
Abstract
Some flavonoids are considered as beneficial compounds because they exhibit anticancer or antioxidant activity. In higher plants, flavonoids are secondary metabolites that are derived from phenylpropanoid biosynthetic pathway. A large number of phenylpropanoids are generated from p-coumaric acid, which is a derivative of the primary metabolite, phenylalanine. The first two steps in the phenylpropanoid biosynthetic pathway are catalyzed by phenylalanine ammonia-lyase and cinnamate 4-hydroxylase, and the coupling of these two enzymes forms a rate-limiting step in the pathway. For the generation of p-coumaric acid, the conversion from phenylalanine to p-coumaric acid that is catalyzed by two enzymes can be theoretically performed by a single enzyme, tyrosine ammonia-lyase (TAL) that catalyzes the conversion of tyrosine to p-coumaric acid in certain bacteria. To modify the p-coumaric acid pathway in plants, we isolated a gene encoding TAL from a photosynthetic bacterium, Rhodobacter sphaeroides, and introduced the gene (RsTAL) in Arabidopsis thaliana. Analysis of metabolites revealed that the ectopic over-expression of RsTAL leads to higher accumulation of anthocyanins in transgenic 5-day-old seedlings. On the other hand, 21-day-old seedlings of plants expressing RsTAL showed accumulation of higher amount of quercetin glycosides, sinapoyl and p-coumaroyl derivatives than control. These results indicate that ectopic expression of the RsTAL gene in Arabidopsis enhanced the metabolic flux into the phenylpropanoid pathway and resulted in increased accumulation of flavonoids and phenylpropanoids.
Collapse
Affiliation(s)
- Yasutaka Nishiyama
- Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Ehime, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Kumauchi M, Hara MT, Stalcup P, Xie A, Hoff WD. Identification of Six New Photoactive Yellow ProteinsDiversity and StructureFunction Relationships in a Bacterial Blue Light Photoreceptor. Photochem Photobiol 2008; 84:956-69. [DOI: 10.1111/j.1751-1097.2008.00335.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Abstract
The role of glycine residues was studied by alanine-scanning mutagenesis using photoactive yellow protein, a structural prototype of PER ARNT SIM domain proteins, as a template. Mutation of glycine located close to the end of beta-strands with dihedral angles disallowed for alanine (Gly-37, Gly-59, Gly-86, and Gly-115) induces destabilization of the protein structure. On the other hand, substitution for Gly-77 and Gly-82, incorporated into the fifth alpha-helix, slows the photocycle by 15-20 times, suggesting that these residues regulate the light-induced structural switch between dark-state structure and signaling-state structure. Most importantly, a significant amount of G29A is in the bleached state and showed a 1000-fold slower photocycle. As O(epsilon2) of the carboxylic acid of Glu-46 is close enough for contact with C(alpha) of Gly-29, alanine mutation perturbs this packing. Fourier transform infrared spectroscopy demonstrated that the C=O(epsilon2) stretching mode of Glu-46 is 6 cm(-1) upshifted in G29A, suggesting that C(alpha) of Gly-29 acts as a proton donor for the C(alpha)-H...O(epsilon2) hydrogen bond with Glu-46, which stabilizes the dark-state structure. During the photocycle, Glu-46 becomes negatively charged by donating a proton to the chromophore, resulting in breakage of this hydrophobic packing and consequent conformational change of the protein.
Collapse
|
8
|
Abstract
Liquid crystalline (LC) polymers of rigid monomers based on flora and fauna were prepared by in-bulk polymerization. Para-coumaric (p-coumaric) acid [4-hydroxycinnamic acid (4HCA)] and its derivatives were selected as phytomonomers and bile acids were selected as biomonomers. The 4HCA homopolymer showed a thermotropic LC phase only in a state of low molecular weight. The copolymers of 4HCA with bile acids such as lithocholic acid (LCA) and cholic acid (CA) showed excellent cell compatibilities but low molecular weights. However, P(4HCA-co-CA)s allowed LC spinning to create molecularly oriented biofibers, presumably due to the chain entanglement that occurs during in-bulk chain propagation into hyperbranching architecture. P[4HCA-co-3,4-dihydroxycinnamic acid (DHCA)]s showed high molecular weight, high mechanical strength, high Young's modulus, and high softening temperature, which may be achieved through the entanglement by in-bulk formation of hyperbranching, rigid structures. P(4HCA-co-DHCA)s showed a smooth hydrolysis, in-soil degradation, and photo-tunable hydrolysis. Thus, P(4HCA-co-DHCA)s might be applied as an environmentally degradable plastic with extremely high performance.
