1
|
Xu H, Yu B, Wei W, Chen X, Gao C, Liu J, Guo L, Song W, Liu L, Wu J. Improving tyrosol production efficiency through shortening the allosteric signal transmission distance of pyruvate decarboxylase. Appl Microbiol Biotechnol 2023; 107:3535-3549. [PMID: 37099057 DOI: 10.1007/s00253-023-12540-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/22/2023] [Accepted: 04/14/2023] [Indexed: 04/27/2023]
Abstract
Tyrosol is an important chemical in medicine and chemical industries, which can be synthesized by a four-enzyme cascade pathway constructed in our previous study. However, the low catalytic efficiency of pyruvate decarboxylase from Candida tropicalis (CtPDC) in this cascade is a rate-limiting step. In this study, we resolved the crystal structure of CtPDC and investigated the mechanism of allosteric substrate activation and decarboxylation of this enzyme toward 4-hydroxyphenylpyruvate (4-HPP). In addition, based on the molecular mechanism and structural dynamic changes, we conducted protein engineering of CtPDC to improve decarboxylation efficiency. The conversion of the best mutant, CtPDCQ112G/Q162H/G415S/I417V (CtPDCMu5), had over two-fold improvement compared to the wild-type. Molecular dynamic (MD) simulation revealed that the key catalytic distances and allosteric transmission pathways were shorter in CtPDCMu5 than in the wild type. Furthermore, when CtPDC in the tyrosol production cascade was replaced with CtPDCMu5, the tyrosol yield reached 38 g·L-1 with 99.6% conversion and 1.58 g·L-1·h-1 space-time yield in 24 h through further optimization of the conditions. Our study demonstrates that protein engineering of the rate-limiting enzyme in the tyrosol synthesis cascade provides an industrial-scale platform for the biocatalytic production of tyrosol. KEY POINTS: • Protein engineering of CtPDC based on allosteric regulation improved the catalytic efficiency of decarboxylation. • The application of the optimum mutant of CtPDC removed the rate-limiting bottleneck in the cascade. • The final titer of tyrosol reached 38 g·L-1 in 24 h in 3 L bioreactor.
Collapse
Affiliation(s)
- Huanhuan Xu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Bicheng Yu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Wanqing Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
2
|
Shu L, Gu J, Wang Q, Sun S, Cui Y, Fell J, Mak WS, Siegel JB, Shi J, Lye GJ, Baganz F, Hao J. The pyruvate decarboxylase activity of IpdC is a limitation for isobutanol production by Klebsiella pneumoniae. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:41. [PMID: 35501883 PMCID: PMC9063327 DOI: 10.1186/s13068-022-02144-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/17/2022] [Indexed: 11/15/2022]
Abstract
Background Klebsiella pneumoniae contains an endogenous isobutanol synthesis pathway. The ipdC gene annotated as an indole-3-pyruvate decarboxylase (Kp-IpdC), was identified to catalyze the formation of isobutyraldehyde from 2-ketoisovalerate. Results Compared with 2-ketoisovalerate decarboxylase from Lactococcus lactis (KivD), a decarboxylase commonly used in artificial isobutanol synthesis pathways, Kp-IpdC has an 2.8-fold lower Km for 2-ketoisovalerate, leading to higher isobutanol production without induction. However, expression of ipdC by IPTG induction resulted in a low isobutanol titer. In vitro enzymatic reactions showed that Kp-IpdC exhibits promiscuous pyruvate decarboxylase activity, which adversely consume the available pyruvate precursor for isobutanol synthesis. To address this, we have engineered Kp-IpdC to reduce pyruvate decarboxylase activity. From computational modeling, we identified 10 amino acid residues surrounding the active site for mutagenesis. Ten designs consisting of eight single-point mutants and two double-point mutants were selected for exploration. Mutants L546W and T290L that showed only 5.1% and 22.1% of catalytic efficiency on pyruvate compared to Kp-IpdC, were then expressed in K. pneumoniae for in vivo testing. Isobutanol production by K. pneumoniae T290L was 25% higher than that of the control strain, and a final titer of 5.5 g/L isobutanol was obtained with a substrate conversion ratio of 0.16 mol/mol glucose. Conclusions This research provides a new way to improve the efficiency of the biological route of isobutanol production. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02144-8. Kp-IpdC is more efficient than KivD for 2-ketoisovalerate decarboxylation. Pyruvate decarboxylase activity is a limitation of Kp-IpdC. T290L variant exhibits a decreased pyruvate decarboxylase activity. Isobutanol production by K. pneumoniae T290L was improved.
Collapse
|
3
|
van Dijk M, Rugbjerg P, Nygård Y, Olsson L. RNA sequencing reveals metabolic and regulatory changes leading to more robust fermentation performance during short-term adaptation of Saccharomyces cerevisiae to lignocellulosic inhibitors. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:201. [PMID: 34654441 PMCID: PMC8518171 DOI: 10.1186/s13068-021-02049-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The limited tolerance of Saccharomyces cerevisiae to inhibitors is a major challenge in second-generation bioethanol production, and our understanding of the molecular mechanisms providing tolerance to inhibitor-rich lignocellulosic hydrolysates is incomplete. Short-term adaptation of the yeast in the presence of dilute hydrolysate can improve its robustness and productivity during subsequent fermentation. RESULTS We utilized RNA sequencing to investigate differential gene expression in the industrial yeast strain CR01 during short-term adaptation, mimicking industrial conditions for cell propagation. In this first transcriptomic study of short-term adaption of S. cerevisiae to lignocellulosic hydrolysate, we found that cultures respond by fine-tuned up- and down-regulation of a subset of general stress response genes. Furthermore, time-resolved RNA sequencing allowed for identification of genes that were differentially expressed at 2 or more sampling points, revealing the importance of oxidative stress response, thiamin and biotin biosynthesis. furan-aldehyde reductases and specific drug:H+ antiporters, as well as the down-regulation of certain transporter genes. CONCLUSIONS These findings provide a better understanding of the molecular mechanisms governing short-term adaptation of S. cerevisiae to lignocellulosic hydrolysate, and suggest new genetic targets for improving fermentation robustness.
