1
|
Ha K, Ryu S, Trinh CT. Alpha-ketoacid decarboxylases: Diversity, structures, reaction mechanisms, and applications for biomanufacturing of platform chemicals and fuels. Biotechnol Adv 2025; 81:108531. [PMID: 39955038 DOI: 10.1016/j.biotechadv.2025.108531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
In living cells, alpha-ketoacid decarboxylases (KDCs, EC 4.1.1.-) are a class of enzymes that convert alpha-ketoacids into aldehydes through decarboxylation. These aldehydes serve as either drop-in chemicals or precursors for the biosynthesis of alcohols, carboxylic acids, esters, and alkanes. These compounds play crucial roles in cellular metabolism and fitness and the bioeconomy, facilitating the sustainable and renewable biomanufacturing of platform chemicals and fuels. This review explores the diversity and classification of KDCs, detailing their structures, mechanisms, and functions. We highlight recent advancements in repurposing KDCs to enhance their efficiency and robustness for biomanufacturing. Additionally, we present modular KDC-dependent metabolic pathways for the microbial biosynthesis of aldehydes, alcohols, carboxylic acids, esters, and alkanes. Finally, we discuss recent developments in the modular cell engineering technology that can potentially be applied to harness the diversity of KDC-dependent pathways for biomanufacturing platform chemicals and fuels.
Collapse
Affiliation(s)
- Khanh Ha
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Seunghyun Ryu
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Cong T Trinh
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
2
|
Kordesedehi R, Asadollahi MA, Shahpiri A, Biria D, Nikel PI. Optimized enantioselective (S)-2-hydroxypropiophenone synthesis by free- and encapsulated-resting cells of Pseudomonas putida. Microb Cell Fact 2023; 22:89. [PMID: 37131175 PMCID: PMC10155308 DOI: 10.1186/s12934-023-02073-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/25/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Aromatic α-hydroxy ketones, such as S-2-hydroxypropiophenone (2-HPP), are highly valuable chiral building blocks useful for the synthesis of various pharmaceuticals and natural products. In the present study, enantioselective synthesis of 2-HPP was investigated by free and immobilized whole cells of Pseudomonas putida ATCC 12633 starting from readily-available aldehyde substrates. Whole resting cells of P. putida, previously grown in a culture medium containing ammonium mandelate, are a source of native benzoylformate decarboxylase (BFD) activity. BFD produced by induced P. putida resting cells is a highly active biocatalyst without any further treatment in comparison with partially purified enzyme preparations. These cells can convert benzaldehyde and acetaldehyde into the acyloin compound 2-HPP by BFD-catalyzed enantioselective cross-coupling reaction. RESULTS The reaction was carried out in the presence of exogenous benzaldehyde (20 mM) and acetaldehyde (600 mM) as substrates in 6 mL of 200 mM phosphate buffer (pH 7) for 3 h. The optimal biomass concentration was assessed to be 0.006 g dry cell weight (DCW) mL- 1. 2-HPP titer, yield and productivity using the free cells were 1.2 g L- 1, 0.56 g 2-HPP/g benzaldehyde (0.4 mol 2-HPP/mol benzaldehyde), 0.067 g 2-HPP g- 1 DCW h- 1, respectively, under optimized biotransformation conditions (30 °C, 200 rpm). Calcium alginate (CA)-polyvinyl alcohol (PVA)-boric acid (BA)-beads were used for cell entrapment. Encapsulated whole-cells were successfully employed in four consecutive cycles for 2-HPP production under aerobic conditions without any noticeable beads degradation. Moreover, there was no production of benzyl alcohol as an unwanted by-product. CONCLUSIONS Bioconversion by whole P. putida resting cells is an efficient strategy for the production of 2-HPP and other α-hydroxyketones.
Collapse
Affiliation(s)
- Reihaneh Kordesedehi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammad Ali Asadollahi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Azar Shahpiri
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Davoud Biria
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Pablo Iván Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Hecko S, Schiefer A, Badenhorst CPS, Fink MJ, Mihovilovic MD, Bornscheuer UT, Rudroff F. Enlightening the Path to Protein Engineering: Chemoselective Turn-On Probes for High-Throughput Screening of Enzymatic Activity. Chem Rev 2023; 123:2832-2901. [PMID: 36853077 PMCID: PMC10037340 DOI: 10.1021/acs.chemrev.2c00304] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Many successful stories in enzyme engineering are based on the creation of randomized diversity in large mutant libraries, containing millions to billions of enzyme variants. Methods that enabled their evaluation with high throughput are dominated by spectroscopic techniques due to their high speed and sensitivity. A large proportion of studies relies on fluorogenic substrates that mimic the chemical properties of the target or coupled enzymatic assays with an optical read-out that assesses the desired catalytic efficiency indirectly. The most reliable hits, however, are achieved by screening for conversions of the starting material to the desired product. For this purpose, functional group assays offer a general approach to achieve a fast, optical read-out. They use the chemoselectivity, differences in electronic and steric properties of various functional groups, to reduce the number of false-positive results and the analytical noise stemming from enzymatic background activities. This review summarizes the developments and use of functional group probes for chemoselective derivatizations, with a clear focus on screening for enzymatic activity in protein engineering.