Collapse
Affiliation(s)
- Tatsuo Kaneko
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Japan.
| |
Collapse
|
9
|
Laan W, Horst MA, Van Stokkum IH, Hellingwerf KJ. Initial Characterization of the Primary Photochemistry of AppA, a Blue-light-using Flavin Adenine Dinucleotide-domain Containing Transcriptional Antirepressor Protein from Rhodobacter sphaeroides: A Key Role for Reversible Intramolecular Proton Transfer f. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2003)0780290icotpp2.0.co2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Morishita T, Harigai M, Yamazaki Y, Kamikubo H, Kataoka M, Imamoto Y. Array of Aromatic Amino Acid Side Chains Located Near the Chromophore of Photoactive Yellow Protein†. Photochem Photobiol 2007; 83:280-5. [PMID: 16879039 DOI: 10.1562/2006-06-15-ra-929] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of the array of aromatic amino acid side chains located close to the chromophore binding loop of photoactive yellow protein (PYP) was studied using the alanine-substitution mutagenesis. Phe92, Tyr94, Phe96 and Tyr98 were replaced with alanine (F92A, Y94A, F96A and Y98A, respectively), then these mutants were characterized by UV-visible absorption spectra, circular dichroism (CD) spectra, thermal stability and photocycle kinetics. Absorption maxima of F92A, Y94A, F96A and Y98A were 444, 442, 439 and 447 nm, respectively, different to wild type (WT) at 446 nm. Far-UV CD spectra of mutants other than F92A were different from WT, indicating that Tyr94, Phe96 and Tyr98 maintain the native secondary structure of PYP. Mid-point temperatures of thermal denaturation of F92A, Y94A and F96A, estimated by the CD signal at 222 nm, were 5-10 degrees C lower than WT. Time constants of the photocycle estimated by flash-induced absorbance change were 0.36 s for WT and 1.4 s for Y98A, however, 100, 30 and 3000 times slower than WT for F92A, Y94A and F96A, respectively. Tyr98 is located in the loop region, whereas Phe92, Tyr94 and Phe96 are incorporated in the beta4 strand, showing that aromatic amino acid residues in the beta-sheet regulate the absorption spectrum, thermal stability and photocycle of PYP. Aromatic rings of Phe92, Tyr94 and Phe96 lie nearly perpendicular to the aromatic ring of Phe75 or chromophore. Possible weak hydrogen bonds between the aromatic ring hydrogen and pi-electrons of these residues are discussed.
Collapse
Affiliation(s)
- Tomokazu Morishita
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Nanao MH, Ravelli RBG. Phasing macromolecular structures with UV-induced structural changes. Structure 2006; 14:791-800. [PMID: 16615919 DOI: 10.1016/j.str.2006.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Revised: 01/29/2006] [Accepted: 02/14/2006] [Indexed: 10/24/2022]
Abstract
Experimental phasing of macromolecular crystal structures relies on the accurate measurement of two or more sets of reflections from isomorphous crystals, where the scattering power of a few atoms is different for each set. Recently, it was demonstrated that X-ray-induced intensity differences can also contain phasing information, exploiting specific structural changes characteristic of X-ray damage. This method (radiation damage-induced phasing; RIP) has the advantage that it can be performed on a single crystal of the native macromolecule. However, a drawback is that X-rays introduce many small changes to both solvent and macromolecule. In this study, ultraviolet (UV) radiation has been used to induce specific changes in the macromolecule alone, leading to a larger contrast between radiation-susceptible and nonsusceptible sites. Unlike X-ray RIP, UV RIP does not require the use of a synchrotron. The method has been demonstrated for a series of macromolecules.
Collapse
Affiliation(s)
- Max H Nanao
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 6 rue Jules Horowitz, B.P. 181, 38042 Grenoble Cedex 9, France
| | | |
Collapse
|
12
|
Grinstead JS, Hsu STD, Laan W, Bonvin AMJJ, Hellingwerf KJ, Boelens R, Kaptein R. The solution structure of the AppA BLUF domain: insight into the mechanism of light-induced signaling. Chembiochem 2006; 7:187-93. [PMID: 16323221 DOI: 10.1002/cbic.200500270] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The transcriptional antirepressor AppA from the photosynthetic bacterium Rhodobacter sphaeroides senses both the light climate and the intracellular redox state. Under aerobic conditions in the dark, AppA binds to and thereby blocks the function of PpsR, a transcriptional repressor. Absorption of a blue photon dissociates AppA from PpsR and allows the latter to repress photosynthesis gene expression. The N terminus of AppA contains sequence homology to flavin-containing photoreceptors that belong to the BLUF family. Structural and chemical aspects of signal transduction mediated by AppA are still largely unknown. Here we present NMR studies of the N-terminal flavin-binding BLUF domain of AppA. Its solution structure adopts an alpha/beta-sandwich fold with a beta alpha beta beta alpha beta beta topology, which represents a new flavin-binding fold. Considerable disorder is observed for residues near the chromophore due to conformational exchange. This disorder is observed both in the dark and in the light-induced signaling state of AppA. Furthermore, we detect light-induced structural changes in a patch of surface residues that provide a structural link between light absorption and signal-transduction events.