Collapse
Affiliation(s)
- Marlous van Dijk
- Department of Biology and Bioengineering, Division of Industrial Biotechnology, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Peter Rugbjerg
- Department of Biology and Bioengineering, Division of Industrial Biotechnology, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Yvonne Nygård
- Department of Biology and Bioengineering, Division of Industrial Biotechnology, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Lisbeth Olsson
- Department of Biology and Bioengineering, Division of Industrial Biotechnology, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.
| |
Collapse
|
4
|
Comparison of the Glycolytic and Alcoholic Fermentation Pathways of Hanseniaspora vineae with Saccharomyces cerevisiae Wine Yeasts. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6030078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hanseniaspora species can be isolated from grapes and grape musts, but after the initiation of spontaneous fermentation, they are displaced by Saccharomyces cerevisiae. Hanseniaspora vineae is particularly valuable since this species improves the flavour of wines and has an increased capacity to ferment relative to other apiculate yeasts. Genomic, transcriptomic, and metabolomic studies in H. vineae have enhanced our understanding of its potential utility within the wine industry. Here, we compared gene sequences of 12 glycolytic and fermentation pathway enzymes from five sequenced Hanseniaspora species and S. cerevisiae with the corresponding enzymes encoded within the two sequenced H. vineae genomes. Increased levels of protein similarity were observed for enzymes of H. vineae and S. cerevisiae, relative to the remaining Hanseniaspora species. Key differences between H. vineae and H. uvarum pyruvate kinase enzymes might explain observed differences in fermentative capacity. Further, the presence of eight putative alcohol dehydrogenases, invertase activity, and sulfite tolerance are distinctive characteristics of H. vineae, compared to other Hanseniaspora species. The definition of two clear technological groups within the Hanseniaspora genus is discussed within the slow and fast evolution concept framework previously discovered in these apiculate yeasts.
Collapse
|
5
|
Qiu M, Shen W, Yan X, He Q, Cai D, Chen S, Wei H, Knoshaug EP, Zhang M, Himmel ME, Yang S. Metabolic engineering of Zymomonas mobilis for anaerobic isobutanol production. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:15. [PMID: 31998408 PMCID: PMC6982386 DOI: 10.1186/s13068-020-1654-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/11/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Biofuels and value-added biochemicals derived from renewable biomass via biochemical conversion have attracted considerable attention to meet global sustainable energy and environmental goals. Isobutanol is a four-carbon alcohol with many advantages that make it attractive as a fossil-fuel alternative. Zymomonas mobilis is a highly efficient, anaerobic, ethanologenic bacterium making it a promising industrial platform for use in a biorefinery. RESULTS In this study, the effect of isobutanol on Z. mobilis was investigated, and various isobutanol-producing recombinant strains were constructed. The results showed that the Z. mobilis parental strain was able to grow in the presence of isobutanol below 12 g/L while concentrations greater than 16 g/L inhibited cell growth. Integration of the heterologous gene encoding 2-ketoisovalerate decarboxylase such as kdcA from Lactococcus lactis is required for isobutanol production in Z. mobilis. Moreover, isobutanol production increased from nearly zero to 100-150 mg/L in recombinant strains containing the kdcA gene driven by the tetracycline-inducible promoter Ptet. In addition, we determined that overexpression of a heterologous als gene and two native genes (ilvC and ilvD) involved in valine metabolism in a recombinant Z. mobilis strain expressing kdcA can divert pyruvate from ethanol production to isobutanol biosynthesis. This engineering improved isobutanol production to above 1 g/L. Finally, recombinant strains containing both a synthetic operon, als-ilvC-ilvD, driven by Ptet and the kdcA gene driven by the constitutive strong promoter, Pgap, were determined to greatly enhance isobutanol production with a maximum titer about 4.0 g/L. Finally, isobutanol production was negatively affected by aeration with more isobutanol being produced in more poorly aerated flasks. CONCLUSIONS This study demonstrated that overexpression of kdcA in combination with a synthetic heterologous operon, als-ilvC-ilvD, is crucial for diverting pyruvate from ethanol production for enhanced isobutanol biosynthesis. Moreover, this study also provides a strategy for harnessing the valine metabolic pathway for future production of other pyruvate-derived biochemicals in Z. mobilis.
Collapse
Affiliation(s)
- Mengyue Qiu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Wei Shen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Xiongyin Yan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Qiaoning He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Hui Wei
- Biosciences Centers, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Eric P. Knoshaug
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Min Zhang
- Biosciences Centers, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Michael E. Himmel
- Biosciences Centers, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| |
Collapse
|
6
|
Wagner T, Boyko A, Alzari PM, Bunik VI, Bellinzoni M. Conformational transitions in the active site of mycobacterial 2-oxoglutarate dehydrogenase upon binding phosphonate analogues of 2-oxoglutarate: From a Michaelis-like complex to ThDP adducts. J Struct Biol 2019; 208:182-190. [PMID: 31476368 DOI: 10.1016/j.jsb.2019.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/22/2019] [Accepted: 08/29/2019] [Indexed: 11/17/2022]
Abstract
Mycobacterial KGD, the thiamine diphosphate (ThDP)-dependent E1o component of the 2-oxoglutarate dehydrogenase complex (OGDHC), is known to undergo significant conformational changes during catalysis with two distinct conformational states, previously named as the early and late state. In this work, we employ two phosphonate analogues of 2-oxoglutarate (OG), i.e. succinyl phosphonate (SP) and phosphono ethyl succinyl phosphonate (PESP), as tools to isolate the first catalytic steps and understand the significance of conformational transitions for the enzyme regulation. The kinetics showed a more efficient inhibition of mycobacterial E1o by SP (Ki 0.043 ± 0.013 mM) than PESP (Ki 0.88 ± 0.28 mM), consistent with the different circular dichroism spectra of the corresponding complexes. PESP allowed us to get crystallographic snapshots of the Michaelis-like complex, the first one for 2-oxo acid dehydrogenases, followed by the covalent adduction of the inhibitor to ThDP, mimicking the pre-decarboxylation complex. In addition, covalent ThDP-phosphonate complexes obtained with both compounds by co-crystallization were in the late conformational state, probably corresponding to slowly dissociating enzyme-inhibitor complexes. We discuss the relevance of these findings in terms of regulatory features of the mycobacterial E1o enzymes, and in the perspective of developing tools for species-specific metabolic regulation.
Collapse
Affiliation(s)
- Tristan Wagner
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS, Université de Paris, F-75724 Paris, France
| | - Alexandra Boyko
- A.N. Belozersky Institute of Physicochemical Biology and Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russia
| | - Pedro M Alzari
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS, Université de Paris, F-75724 Paris, France
| | - Victoria I Bunik
- A.N. Belozersky Institute of Physicochemical Biology and Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russia
| | - Marco Bellinzoni
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS, Université de Paris, F-75724 Paris, France.
| |
Collapse
|
7
|
Wang M, Zhang L, Boo KH, Park E, Drakakaki G, Zakharov F. PDC1, a pyruvate/α-ketoacid decarboxylase, is involved in acetaldehyde, propanal and pentanal biosynthesis in melon (Cucumis melo L.) fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:112-125. [PMID: 30556202 DOI: 10.1111/tpj.14204] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/19/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Plant pyruvate decarboxylases (PDC) catalyze the decarboxylation of pyruvate to form acetaldehyde and CO2 and are well known to play a key role in energy supply via fermentative metabolism in oxygen-limiting conditions. In addition to their role in fermentation, plant PDCs have also been hypothesized to be involved in aroma formation although, to date, there is no direct biochemical evidence for this function. We investigated the role of PDCs in fruit volatile biosynthesis, and identified a melon pyruvate decarboxylase, PDC1, that is highly expressed in ripe fruits. In vitro biochemical characterization of the recombinant PDC1 enzyme showed that it could not only decarboxylate pyruvate, but that it also had significant activity toward other straight- and branched-chain α-ketoacids, greatly expanding the range of substrates previously known to be accepted by the plant enzyme. RNAi-mediated transient and stable silencing of PDC1 expression in melon showed that this gene is involved in acetaldehyde, propanal and pentanal production, while it does not contribute to branched-chain amino acid (BCAA)-derived aldehyde biosynthesis in melon fruit. Importantly, our results not only demonstrate additional functions for the PDC enzyme, but also challenge the long standing hypothesis that PDC is involved in BCAA-derived aldehyde formation in fruit.