Collapse
Affiliation(s)
- Jeffrey S Grinstead
- Department of NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
13
|
Vengris M, van der Horst MA, Zgrablic G, van Stokkum IHM, Haacke S, Chergui M, Hellingwerf KJ, van Grondelle R, Larsen DS. Contrasting the excited-state dynamics of the photoactive yellow protein chromophore: protein versus solvent environments. Biophys J 2005; 87:1848-57. [PMID: 15345563 PMCID: PMC1304589 DOI: 10.1529/biophysj.104.043224] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wavelength- and time-resolved fluorescence experiments have been performed on the photoactive yellow protein, the E46Q mutant, the hybrids of these proteins containing a nonisomerizing "locked" chromophore, and the native and locked chromophores in aqueous solution. The ultrafast dynamics of these six systems is compared and spectral signatures of isomerization and solvation are discussed. We find that the ultrafast red-shifting of fluorescence is associated mostly with solvation dynamics, whereas isomerization manifests itself as quenching of fluorescence. The observed multiexponential quenching of the protein samples differs from the single-exponential lifetimes of the chromophores in solution. The locked chromophore in the protein environment decays faster than in solution. This is due to additional channels of excited-state energy dissipation via the covalent and hydrogen bonds with the protein environment. The observed large dispersion of quenching timescales observed in the protein samples that contain the native pigment favors both an inhomogeneous model and an excited-state barrier for isomerization.
Collapse
Affiliation(s)
- Mikas Vengris
- Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Vengris M, Larsen DS, van der Horst MA, Larsen OFA, Hellingwerf KJ, van Grondelle R. Ultrafast Dynamics of Isolated Model Photoactive Yellow Protein Chromophores: “Chemical Perturbation Theory” in the Laboratory. J Phys Chem B 2005; 109:4197-208. [PMID: 16851482 DOI: 10.1021/jp045763d] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pump-probe and pump-dump probe experiments have been performed on several isolated model chromophores of the photoactive yellow protein (PYP). The observed transient absorption spectra are discussed in terms of the spectral signatures ascribed to solvation, excited-state twisting, and vibrational relaxation. It is observed that the protonation state has a profound effect on the excited-state lifetime of p-coumaric acid. Pigments with ester groups on the coumaryl tail end and charged phenolic moieties show dynamics that are significantly different from those of other pigments. Here, an unrelaxed ground-state intermediate could be observed in pump-probe signals. A similar intermediate could be identified in the sinapinic acid and in isomerization-locked chromophores by means of pump-dump probe spectroscopy; however, in these compounds it is less pronounced and could be due to ground-state solvation and/or vibrational relaxation. Because of strong protonation-state dependencies and the effect of electron donor groups, it is argued that charge redistribution upon excitation determines the twisting reaction pathway, possibly through interaction with the environment. It is suggested that the same pathway may be responsible for the initiation of the photocycle in native PYP.
Collapse
Affiliation(s)
- Mikas Vengris
- Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
15
|
Harigai M, Imamoto Y, Kamikubo H, Yamazaki Y, Kataoka M. Role of an N-terminal loop in the secondary structural change of photoactive yellow protein. Biochemistry 2004; 42:13893-900. [PMID: 14636057 DOI: 10.1021/bi034814e] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photoactive yellow protein (PYP) is photoconverted to its putative active form (PYP(M)) with global conformational change(s). The changes in the secondary structure were studied by far-UV circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy using PYP, which lacks N-terminal 6, 15, or 23 amino acid residues (T6, T15, and T23, respectively). Irradiation of truncated PYPs induced the loss of the CD signal, where the maximal difference was located at 222 nm. The reduction of the CD signal was significantly larger than the calculated CD of the N-terminal helices, indicating that it is mainly accounted for by the unfolding and/or structural change of the helices located outside the N-terminal region. The difference FTIR spectra between dark and photosteady states recorded using the solution samples demonstrated that large absorbance changes in the amide mode of the beta-sheet were reduced and downshifted by truncation. The structural change of the beta-sheet is therefore closely correlated with the N-terminal loop. NaCl decelerates the decay of intact PYP(M) and T6(M) at low concentrations (<500 mM) but accelerates decay at high concentrations (>1000 mM). For T15(M) and T23(M), NaCl accelerates their decay at >100 mM but never decelerates their decay, suggesting that the electrostatic interaction, which plays an important role for the recovery of PYP from PYP(M), is lost by removing positions 7-15. The electrostatic interaction between this region and the beta-scaffold is likely to promote the conformational change of PYP(M) for recovery of PYP.