Collapse
Affiliation(s)
- Minmin Wang
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Lei Zhang
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Kyung Hwan Boo
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Eunsook Park
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Georgia Drakakaki
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Florence Zakharov
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| |
Collapse
|
8
|
Molecular and functional characterization of two pyruvate decarboxylase genes, PDC1 and PDC5, in the thermotolerant yeast Kluyveromyces marxianus. Appl Microbiol Biotechnol 2018; 102:3723-3737. [DOI: 10.1007/s00253-018-8862-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/01/2018] [Accepted: 02/08/2018] [Indexed: 10/17/2022]
|
9
|
Cui Z, Gao C, Li J, Hou J, Lin CSK, Qi Q. Engineering of unconventional yeast Yarrowia lipolytica for efficient succinic acid production from glycerol at low pH. Metab Eng 2017. [PMID: 28627452 DOI: 10.1016/j.ymben.2017.06.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Yarrowia lipolytica is considered as a potential candidate for succinic acid production because of its innate ability to accumulate citric acid cycle intermediates and its tolerance to acidic pH. Previously, a succinate-production strain was obtained through the deletion of succinate dehydrogenase subunit encoding gene Ylsdh5. However, the accumulation of by-product acetate limited further improvement of succinate production. Meanwhile, additional pH adjustment procedure increased the downstream cost in industrial application. In this study, we identified for the first time that acetic acid overflow is caused by CoA-transfer reaction from acetyl-CoA to succinate in mitochondria rather than pyruvate decarboxylation reaction in SDH negative Y. lipolytica. The deletion of CoA-transferase gene Ylach eliminated acetic acid formation and improved succinic acid production and the cell growth. We then analyzed the effect of overexpressing the key enzymes of oxidative TCA, reductive carboxylation and glyoxylate bypass on succinic acid yield and by-products formation. The best strain with phosphoenolpyruvate carboxykinase (ScPCK) from Saccharomyces cerevisiae and endogenous succinyl-CoA synthase beta subunit (YlSCS2) overexpression improved succinic acid titer by 4.3-fold. In fed-batch fermentation, this strain produced 110.7g/L succinic acid with a yield of 0.53g/g glycerol without pH control. This is the highest succinic acid titer achieved at low pH by yeast reported worldwide, to date, using defined media. This study not only revealed the mechanism of acetic acid overflow in SDH negative Y. lipolytica, but it also reported the development of an efficient succinic acid production strain with great industrial prospects.
Collapse
Affiliation(s)
- Zhiyong Cui
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Cuijuan Gao
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China; School of Life Science, Linyi University, Linyi 276000, China
| | - Jiaojiao Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China.
| |
Collapse
|
10
|
|
11
|
Cofactor Specificity of the Bifunctional Alcohol and Aldehyde Dehydrogenase (AdhE) in Wild-Type and Mutant Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. J Bacteriol 2015; 197:2610-9. [PMID: 26013492 DOI: 10.1128/jb.00232-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/21/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Clostridium thermocellum and Thermoanaerobacterium saccharolyticum are thermophilic bacteria that have been engineered to produce ethanol from the cellulose and hemicellulose fractions of biomass, respectively. Although engineered strains of T. saccharolyticum produce ethanol with a yield of 90% of the theoretical maximum, engineered strains of C. thermocellum produce ethanol at lower yields (∼50% of the theoretical maximum). In the course of engineering these strains, a number of mutations have been discovered in their adhE genes, which encode both alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes. To understand the effects of these mutations, the adhE genes from six strains of C. thermocellum and T. saccharolyticum were cloned and expressed in Escherichia coli, the enzymes produced were purified by affinity chromatography, and enzyme activity was measured. In wild-type strains of both organisms, NADH was the preferred cofactor for both ALDH and ADH activities. In high-ethanol-producing (ethanologen) strains of T. saccharolyticum, both ALDH and ADH activities showed increased NADPH-linked activity. Interestingly, the AdhE protein of the ethanologenic strain of C. thermocellum has acquired high NADPH-linked ADH activity while maintaining NADH-linked ALDH and ADH activities at wild-type levels. When single amino acid mutations in AdhE that caused increased NADPH-linked ADH activity were introduced into C. thermocellum and T. saccharolyticum, ethanol production increased in both organisms. Structural analysis of the wild-type and mutant AdhE proteins was performed to provide explanations for the cofactor specificity change on a molecular level. IMPORTANCE This work describes the characterization of the AdhE enzyme from different strains of C. thermocellum and T. saccharolyticum. C. thermocellum and T. saccharolyticum are thermophilic anaerobes that have been engineered to make high yields of ethanol and can solubilize components of plant biomass and ferment the sugars to ethanol. In the course of engineering these strains, several mutations arose in the bifunctional ADH/ALDH protein AdhE, changing both enzyme activity and cofactor specificity. We show that changing AdhE cofactor specificity from mostly NADH linked to mostly NADPH linked resulted in higher ethanol production by C. thermocellum and T. saccharolyticum.
Collapse
|
12
|
Moreno-García J, García-Martínez T, Millán MC, Mauricio JC, Moreno J. Proteins involved in wine aroma compounds metabolism by a Saccharomyces cerevisiae flor-velum yeast strain grown in two conditions. Food Microbiol 2015; 51:1-9. [PMID: 26187821 DOI: 10.1016/j.fm.2015.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 03/19/2015] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
Abstract
A proteomic and exometabolomic study was conducted on Saccharomyces cerevisiae flor yeast strain growing under biofilm formation condition (BFC) with ethanol and glycerol as carbon sources and results were compared with those obtained under no biofilm formation condition (NBFC) containing glucose as carbon source. By using modern techniques, OFFGEL fractionator and LTQ-Orbitrap for proteome and SBSE-TD-GC-MS for metabolite analysis, we quantified 84 proteins including 33 directly involved in the metabolism of glycerol, ethanol and 17 aroma compounds. Contents in acetaldehyde, acetic acid, decanoic acid, 1,1-diethoxyethane, benzaldehyde and 2-phenethyl acetate, changed above their odor thresholds under BFC, and those of decanoic acid, ethyl octanoate, ethyl decanoate and isoamyl acetate under NBFC. Of the twenty proteins involved in the metabolism of ethanol, acetaldehyde, acetoin, 2,3-butanediol, 1,1-diethoxyethane, benzaldehyde, organic acids and ethyl esters, only Adh2p, Ald4p, Cys4p, Fas3p, Met2p and Plb1p were detected under BFC and as many Acs2p, Ald3p, Cem1p, Ilv2p, Ilv6p and Pox1p, only under NBFC. Of the eight proteins involved in glycerol metabolism, Gut2p was detected only under BFC while Pgs1p and Rhr2p were under NBFC. Finally, of the five proteins involved in the metabolism of higher alcohols, Thi3p was present under BFC, and Aro8p and Bat2p were under NBFC.
Collapse
Affiliation(s)
- Jaime Moreno-García
- Department of Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Córdoba, Spain
| | - Teresa García-Martínez
- Department of Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Córdoba, Spain
| | - M Carmen Millán
- Department of Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Córdoba, Spain
| | - Juan Carlos Mauricio
- Department of Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Córdoba, Spain
| | - Juan Moreno
- Department of Agricultural Chemistry, Marie Curie (C3) building, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Ctra. N-IV-A, km 396, 14014 Cordoba, Spain.
| |
Collapse
|
13
|
de Souza RB, de Menezes JAS, de Souza RDFR, Dutra ED, de Morais MA. Mineral composition of the sugarcane juice and its influence on the ethanol fermentation. Appl Biochem Biotechnol 2014; 175:209-22. [PMID: 25248994 DOI: 10.1007/s12010-014-1258-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
Abstract
In the present work, we evaluated the mineral composition of three sugarcane varieties from different areas in northeast Brazil and their influence on the fermentation performance of Saccharomyces cerevisiae. The mineral composition was homogeneous in the different areas investigated. However, large variation coefficients were observed for concentrations of copper, magnesium, zinc and phosphorus. Regarding the fermentation performances, the sugarcane juices with the highest magnesium concentration showed the highest ethanol yield. Synthetic media supplemented with magnesium also showed the highest yield (0.45 g g(-1)) while the excess of copper led to the lowest yield (0.35 g g(-1)). According to our results, the magnesium is the principal responsible for the increase on the ethanol yield, and it also seems to be able to disguise the inhibitory effects of the toxic minerals present in the sugarcane juice.
Collapse
Affiliation(s)
- Rafael Barros de Souza
- Interdepartmental Research Group in Metabolic Engineering, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, 50670-901, Recife, PE, Brazil
| | | | | | | | | |
Collapse
|
14
|
The bifunctional pyruvate decarboxylase/pyruvate ferredoxin oxidoreductase from Thermococcus guaymasensis. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014; 2014:349379. [PMID: 24982594 PMCID: PMC4058850 DOI: 10.1155/2014/349379] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/29/2014] [Indexed: 11/18/2022]
Abstract
The hyperthermophilic archaeon Thermococcus guaymasensis produces ethanol as a metabolic end product, and an alcohol dehydrogenase (ADH) catalyzing the reduction of acetaldehyde to ethanol has been purified and characterized. However, the enzyme catalyzing the formation of acetaldehyde has not been identified. In this study an enzyme catalyzing the production of acetaldehyde from pyruvate was purified and characterized from T. guaymasensis under strictly anaerobic conditions. The enzyme had both pyruvate decarboxylase (PDC) and pyruvate ferredoxin oxidoreductase (POR) activities. It was oxygen sensitive, and the optimal temperatures were 85°C and >95°C for the PDC and POR activities, respectively. The purified enzyme had activities of 3.8 ± 0.22 U mg(-1) and 20.2 ± 1.8 U mg(-1), with optimal pH-values of 9.5 and 8.4 for each activity, respectively. Coenzyme A was essential for both activities, although it did not serve as a substrate for the former. Enzyme kinetic parameters were determined separately for each activity. The purified enzyme was a heterotetramer. The sequences of the genes encoding the subunits of the bifunctional PDC/POR were determined. It is predicted that all hyperthermophilic β -keto acids ferredoxin oxidoreductases are bifunctional, catalyzing the activities of nonoxidative and oxidative decarboxylation of the corresponding β -keto acids.
Collapse
|
15
|
Su H, Zhao Y, Zhao H, Wang M, Li Q, Jiang J, Lu Q. Identification and assessment of the effects of yeast decarboxylases expressed in Escherichia coli
for producing higher alcohols. J Appl Microbiol 2014; 117:126-38. [DOI: 10.1111/jam.12510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/05/2014] [Accepted: 03/21/2014] [Indexed: 01/15/2023]
Affiliation(s)
- H. Su
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education; College of Life Sciences; Sichuan University; Chengdu China
| | - Y. Zhao
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education; College of Life Sciences; Sichuan University; Chengdu China
| | - H. Zhao
- Bioenergy Laboratory; Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
| | - M. Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education; College of Life Sciences; Sichuan University; Chengdu China
| | - Q. Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education; College of Life Sciences; Sichuan University; Chengdu China
| | - J. Jiang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education; College of Life Sciences; Sichuan University; Chengdu China
| | - Q. Lu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education; College of Life Sciences; Sichuan University; Chengdu China
| |
Collapse
|
16
|
Zhang H, Cao M, Jiang X, Zou H, Wang C, Xu X, Xian M. De-novo synthesis of 2-phenylethanol by Enterobacter sp. CGMCC 5087. BMC Biotechnol 2014; 14:30. [PMID: 24766677 PMCID: PMC4005845 DOI: 10.1186/1472-6750-14-30] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 11/11/2013] [Indexed: 11/30/2022] Open
Abstract
Background 2-phenylethanl (2-PE) and its derivatives are important chemicals, which are widely used in food materials and fine chemical industries and polymers and it’s also a potentially valuable alcohol for next-generation biofuel. However, the biosynthesis of 2-PE are mainly biotransformed from phenylalanine, the price of which barred the production. Therefore, it is necessary to seek more sustainable technologies for 2-PE production. Results A new strain which produces 2-PE through the phenylpyruvate pathway was isolated and identified as Enterobacter sp. CGMCC 5087. The strain is able to use renewable monosaccharide as the carbon source and NH4Cl as the nitrogen source to produce 2-PE. Two genes of rate-limiting enzymes, chorismate mutase p-prephenate dehydratase (PheA) and 3-deoxy-d-arabino-heptulosonic acid 7-phosphate synthase (DAHP), were cloned from Escherichia coli and overexpressed in E. sp. CGMCC 5087. The engineered E. sp. CGMCC 5087 produces 334.9 mg L-1 2-PE in 12 h, which is 3.26 times as high as the wild strain. Conclusions The phenylpyruvate pathway and the substrate specificity of 2-keto-acid decarboxylase towards phenylpyruvate were found in E. sp. CGMCC 5087. Combined with the low-cost monosaccharide as the substrate, the finding provides a novel and potential way for 2-PE production.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No,189 Songling Road, Laoshan District, Qingdao, PR 266101, China.