Collapse
Affiliation(s)
- Miki Harigai
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | | | | | | | | |
Collapse
|
16
|
Laan W, van der Horst MA, van Stokkum IH, Hellingwerf KJ. Initial characterization of the primary photochemistry of AppA, a blue-light-using flavin adenine dinucleotide-domain containing transcriptional antirepressor protein from Rhodobacter sphaeroides: a key role for reversible intramolecular proton transfer from the flavin adenine dinucleotide chromophore to a conserved tyrosine? Photochem Photobiol 2003; 78:290-7. [PMID: 14556317 DOI: 10.1562/0031-8655(2003)078<0290:icotpp>2.0.co;2] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The flavin adenine dinucleotide (FAD)-containing photoreceptor protein AppA (in which the FAD is bound to a novel so-called BLUF domain) from the purple nonsulfur bacterium Rhodobacter sphaeroides was previously shown to be photoactive by the formation of a slightly redshifted long-lived intermediate that is thought to be the signaling state. In this study, we provide further characterization of the primary photochemistry of this photoreceptor protein using UV-Vis and Fourier-transform infrared spectroscopy, pH measurements and site-directed mutagenesis. Available evidence indicates that the FAD chromophore of AppA may be protonated in the receptor state, and that it becomes exposed to solvent in the signaling state. Furthermore, experimental data lead to the suggestion that intramolecular proton transfer (that may involve [anionic] Tyr-17) forms the basis for the stabilization of the signaling state.
Collapse
Affiliation(s)
- Wouter Laan
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences, BioCentrum Amsterdam, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
17
|
Cusanovich MA, Meyer TE. Photoactive yellow protein: a prototypic PAS domain sensory protein and development of a common signaling mechanism. Biochemistry 2003; 42:4759-70. [PMID: 12718516 DOI: 10.1021/bi020690e] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael A Cusanovich
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA.
| | | |
Collapse
|
18
|
Meyer TE, Devanathan S, Woo T, Getzoff ED, Tollin G, Cusanovich MA. Site-specific mutations provide new insights into the origin of pH effects and alternative spectral forms in the photoactive yellow protein from Halorhodospira halophila. Biochemistry 2003; 42:3319-25. [PMID: 12641464 DOI: 10.1021/bi020702w] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acid/base titrations of wild-type PYP and mutants, either in buffer or in the presence of chaotropes such as thiocyanate, establish the presence of four spectral forms including the following: a neutral form (446-476 nm), an acidic form (350-355 nm), an alkaline form (430-440 nm), and an intermediate wavelength form (355-400 nm). The acidic species is formed by protonation of the oxyanion of the para-hydroxy-cinnamyl cysteine chromophore as a secondary result of acid denaturation (with pK(a) values of 2.8-5.4) and often results in precipitation of the protein, and in the case of wild-type PYP, eventual hydrolysis of the chromophore thioester bond at pH values below 2. Thus, the large and complex structural changes associated with the acidic species make it a poor model for the long-lived photocycle intermediate, I(2), which undergoes more moderate structural changes. Mutations at E46, which is hydrogen-bonded to the chromophore, have only two spectral forms accessible to them, the neutral and the acidic forms. Thus, an intact E46 carboxyl group is essential for observation of either intermediate or alkaline wavelength forms. The alkaline form is likely to be due to ionization of E46 in the folded protein. We postulate that the intermediate wavelength form is due to a conformational change that allows solvent access to E46 and formation of a hydrogen-bond from a water molecule to the carboxylic acid group, thus weakening its interaction with the chromophore. Increasing solvent access to the intermediate spectral form with denaturant concentration results in a continuously blue-shifted wavelength maximum.
Collapse
Affiliation(s)
- T E Meyer
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | |
Collapse
|
19
|
Haker A, Hendriks J, van Stokkum IHM, Heberle J, Hellingwerf KJ, Crielaard W, Gensch T. The two photocycles of photoactive yellow protein from Rhodobacter sphaeroides. J Biol Chem 2003; 278:8442-51. [PMID: 12496261 DOI: 10.1074/jbc.m209343200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The absorption spectrum of the photoactive yellow protein from Rhodobacter sphaeroides (R-PYP) shows two maxima, absorbing at 360 nm (R-PYP(360)) and 446 nm (R-PYP(446)), respectively. Both forms are photoactive and part of a temperature- and pH-dependent equilibrium (Haker, A., Hendriks, J., Gensch, T., Hellingwerf, K. J., and Crielaard, W. (2000) FEBS Lett. 486, 52-56). At 20 degrees C, for PYP characteristic, the 446-nm absorbance band displays a photocycle, in which the depletion of the 446-nm ground state absorption occurs in at least three phases, with time constants of <30 ns, 0.5 micros, and 17 micros. Intermediates with both blue- and red-shifted absorption maxima are transiently formed, before a blue-shifted intermediate (pB(360), lambda(max) = 360 nm) is established. The photocycle is completed with a monophasic recovery of the ground state with a time constant of 2.5 ms. At 7 degrees C these photocycle transitions are slowed down 2- to 3-fold. Upon excitation of R-PYP(360) with a UV-flash (330 +/- 50 nm) a species with a difference absorption maximum at approximately 435 nm is observed that returns to R-PYP(360) on a minute time scale. Recovery can be accelerated by a blue light flash (450 nm). R-PYP(360) and R-PYP(446) differ in their overall protein conformation, as well as in the isomerization and protonation state of the chromophore, as determined with the fluorescent polarity probe Nile Red and Fourier Transform Infrared spectroscopy, respectively.