| |
Collapse
|
17
|
Van Zyl LJ, Taylor MP, Eley K, Tuffin M, Cowan DA. Engineering pyruvate decarboxylase-mediated ethanol production in the thermophilic host Geobacillus thermoglucosidasius. Appl Microbiol Biotechnol 2013; 98:1247-59. [DOI: 10.1007/s00253-013-5380-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/30/2013] [Accepted: 11/02/2013] [Indexed: 11/25/2022]
|
18
|
Agarwal PK, Uppada V, Noronha SB. Comparison of pyruvate decarboxylases from Saccharomyces cerevisiae and Komagataella pastoris (Pichia pastoris). Appl Microbiol Biotechnol 2013; 97:9439-49. [DOI: 10.1007/s00253-013-4758-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/03/2013] [Accepted: 02/05/2013] [Indexed: 11/30/2022]
|
19
|
Deletion of pyruvate decarboxylase by a new method for efficient markerless gene deletions in Gluconobacter oxydans. Appl Microbiol Biotechnol 2012; 97:2521-30. [DOI: 10.1007/s00253-012-4354-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/03/2012] [Accepted: 08/05/2012] [Indexed: 11/26/2022]
|
20
|
Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AGM, Martin WF. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 2012; 76:444-95. [PMID: 22688819 PMCID: PMC3372258 DOI: 10.1128/mmbr.05024-11] [Citation(s) in RCA: 526] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Major insights into the phylogenetic distribution, biochemistry, and evolutionary significance of organelles involved in ATP synthesis (energy metabolism) in eukaryotes that thrive in anaerobic environments for all or part of their life cycles have accrued in recent years. All known eukaryotic groups possess an organelle of mitochondrial origin, mapping the origin of mitochondria to the eukaryotic common ancestor, and genome sequence data are rapidly accumulating for eukaryotes that possess anaerobic mitochondria, hydrogenosomes, or mitosomes. Here we review the available biochemical data on the enzymes and pathways that eukaryotes use in anaerobic energy metabolism and summarize the metabolic end products that they generate in their anaerobic habitats, focusing on the biochemical roles that their mitochondria play in anaerobic ATP synthesis. We present metabolic maps of compartmentalized energy metabolism for 16 well-studied species. There are currently no enzymes of core anaerobic energy metabolism that are specific to any of the six eukaryotic supergroup lineages; genes present in one supergroup are also found in at least one other supergroup. The gene distribution across lineages thus reflects the presence of anaerobic energy metabolism in the eukaryote common ancestor and differential loss during the specialization of some lineages to oxic niches, just as oxphos capabilities have been differentially lost in specialization to anoxic niches and the parasitic life-style. Some facultative anaerobes have retained both aerobic and anaerobic pathways. Diversified eukaryotic lineages have retained the same enzymes of anaerobic ATP synthesis, in line with geochemical data indicating low environmental oxygen levels while eukaryotes arose and diversified.
Collapse
Affiliation(s)
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Jaap J. van Hellemond
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Katrin Henze
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Christian Woehle
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Sven B. Gould
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Re-Young Yu
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Mark van der Giezen
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Aloysius G. M. Tielens
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - William F. Martin
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
21
|
Grassi L, Tramontano A. Horizontal and vertical growth of S. cerevisiae metabolic network. BMC Evol Biol 2011; 11:301. [PMID: 21999464 PMCID: PMC3216907 DOI: 10.1186/1471-2148-11-301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 10/14/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The growth and development of a biological organism is reflected by its metabolic network, the evolution of which relies on the essential gene duplication mechanism. There are two current views about the evolution of metabolic networks. The retrograde model hypothesizes that a pathway evolves by recruiting novel enzymes in a direction opposite to the metabolic flow. The patchwork model is instead based on the assumption that the evolution is based on the exploitation of broad-specificity enzymes capable of catalysing a variety of metabolic reactions. RESULTS We analysed a well-studied unicellular eukaryotic organism, S. cerevisiae, and studied the effect of the removal of paralogous gene products on its metabolic network. Our results, obtained using different paralog and network definitions, show that, after an initial period when gene duplication was indeed instrumental in expanding the metabolic space, the latter reached an equilibrium and subsequent gene duplications were used as a source of more specialized enzymes rather than as a source of novel reactions. We also show that the switch between the two evolutionary strategies in S. cerevisiae can be dated to about 350 million years ago. CONCLUSIONS Our data, obtained through a novel analysis methodology, strongly supports the hypothesis that the patchwork model better explains the more recent evolution of the S. cerevisiae metabolic network. Interestingly, the effects of a patchwork strategy acting before the Euascomycete-Hemiascomycete divergence are still detectable today.
Collapse
Affiliation(s)
- Luigi Grassi
- Physics Department, Sapienza University of Rome, Roma, Italy
| | | |
Collapse
|
22
|
Rother neé Gocke D, Kolter G, Gerhards T, Berthold CL, Gauchenova E, Knoll M, Pleiss J, Müller M, Schneider G, Pohl M. S-Selective Mixed Carboligation by Structure-Based Design of the Pyruvate Decarboxylase from Acetobacter pasteurianus. ChemCatChem 2011. [DOI: 10.1002/cctc.201100054] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Ben Thabet I, Francis F, de Pauw E, Besbes S, Attia H, Deroanne C, Blecker C. Characterisation of proteins from date palm sap (Phoenix dactylifera L.) by a proteomic approach. Food Chem 2010. [DOI: 10.1016/j.foodchem.2010.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Gocke D, Graf T, Brosi H, Frindi-Wosch I, Walter L, Müller M, Pohl M. Comparative characterisation of thiamin diphosphate-dependent decarboxylases. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2009.03.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Connor MR, Liao JC. Microbial production of advanced transportation fuels in non-natural hosts. Curr Opin Biotechnol 2009; 20:307-15. [DOI: 10.1016/j.copbio.2009.04.002] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 04/08/2009] [Accepted: 04/09/2009] [Indexed: 11/16/2022]
|
26
|
Atsumi S, Hanai T, Liao JC. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 2008; 451:86-9. [DOI: 10.1038/nature06450] [Citation(s) in RCA: 1158] [Impact Index Per Article: 68.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Accepted: 11/02/2007] [Indexed: 11/09/2022]
|
27
|
Stamatis A, Malandrinos G, Butler IS, Hadjiliadis N, Louloudi M. Intermediates of thiamine catalysis immobilized on silica surface as active biocatalysts for α-ketoacid decarboxylation. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.molcata.2006.11.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Talarico LA, Gil MA, Yomano LP, Ingram LO, Maupin-Furlow JA. Construction and expression of an ethanol production operon in Gram-positive bacteria. MICROBIOLOGY-SGM 2006; 151:4023-4031. [PMID: 16339947 DOI: 10.1099/mic.0.28375-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pyruvate decarboxylase (PDC), an enzyme central to homoethanol fermentation, catalyses the non-oxidative decarboxylation of pyruvate to acetaldehyde with release of carbon dioxide. PDC enzymes from diverse organisms have different kinetic properties, thermal stability and codon usage that are likely to offer unique advantages for the development of desirable Gram-positive biocatalysts for use in the ethanol industry. To examine this further, pdc genes from bacteria to yeast were expressed in the Gram-positive host Bacillus megaterium. The PDC activity and protein levels were determined for each strain. In addition, the levels of pdc-specific mRNA transcripts and stability of recombinant proteins were assessed. From this analysis, the pdc gene of Gram-positive Sarcina ventriculi was found to be the most advantageous for engineering high-level synthesis of PDC in a Gram-positive host. This gene was thus selected for transcriptional coupling to the alcohol dehydrogenase gene (adh) of Geobacillus stearothermophilus. The resulting Gram-positive ethanol production operon was expressed at high levels in B. megaterium. Extracts from this recombinant were shown to catalyse the production of ethanol from pyruvate.