Collapse
Affiliation(s)
- Andrea Haker
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences, BioCentrum, University of Amsterdam, Nieuwe Achtergracht 166, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
20
|
Kyndt JA, Vanrobaeys F, Fitch JC, Devreese BV, Meyer TE, Cusanovich MA, Van Beeumen JJ. Heterologous production of Halorhodospira halophila holo-photoactive yellow protein through tandem expression of the postulated biosynthetic genes. Biochemistry 2003; 42:965-70. [PMID: 12549916 DOI: 10.1021/bi027037b] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photoactive yellow protein (PYP) is a bacterial photoreceptor which is the structural prototype for the PAS domain superfamily of regulators and receptors. PYP is known to have a unique p-hydroxycinnamic acid chromophore, covalently attached to a cysteine. To date, it has not been shown how holo-PYP is formed in vivo. Two genes, nearby pyp, were postulated to encode the biosynthetic enzymes, but only one was previously isolated and shown to have the requisite activity. By using a dual plasmid system, one expressing the PYP from Halorhodospira halophila and the other expressing a two-gene operon, consisting of tyrosine ammonia lyase and p-hydroxycinnamic acid ligase, we are able to present evidence that a functionally active holo-PYP can be synthesized in Escherichia coli. Plasmids containing only one of the two enzymes failed to produce holoprotein. Thus, the two genes have been shown to be both necessary and sufficient for production of holoprotein, although the activating group remains unknown. This expression system not only holds great potential for mutagenesis studies but also opens new possibilities in the search for (a) signaling partner(s) of the PYP.
Collapse
Affiliation(s)
- John A Kyndt
- Department of Protein Biochemistry and Protein Engineering, University of Gent, Ledeganckstraat 35, 9000 Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|
21
|
Laan W, van der Horst MA, van Stokkum IH, Hellingwerf KJ. Initial Characterization of the Primary Photochemistry of AppA, a Blue-light–using Flavin Adenine Dinucleotide–domain Containing Transcriptional Antirepressor Protein from Rhodobacter sphaeroides: A Key Role for Reversible Intramolecular Proton Transfer from the Flavin Adenine Dinucleotide Chromophore to a Conserved Tyrosine?¶. Photochem Photobiol 2003. [DOI: 10.1562/0031-8655(2003)078%3c0290:icotpp%3e2.0.co%3b2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Kyndt JA, Meyer TE, Cusanovich MA, Van Beeumen JJ. Characterization of a bacterial tyrosine ammonia lyase, a biosynthetic enzyme for the photoactive yellow protein. FEBS Lett 2002; 512:240-4. [PMID: 11852088 DOI: 10.1016/s0014-5793(02)02272-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During genome sequence analysis of Rhodobacter capsulatus, nearby open reading frames were found that encode a photoactive yellow protein (PYP) and a hypothetical biosynthetic enzyme for its chromophore, a tyrosine ammonia lyase (TAL). We isolated the TAL gene, overproduced the recombinant protein in Escherichia coli, and after purification analyzed the enzyme for its activity. The catalytic efficiency for tyrosine was shown to be approximately 150 times larger than for phenylalanine, suggesting that the enzyme could in fact be involved in biosynthesis of the PYP chromophore. To our knowledge it is the first time this type of enzyme has been found in bacteria.
Collapse
Affiliation(s)
- J A Kyndt
- Department of Protein Biochemistry and Protein Engineering, University of Ghent, Ledeganckstraat 35, 9000, Ghent, Belgium
| | | | | | | |
Collapse
|
23
|
Imamoto Y, Shirahige Y, Tokunaga F, Kinoshita T, Yoshihara K, Kataoka M. Low-temperature Fourier transform infrared spectroscopy of photoactive yellow protein. Biochemistry 2001; 40:8997-9004. [PMID: 11467962 DOI: 10.1021/bi010021l] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The photocycle intermediates of photoactive yellow protein (PYP) were characterized by low-temperature Fourier transform infrared spectroscopy. The difference FTIR spectra of PYP(B), PYP(H), PYP(L), and PYP(M) minus PYP were measured under the irradiation condition determined by UV-visible spectroscopy. Although the chromophore bands of PYP(B) were weak, intense sharp bands complementary to the 1163-cm(-1) band of PYP, which show the chromophore is deprotonated, were observed at 1168-1169 cm(-1) for PYP(H) and PYP(L), indicating that the proton at Glu46 is not transferred before formation of PYP(M). Free trans-p-coumaric acid had a 1294-cm(-1) band, which was shifted to 1288 cm(-1) in the cis form. All the difference FTIR spectra obtained had the pair of bands corresponding to them, indicating that all the intermediates have the chromophore in the cis configuration. The characteristic vibrational modes at 1020-960 cm(-1) distinguished the intermediates. Because these modes were shifted by deuterium-labeling at the ethylene bond of the chromophore while labeling at the phenol part had no effect, they were attributed to the ethylene bond region. Hence, structural differences among the intermediates are present in this region. Bands at about 1730 cm(-1), which show that Glu46 is protonated, were observed for all intermediates except for PYP(M). Because the frequency of this mode was constant in PYP(B), PYP(H), and PYP(L), the environment of Glu46 is conserved in these intermediates. The photocycle of PYP would therefore proceed by changing the structure of the twisted ethylene bond of the chromophore.
Collapse
Affiliation(s)
- Y Imamoto
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Imamoto Y, Koshimizu H, Mihara K, Hisatomi O, Mizukami T, Tsujimoto K, Kataoka M, Tokunaga F. Roles of amino acid residues near the chromophore of photoactive yellow protein. Biochemistry 2001; 40:4679-85. [PMID: 11294635 DOI: 10.1021/bi002291u] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To investigate the roles of amino acid residues around the chromophore in photoactive yellow protein (PYP), new mutants, Y42A, E46A, and T50A were prepared. Their spectroscopic properties were compared with those of wild-type, Y42F, E46Q, T50V, R52Q, and E46Q/T50V, which were previously prepared and specified. The absorption maxima of Y42A, E46A, and T50A were observed at 438, 469, and 454 nm, respectively. The results of pH titration for the chromophore demonstrated that the chromophore of PYP mutant, like the wild-type, was protonated and bleached under acidic conditions. The red-shifts of the absorption maxima in mutants tended toward a pK(a) increase. Mutation at Glu46 induced remarkable shifts in the absorption maxima and pK(a). The extinction coefficients were increased in proportion to the absorption maxima, whereas the oscillator strengths were constant. PYP mutants that conserved Tyr42 were in the pH-dependent equilibrium between two states (yellow and colorless forms). However, Y42A and Y42F were in the pH-independent equilibrium between additional intermediate state(s) at around neutral pH, in which yellow form was dominant in Y42F whereas the other was dominant in Y42A. These findings suggest that Tyr42 acts as the hinge of the protein, and the bulk as well as the hydroxyl group of Tyr42 controls the protein conformation. In all mutants, absorbance at 450 nm was decreased upon flash irradiation and afterwards recovered on a millisecond time scale. However, absorbance at 340--370 nm was increased vice versa, indicating that the long-lived near-UV intermediates are formed from mutants, as in the case of wild-type. The lifetime changes with mutation suggest the regulation of proton movement through a hydrogen-bonding network.
Collapse
Affiliation(s)
- Y Imamoto
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
van Rotterdam BJ, Westerhoff HV, Visschers RW, Bloch DA, Hellingwerf KJ, Jones MR, Crielaard W. Pumping capacity of bacterial reaction centers and backpressure regulation of energy transduction. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:958-70. [PMID: 11179962 DOI: 10.1046/j.1432-1327.2001.01951.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transduction of free-energy by Rhodobacter sphaeroides reaction-center-light-harvesting-complex-1 (RCLH1) was quantified. RCLH1 complexes were reconstituted into liposomal membranes. The capacity of the RCLH1 complex to build up a proton motive force was examined at a range of incident light intensities, and induced proton permeabilities, in the presence of artificial electron donors and acceptors. Experiments were also performed with RCLH1 complexes in which the midpoint potential of the reaction center primary donor was modified over an 85-mV range by replacement of the tyrosine residue at the M210 position of the reaction center protein by histidine, phenylalanine, leucine or tryptophan. The intrinsic driving force with which the reaction center pumped protons tended to decrease as the midpoint potential of the primary donor was increased. This observation is discussed in terms of the control of the energetics of the first steps in light-driven electron transfer on the thermodynamic efficiency of the bacterial photosynthetic process. The light intensity at which half of the maximal proton motive force was generated, increased with increasing proton permeability of the membrane. This presents the first direct evidence for so-called backpressure control exerted by the proton motive force on steady-state cyclic electron transfer through and coupled proton pumping by the bacterial reaction center.
Collapse
Affiliation(s)
- B J van Rotterdam
- E.C. Slater Institute for Biochemical and Microbiological Research, BioCentrum Amsterdam, University of Amsterdam, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|
26
|
Chapter 2 Triggering of photomovement - molecular basis. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1568-461x(01)80006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
27
|
van Rotterdam BJ, Westerhoff HV, Visschers RW, Jones MR, Hellingwerf KJ, Crielaard W. Steady-state cyclic electron transfer through solubilized Rhodobacter sphaeroides reaction centres. Biophys Chem 2000; 88:137-52. [PMID: 11152271 DOI: 10.1016/s0301-4622(00)00206-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanism, thermodynamics and kinetics of light-induced cyclic electron transfer have been studied in a model energy-transducing system consisting of solubilized Rhodobacter sphaeroides reaction center/light harvesting-1 complexes (so-called core complexes), horse heart cytochrome c and a ubiquinone-0/ubiquinol-0 pool. An analysis of the steady-state kinetics of cytochrome c reduction by ubiquinol-0, after a light-induced steady-state electron flow had been attained, showed that the rate of this reaction is primarily controlled by the one-electron oxidation of the ubiquinol-anion. Re-reduction of the light-oxidized reaction center primary donor by cytochrome c was measured at different reduction levels of the ubiquinone-0/ubiquinol-0 pool. These experiments involved single turnover flash excitation on top of background illumination that elicited steady-state cyclic electron transfer. At low reduction levels of the ubiquinone-0/ubiquinol-0 pool, the total cytochrome c concentration had a major control over the rate of reduction of the primary donor. This control was lost at higher reduction levels of the ubiquinone/ubiquinol-pool, and possible reasons for this behaviour are discussed.