Collapse
Affiliation(s)
- Lee A Talarico
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA
| | - Malgorzata A Gil
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA
| | - Lorraine P Yomano
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA
| | - Lonnie O Ingram
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA
| |
Collapse
|
29
|
Malandrinos G, Louloudi M, Hadjiliadis N. Thiamine models and perspectives on the mechanism of action of thiamine-dependent enzymes. Chem Soc Rev 2006; 35:684-92. [PMID: 16862269 DOI: 10.1039/b514511m] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thiamine dependent enzymes catalyze ligase and lyase reactions near a carbonyl moiety. Chemical models for these reactions serve as useful tools to substantiate a detailed mechanism of action. This tutorial review covers all such studies performed thus far, emphasizing the role of each part around the active site and the conformation of the cofactor during catalysis.
Collapse
|
30
|
Lie MA, Celik L, Jørgensen KA, Schiøtt B. Cofactor Activation and Substrate Binding in Pyruvate Decarboxylase. Insights into the Reaction Mechanism from Molecular Dynamics Simulations. Biochemistry 2005; 44:14792-806. [PMID: 16274227 DOI: 10.1021/bi051134y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have performed long-term molecular dynamics simulations of pyruvate decarboxylase from Zymomonas mobilis. Nine structures were modeled to investigate mechanistic questions related to binding of the cofactor, thiamin diphosphate (ThDP), and the substrate in the active site. The simulations reveal that the proposed three ThDP-tautomers all can bind in the active site and indicate that the equilibrium is shifted toward 4'-aminopyrimidine ThDP in the absence of substrate. 4'-Aminopyrimidinium ThDP is found to be a likely intermediate in the equilibrium. Mutations of important active site residues, Glu473Ala and Glu50Ala, were modeled to further elucidate their catalytic role. Formation of the catalytic important ylide by deprotonation of ThDP(C2) is investigated. Only the less favored tautomer, 1',4'-iminopyrimidine ThDP (imino-ThDP), could be deprotonated. The two other tautomers of ThDP could not be activated at the C2-position, thus, explaining the mechanistic importance of the less stable imino-ThDP. Finally, binding of pyruvate in the active site with the cofactor modeled as the nucleophilic ylide (ylide-ThDP) is studied. The carbonyl group of the substrate forms a hydrogen bond to Tyr290(OH). No hydrogen bond could be identified between ThDP(N4') and the substrate. The geometry of the substrate binding is well-suited for a nucleophilic attack by ylide-ThDP(C2). We propose that a proton relay from His113 via Asp27 and Tyr290 to the carbonyl oxygen atom of the substrate may be involved in the mechanism.
Collapse
|
31
|
Tylicki A, Czerniecki J, Dobrzyn P, Matanowska A, Olechno A, Strumilo S. Modification of thiamine pyrophosphate dependent enzyme activity by oxythiamine inSaccharomyces cerevisiaecells. Can J Microbiol 2005; 51:833-9. [PMID: 16333342 DOI: 10.1139/w05-072] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxythiamine is an antivitamin derivative of thiamine that after phosphorylation to oxythiamine pyro phos phate can bind to the active centres of thiamine-dependent enzymes. In the present study, the effect of oxythiamine on the viability of Saccharomyces cerevisiae and the activity of thiamine pyrophosphate dependent enzymes in yeast cells has been investigated. We observed a decrease in pyruvate decarboxylase specific activity on both a control and an oxythiamine medium after the first 6 h of culture. The cytosolic enzymes transketolase and pyruvate decarboxylase decreased their specific activity in the presence of oxythiamine but only during the beginning of the cultivation. However, after 12 h of cultivation, oxythiamine-treated cells showed higher specific activity of cytosolic enzymes. More over, it was established by SDS–PAGE that the high specific activity of pyruvate decarboxylase was followed by an increase in the amount of the enzyme protein. In contrast, the mitochondrial enzymes, pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes, were inhibited by oxythiamine during the entire experiment. Our results suggest that the observed strong decrease in growth rate and viability of yeast on medium with oxythiamine may be due to stronger in hibition of mitochondrial pyruvate dehydrogenase than of cytosolic enzymes.Key words: pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase, transketolase, pyruvate decarboxylase, activity, oxythiamine, inhibition.
Collapse
Affiliation(s)
- Adam Tylicki
- Institute of Biology, University of Bialystok, Bialystok, Poland.
| | | | | | | | | | | |
Collapse
|
32
|
Liu S, Dien BS, Cotta MA. Functional expression of bacterial Zymobacter palmae pyruvate decarboxylase gene in Lactococcus lactis. Curr Microbiol 2005; 50:324-8. [PMID: 15968504 DOI: 10.1007/s00284-005-4485-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Accepted: 01/31/2005] [Indexed: 10/25/2022]
Abstract
A pyruvate decarboxylase (PDC) gene from bacterial Zymobacter palmae (Zymopdc) was cloned, characterized, and introduced into Lactococcus lactis via a shuttle vector pAK80 as part of a research strategy to develop an efficient ethanol-producing lactic acid bacteria (LAB). The expression levels of Zymopdc gene in the host, as measured by a colorimetric assay based on PDC catalyzed formation of (R)-phenylacetylcarbinol ((R)-PAC), appeared to be dependent on the strength of corresponding Gram-positive promoters. A constitutive, highly expressed promoter conferred the greatest PDC activity, and an acid-inducible promoter demonstrated acid-inducible expression. The metabolic production of ethanol and other products was examined in flask fermentations. More than eightfold increases in acetaldehyde concentrations were detected in two recombinant strains. However, no detectable differences for ethanol fermentation in these engineered strains were observed compared with that of the strain carrying lacZ reporter.