Collapse
Affiliation(s)
- B J van Rotterdam
- Swammerdam Institute for Life Sciences, University of Amsterdam, Biocentrum Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
28
|
Haker A, Hendriks J, Gensch T, Hellingwerf K, Crielaard W. Isolation, reconstitution and functional characterisation of the Rhodobacter sphaeroides photoactive yellow protein. FEBS Lett 2000; 486:52-6. [PMID: 11108842 DOI: 10.1016/s0014-5793(00)02242-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We report the isolation, functional reconstitution and photophysical characterisation of Rhodobacter sphaeroides photoactive yellow protein (PYP), of which the gene was recently cloned. Reconstitution of the his-tagged purified apo-protein with 4-hydroxy-cinnamic acid yields the characteristic blue absorbance at 446 nm, but surprisingly also an absorbance peak at 360 nm. This additional peak is not caused by binding of a second chromophore, as confirmed with mass spectroscopy. Moreover, reconstitution with the 'locked' analogue 7-hydroxy-coumarin-3-carboxylic acid yields only a single absorbance peak at 441 nm. The 446 nm and 360 nm species are part of a temperature- and pH-dependent equilibrium. Photoactivation of the protein leads to formation of a blue-shifted intermediate as in other PYPs, with a 100-fold increased groundstate recovery rate (k(pB-->pG)=500 s(-1)) compared to E-PYP.
Collapse
Affiliation(s)
- A Haker
- Laboratory for Microbiology, E.C. Slater Institute, BioCentrum, University of Amsterdam, Nieuwe Achtergracht 127, 1018 WS, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
29
|
Brudler R, Meyer TE, Genick UK, Devanathan S, Woo TT, Millar DP, Gerwert K, Cusanovich MA, Tollin G, Getzoff ED. Coupling of hydrogen bonding to chromophore conformation and function in photoactive yellow protein. Biochemistry 2000; 39:13478-86. [PMID: 11063584 DOI: 10.1021/bi0009946] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To understand in atomic detail how a chromophore and a protein interact to sense light and send a biological signal, we are characterizing photoactive yellow protein (PYP), a water-soluble, 14 kDa blue-light receptor which undergoes a photocycle upon illumination. The active site residues glutamic acid 46, arginine 52, tyrosine 42, and threonine 50 form a hydrogen bond network with the anionic p-hydroxycinnamoyl cysteine 69 chromophore in the PYP ground state, suggesting an essential role for these residues for the maintenance of the chromophore's negative charge, the photocycle kinetics, the signaling mechanism, and the protein stability. Here, we describe the role of T50 and Y42 by use of site-specific mutants. T50 and Y42 are involved in fine-tuning the chromophore's absorption maximum. The high-resolution X-ray structures show that the hydrogen-bonding interactions between the protein and the chromophore are weakened in the mutants, leading to increased electron density on the chromophore's aromatic ring and consequently to a red shift of its absorption maximum from 446 nm to 457 and 458 nm in the mutants T50V and Y42F, respectively. Both mutants have slightly perturbed photocycle kinetics and, similar to the R52A mutant, are bleached more rapidly and recover more slowly than the wild type. The effect of pH on the kinetics is similar to wild-type PYP, suggesting that T50 and Y42 are not directly involved in any protonation or deprotonation events that control the speed of the light cycle. The unfolding energies, 26.8 and 25.1 kJ/mol for T50V and Y42F, respectively, are decreased when compared to that of the wild type (29.7 kJ/mol). In the mutant Y42F, the reduced protein stability gives rise to a second PYP population with an altered chromophore conformation as shown by UV/visible and FT Raman spectroscopy. The second chromophore conformation gives rise to a shoulder at 391 nm in the UV/visible absorption spectrum and indicates that the hydrogen bond between Y42 and the chromophore is crucial for the stabilization of the native chromophore and protein conformation. The two conformations in the Y42F mutant can be interconverted by chaotropic and kosmotropic agents, respectively, according to the Hofmeister series. The FT Raman spectra and the acid titration curves suggest that the 391 nm form of the chromophore is not fully protonated. The fluorescence quantum yield of the mutant Y42F is 1.8% and is increased by an order of magnitude when compared to the wild type.
Collapse
Affiliation(s)
- R Brudler
- Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Duggan PS, Parker SD, Phillips-Jones MK. Characterisation of a Rrhodobacter sphaeroides gene that encodes a product resembling Eescherichia coli cytochrome b(561) and R. sphaeroides cytochrome b(562). FEMS Microbiol Lett 2000; 189:239-46. [PMID: 10930745 DOI: 10.1111/j.1574-6968.2000.tb09237.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Analysis of the photoactive yellow protein (pyp) gene region of Rhodobacter sphaeroides has revealed the presence of an additional open reading frame, orfD, that had not previously been identified. Here we report the location of this new gene and the predicted amino acid sequence of the encoded protein. The translation product resembles a group of small cytochrome b-like proteins, including Escherichia coli cytochrome b(561), R. sphaeroides cytochrome b(562), and two new cytochrome b(561)-like proteins identified using the E. coli genome sequence, for which functions have not yet been established. To determine OrfD function in R. sphaeroides, an orfD mutant was constructed. The OrfD mutant exhibited growth rates and yields very similar to those of the wild-type strain when grown under a variety of growth conditions. Respiration rates, reduced-minus-oxidised spectra and levels of photosynthetic complexes were also very similar in the two strains. Although the role of OrfD was therefore not determined here, we demonstrate that the orfD gene is expressed in R. sphaeroides under aerobic, semi-aerobic and photosynthetic growth conditions.
Collapse
Affiliation(s)
- P S Duggan
- Division of Microbiology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
31
|
Kort R, Crielaard W, Spudich JL, Hellingwerf KJ. Color-sensitive motility and methanol release responses in Rhodobacter sphaeroides. J Bacteriol 2000; 182:3017-21. [PMID: 10809677 PMCID: PMC94484 DOI: 10.1128/jb.182.11.3017-3021.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Blue-light-induced repellent and demethylation responses, characteristic of behavioral adaptation, were observed in Rhodobacter sphaeroides. They were analyzed by computer-assisted motion analysis and through the release of volatile tritiated compounds from [methyl-(3)H]methionine-labeled cells, respectively. Increases in the stop frequency and the rate of methanol release were induced by exposure of cells to repellent light signals, such as an increase in blue- and a decrease in infrared-light intensity. At a lambda of >500 nm the amplitude of the methanol release response followed the absorbance spectrum of the photosynthetic pigments, suggesting that they function as photosensors for this response. In contrast to the previously reported motility response to a decrease in infrared light, the blue-light response reported here does not depend on the number of photosynthetic pigments per cell, suggesting that it is mediated by a separate sensor. Therefore, color discrimination in taxis responses in R. sphaeroides involves two photosensing systems: the photosynthetic pigments and an additional photosensor, responding to blue light. The signal generated by the former system could result in the migration of cells to a light climate beneficial for photosynthesis, while the blue-light system could allow cells to avoid too-high intensities of (harmful) blue light.
Collapse
Affiliation(s)
- R Kort
- Laboratory for Microbiology, E. C. Slater Institute, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
32
|
Hellingwerf KJ. Key issues in the photochemistry and signalling-state formation of photosensor proteins. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2000; 54:94-102. [PMID: 10836537 DOI: 10.1016/s1011-1344(00)00004-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Four families of photosensors (i.e., rhodopsins, phytochromes, xanthopsins and cryptochromes) exist, which vary widely in the degree to which we understand the molecular basis of their activity. Some of their members are ideal model systems for studying the structure-function relation of proteins, and the role of dynamics therein. The photochemistry of photosensor activation is based upon the cis <--> trans isomerization of the chromophore. This configurational transition leads to the formation of a signalling state of sufficient stability to communicate the presence of photons to a downstream signal-transduction partner. In the xanthopsins it has been demonstrated that the exact nature of this signalling state is strongly dependent on the mesoscopic context of the sensor protein. The cryptochromes appear to challenge the photoisomerization rule.
Collapse
Affiliation(s)
- K J Hellingwerf
- Laboratory for Microbiology, E.C. Slater Institute, BioCentrum Amsterdam, University of Amsterdam, The Netherlands.
| |
Collapse
|
33
|
Abstract
PAS domains are newly recognized signaling domains that are widely distributed in proteins from members of the Archaea and Bacteria and from fungi, plants, insects, and vertebrates. They function as input modules in proteins that sense oxygen, redox potential, light, and some other stimuli. Specificity in sensing arises, in part, from different cofactors that may be associated with the PAS fold. Transduction of redox signals may be a common mechanistic theme in many different PAS domains. PAS proteins are always located intracellularly but may monitor the external as well as the internal environment. One way in which prokaryotic PAS proteins sense the environment is by detecting changes in the electron transport system. This serves as an early warning system for any reduction in cellular energy levels. Human PAS proteins include hypoxia-inducible factors and voltage-sensitive ion channels; other PAS proteins are integral components of circadian clocks. Although PAS domains were only recently identified, the signaling functions with which they are associated have long been recognized as fundamental properties of living cells.
Collapse
Affiliation(s)
- B L Taylor
- Department of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California 92350, USA.
| | | |
Collapse
|