Collapse
Affiliation(s)
- Siqing Liu
- Bioproducts and Biocatalysis Research Unit, National Center for Agriculture Utilization Research, USDA, ARS, 1815 N. University St., Peoria, IL, 61604, USA.
| | | | | |
Collapse
|
33
|
Plaza M, Fernández de Palencia P, Peláez C, Requena T. Biochemical and molecular characterization of α-ketoisovalerate decarboxylase, an enzyme involved in the formation of aldehydes from amino acids byLactococcus lactis. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09778.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
34
|
Sutak R, Tachezy J, Kulda J, Hrdý I. Pyruvate decarboxylase, the target for omeprazole in metronidazole-resistant and iron-restricted Tritrichomonas foetus. Antimicrob Agents Chemother 2004; 48:2185-9. [PMID: 15155220 PMCID: PMC415579 DOI: 10.1128/aac.48.6.2185-2189.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The substituted benzimidazole omeprazole, used for the treatment of human peptic ulcer disease, inhibits the growth of the metronidazole-resistant bovine pathogen Tritrichomonas foetus in vitro (MIC at which the growth of parasite cultures is inhibited by 50%, 22 microg/ml [63 microM]). The antitrichomonad activity appears to be due to the inhibition of pyruvate decarboxylase (PDC), which is the key enzyme responsible for ethanol production and which is strongly upregulated in metronidazole-resistant trichomonads. PDC was purified to homogeneity from the cytosol of metronidazole-resistant strain. The tetrameric enzyme of 60-kDa subunits is inhibited by omeprazole (50% inhibitory concentration, 16 microg/ml). Metronidazole-susceptible T. foetus, which expresses very little PDC, is only slightly affected. Omeprazole has the same inhibitory effect on T. foetus cells grown under iron-limited conditions. Similarly to metronidazole-resistant cells, T. foetus cells grown under iron-limited conditions have nonfunctional hydrogenosomal metabolism and rely on cytosolic PDC-mediated ethanol fermentation.
Collapse
Affiliation(s)
- Róbert Sutak
- Department of Parasitology, Charles University, Vinicná 7, 128 44 Prague 2, Czech Republic
| | | | | | | |
Collapse
|
35
|
Temporini ED, Alvarez ME, Mautino MR, Folco HD, Rosa AL. The Neurospora crassa cfp promoter drives a carbon source-dependent expression of transgenes in filamentous fungi. J Appl Microbiol 2004; 96:1256-64. [PMID: 15139917 DOI: 10.1111/j.1365-2672.2004.02249.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The objective of the present study was to determine the potential of promoter sequences from the cfp gene of Neurospora crassa to drive the expression of transgenes in filamentous fungi. METHODS AND RESULTS Northern blot analyses showed that the mRNA levels of cfp were rapidly modified in response to either inducing or repressing culture conditions. The hygromycin phosphotransferase (hph) and S-adenosylmethionine synthetase (eth-1) genes were fused to a minimal cfp promoter fragment (Pcfp) and used as reporter genes. These constructs were highly expressed in transformant N. crassa strains grown in media containing glucose or sucrose and repressed in media containing ethanol or ethanol plus glucose. A gene fusion of the cfp promoter to the beta-glucuronidase gene (cfp-uidA) showed identical patterns of expression in the heterologous filamentous fungus Aspergillus nidulans. CONCLUSIONS Our results show that the levels of expression of the native cfp gene, as well as reporter genes driven by cfp promoter sequences, can be rapidly modified in response to different carbon sources. These modified levels of expression are maintained by continuous growth in the presence of the corresponding carbon source. SIGNIFICANCE AND IMPACT OF THE STUDY We propose that the cfp promoter can be used to control the expression of transgenes in filamentous fungi in a carbon source-dependent fashion.
Collapse
Affiliation(s)
- E D Temporini
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, and Departmento de Química Biológica, CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cordoba, Argentina
| | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Ray Fall
- Department of Chemistry and Biochemistry, and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309-0215, USA.
| |
Collapse
|
37
|
Raj KC, Talarico LA, Ingram LO, Maupin-Furlow JA. Cloning and characterization of the Zymobacter palmae pyruvate decarboxylase gene (pdc) and comparison to bacterial homologues. Appl Environ Microbiol 2002; 68:2869-76. [PMID: 12039744 PMCID: PMC123914 DOI: 10.1128/aem.68.6.2869-2876.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyruvate decarboxylase (PDC) is the key enzyme in all homo-ethanol fermentations. Although widely distributed among plants, yeasts, and fungi, PDC is absent in animals and rare in bacteria (established for only three organisms). Genes encoding the three known bacterial pdc genes have been previously described and expressed as active recombinant proteins. The pdc gene from Zymomonas mobilis has been used to engineer ethanol-producing biocatalysts for use in industry. In this paper, we describe a new bacterial pdc gene from Zymobacter palmae. The pattern of codon usage for this gene appears quite similar to that for Escherichia coli genes. In E. coli recombinants, the Z. palmae PDC represented approximately 1/3 of the soluble protein. Biochemical and kinetic properties of the Z. palmae enzyme were compared to purified PDCs from three other bacteria. Of the four bacterial PDCs, the Z. palmae enzyme exhibited the highest specific activity (130 U mg of protein(-1)) and the lowest Km for pyruvate (0.24 mM). Differences in biochemical properties, thermal stability, and codon usage may offer unique advantages for the development of new biocatalysts for fuel ethanol production.
Collapse
Affiliation(s)
- Krishnan Chandra Raj
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611-0700, USA
| | | | | | | |
Collapse
|
38
|
Talarico LA, Ingram LO, Maupin-Furlow JA. Production of the Gram-positive Sarcina ventriculi pyruvate decarboxylase in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2425-2435. [PMID: 11535783 DOI: 10.1099/00221287-147-9-2425] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sarcina ventriculi grows in a remarkable range of mesophilic environments from pH 2 to pH 10. During growth in acidic environments, where acetate is toxic, expression of pyruvate decarboxylase (PDC) serves to direct the flow of pyruvate into ethanol during fermentation. PDC is rare in bacteria and absent in animals, although it is widely distributed in the plant kingdom. The pdc gene from S. ventriculi is the first to be cloned and characterized from a Gram-positive bacterium. In Escherichia coli, the recombinant pdc gene from S. ventriculi was poorly expressed due to differences in codon usage that are typical of low-G+C organisms. Expression was improved by the addition of supplemental codon genes and this facilitated the 136-fold purification of the recombinant enzyme as a homo-tetramer of 58 kDa subunits. Unlike Zymomonas mobilis PDC, which exhibits Michaelis-Menten kinetics, S. ventriculi PDC is activated by pyruvate and exhibits sigmoidal kinetics similar to fungal and higher plant PDCs. Amino acid residues involved in the allosteric site for pyruvate in fungal PDCs were conserved in S. ventriculi PDC, consistent with a conservation of mechanism. Cluster analysis of deduced amino acid sequences confirmed that S. ventriculi PDC is quite distant from Z. mobilis PDC and plant PDCs. S. ventriculi PDC appears to have diverged very early from a common ancestor which included most fungal PDCs and eubacterial indole-3-pyruvate decarboxylases. These results suggest that the S. ventriculi pdc gene is quite ancient in origin, in contrast to the Z. mobilis pdc, which may have originated by horizontal transfer from higher plants.
Collapse
Affiliation(s)
- Lee A Talarico
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA1
| | - Lonnie O Ingram
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA1
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA1
| |
Collapse
|
39
|
Abstract
Decarboxylation reactions using microbial cells or enzymes are increasingly being used for the synthesis of enantiomerically pure compounds because of their high degree of regio- and stereo-specificity. Pyruvate decarboxylase, benzoylformate decarboxylase and phenylpyruvate decarboxylase enzymes are capable of acyloin-type condensation reactions leading to formation of chiral alpha-hydroxy ketones, which are versatile building blocks in the pharmaceutical and chemical industries. Availability of three-dimensional structures of some decarboxylases in recent years has facilitated understanding of reaction mechanisms and the creation of mutants with enhanced activity and stability.
Collapse
Affiliation(s)
- O P Ward
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | | |
Collapse
|
40
|
Hotta K, Lange H, Tantillo DJ, Houk KN, Hilvert D, Wilson IA. Catalysis of decarboxylation by a preorganized heterogeneous microenvironment: crystal structures of abzyme 21D8. J Mol Biol 2000; 302:1213-25. [PMID: 11183784 DOI: 10.1006/jmbi.2000.4503] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antibody 21D8 catalyzes the solvent-sensitive decarboxylation of 3-carboxybenzisoxazoles. The crystal structure of chimeric Fab 21D8 with and without hapten at 1.61 A and 2.10 A, respectively, together with computational analysis, shows how a melange of polar and non-polar sites are exploited to achieve both substrate binding and acceleration of a reaction normally facilitated by purely aprotic dipolar media. The striking similarity of the decarboxylase and a series of unrelated esterase antibodies also highlights the chemical versatility of structurally conserved anion binding sites and the relatively subtle changes involved in fine-tuning the immunoglobulin pocket for recognition of different ligands and catalysis of different reactions.
Collapse
Affiliation(s)
- K Hotta
- Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
41
|
Eberhardt I, Cederberg H, Li H, König S, Jordan F, Hohmann S. Autoregulation of yeast pyruvate decarboxylase gene expression requires the enzyme but not its catalytic activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 262:191-201. [PMID: 10231381 DOI: 10.1046/j.1432-1327.1999.00370.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the yeast, Saccharomyces cerevisiae, pyruvate decarboxylase (Pdc) is encoded by the two isogenes PDC1 and PDC5. Deletion of the more strongly expressed PDC1 gene stimulates the promoter activity of both PDC1 and PDC5, a phenomenon called Pdc autoregulation. Hence, pdc1Delta strains have high Pdc specific activity and can grow on glucose medium. In this work we have characterized the mutant alleles pdc1-8 and pdc1-14, which cause strongly diminished Pdc activity and an inability to grow on glucose. Both mutant alleles are expressed as detectable proteins, each of which differs from the wild-type by a single amino acid. The cloned pdc1-8 and pdc1-14 alleles, as well as the in-vitro-generated pdc1-51 (Glu51Ala) allele, repressed expression of PDC5 and diminished Pdc specific activity. Thus, the repressive effect of Pdc1p on PDC5 expression seems to be independent of its catalytic activity. A pdc1-8 mutant was used to isolate spontaneous suppressor mutations, which allowed expression of PDC5. All three mutants characterized had additional mutations within the pdc1-8 allele. Two of these mutations resulted in a premature translational stop conferring phenotypes virtually indistinguishable from those of a pdc1Delta mutation. The third mutation, pdc1-803, led to a deletion of two amino acids adjacent to the pdc1-8 mutation. The alleles pdc1-8 and pdc1-803 were expressed in Escherichia coli and purified to homogeneity. In the crude extract, both proteins had 10% residual activity, which was lost during purification, probably due to dissociation of the cofactor thiamin diphosphate (ThDP). The defect in pdc1-8 (Asp291Asn) and the two amino acids deleted in pdc1-803 (Ser296 and Phe297) are located within a flexible loop in the beta domain. This domain appears to determine the relative orientation of the alpha and gamma domains, which bind ThDP. Alterations in this loop may also affect the conformational change upon substrate binding. The mutation in pdc1-14 (Ser455Phe) is located within the ThDP fold and is likely to affect binding and/or orientation of the cofactor in the protein. We suggest that autoregulation is triggered by a certain conformation of Pdc1p and that the mutations in pdc1-8 and pdc1-14 may lock Pdc1p in vivo in a conformational state which leads to repression of PDC5.
Collapse
Affiliation(s)
- I Eberhardt
- Laboratorium voor Moleculaire Celbiologie, Katholieke Universiteit Leuven, Flanders, Belgium
| | | | | | | | | | | |
Collapse
|
42
|
Muller EH, Richards EJ, Norbeck J, Byrne KL, Karlsson KA, Pretorius GH, Meacock PA, Blomberg A, Hohmann S. Thiamine repression and pyruvate decarboxylase autoregulation independently control the expression of the Saccharomyces cerevisiae PDC5 gene. FEBS Lett 1999; 449:245-50. [PMID: 10338141 DOI: 10.1016/s0014-5793(99)00449-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The Saccharomyces cerevisiae gene PDC5 encodes the minor isoform of pyruvate decarboxylase (Pdc). In this work we show that expression of PDC5 but not that of PDC1, which encodes the major isoform, is repressed by thiamine. Hence, under thiamine limitation both PDC1 and PDC5 are expressed. PDC5 also becomes strongly expressed in a pdc1delta mutant. Two-dimensional gel electrophoresis of whole protein extracts shows that thiamine limitation stimulates the production of THI gene products and of Pdc5p. Deletion of PDC1 only stimulates production of Pdc5p. We conclude that the stimulation of PDC5 expression in a pdc1delta mutant is not due to a response to thiamine limitation.
Collapse
Affiliation(s)
- E H Muller
- Department of Cell and Molecular Biology/Microbiology, Göteborg University, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|