Collapse
Affiliation(s)
- Sebastian Hecko
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Astrid Schiefer
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Christoffel P S Badenhorst
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Michael J Fink
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, Massachusetts 02138, United States
| | - Marko D Mihovilovic
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
4
|
Gu S, Zhao Z, Yao Y, Li J, Tian C. Designing and Constructing a Novel Artificial Pathway for Malonic Acid Production Biologically. Front Bioeng Biotechnol 2022; 9:820507. [PMID: 35127677 PMCID: PMC8807515 DOI: 10.3389/fbioe.2021.820507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Malonic acid is used as a common component of many products and processes in the pharmaceutical and cosmetic industries. Here, we designed a novel artificial synthetic pathway of malonic acid, in which oxaloacetate, an intermediate of cytoplasmic reductive tricarboxylic acid (rTCA) pathway, is converted to malonic semialdehyde and then to malonic acid, sequentially catalyzed by a-keto decarboxylase and malonic semialdehyde dehydrogenase. After the systematic screening, we discovered the enzyme oxaloacetate decarboxylase Mdc, catalyzing the first step of the artificially designed pathway in vitro. Then, this synthetic pathway was functionally constructed in cellulolytic thermophilic fungus Myceliophthora thermophila. After enhancement of glucose uptake, the titer of malonic acid achieved 42.5 mg/L. This study presents a novel biological pathway for producing malonic acid from renewable resources in the future.
Collapse
Affiliation(s)
- Shuying Gu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Zhao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yonghong Yao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Jingen Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- *Correspondence: Jingen Li, ; Chaoguang Tian,
| | - Chaoguang Tian
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- *Correspondence: Jingen Li, ; Chaoguang Tian,
| |
Collapse
|
5
|
Wang X, Tang C, Meng S, Tang B, Zang Y, Ke CQ, Yao S, Li J, Ye Y. Noreudesmane sesquiterpenoids from Artemisia hedinii and their anti-inflammatory activities. Fitoterapia 2021; 153:104961. [PMID: 34129923 DOI: 10.1016/j.fitote.2021.104961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/15/2022]
Abstract
Ten undescribed noreudesmane-type sesquiterpenoids, including eight 12,13-dinoreudesmanes and a pair of 11,12,13-trinoreudesmane epimers were isolated from the whole plant of Artemisia hedinii. Their structures were elucidated by extensive analysis of spectroscopic data, including MS, 1D and 2D NMR, and their absolute configurations were confirmed by X-ray diffraction experiments and DFT calculations. Compounds 1-5, 7-10 were evaluated for their anti-inflammatory activities in lipopolysaccharide (LPS)-stimulated murine macrophages RAW264.7 cells, and all of them could significantly inhibit the LPS induced CCL2 mRNA expression in a dose-dependent manner.
Collapse
Affiliation(s)
- Xing Wang
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Chunping Tang
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Suoriya Meng
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Bixi Tang
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Zang
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Chang-Qiang Ke
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Sheng Yao
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jia Li
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, China
| | - Yang Ye
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
6
|
Abstract
Glycerol is a readily available and inexpensive substance that is mostly generated during biofuel production processes. In order to ensure the viability of the biofuel industry, it is essential to develop complementing technologies for the resource utilization of glycerol. Ethylene glycol is a two-carbon organic chemical with multiple applications and a huge market. In this study, an artificial enzymatic cascade comprised alditol oxidase, catalase, glyoxylate/hydroxypyruvate reductase, pyruvate decarboxylase and lactaldehyde:propanediol oxidoreductase was developed for the production of ethylene glycol from glycerol. The reduced nicotinamide adenine dinucleotide (NADH) generated during the dehydrogenation of the glycerol oxidation product d-glycerate can be as the reductant to support the ethylene glycol production. Using this in vitro synthetic system with self-sufficient NADH recycling, 7.64 ± 0.15 mM ethylene glycol was produced from 10 mM glycerol in 10 h, with a high yield of 0.515 ± 0.1 g/g. The in vitro enzymatic cascade is not only a promising alternative for the generation of ethylene glycol but also a successful example of the value-added utilization of glycerol.
Collapse
|
7
|
Valera MJ, Zeida A, Boido E, Beltran G, Torija MJ, Mas A, Radi R, Dellacassa E, Carrau F. Genetic and transcriptomic evidences suggest ARO10 genes are involved in benzenoid biosynthesis by yeast. Yeast 2020; 37:427-435. [PMID: 32638443 DOI: 10.1002/yea.3508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/09/2020] [Accepted: 07/03/2020] [Indexed: 12/27/2022] Open
Abstract
Benzenoids are compounds associated with floral and fruity flavours in flowers, fruits and leaves and present a role in hormonal signalling in plants. These molecules are produced by the phenyl ammonia lyase pathway. However, some yeasts can also synthesize them from aromatic amino acids using an alternative pathway that remains unknown. Hanseniaspora vineae can produce benzenoids at levels up to two orders of magnitude higher than Saccharomyces species, so it is a model microorganism for studying benzenoid biosynthesis pathways in yeast. According to their genomes, several enzymes have been proposed to be involved in a mandelate pathway similar to that described for some prokaryotic cells. Among them, the ARO10 gene product could present benzoylformate decarboxylase activity. This enzyme catalyses the decarboxylation of benzoylformate into benzaldehyde at the end of the mandelate pathway in benzyl alcohol formation. Two homologous genes of ARO10 were found in the two sequenced H. vineae strains. In this study, nine other H. vineae strains were analysed to detect the presence and per cent homology of ARO10 sequences by PCR using specific primers designed for this species. Also, the copy number of the genes was estimated by quantitative PCR. To verify the relation of ARO10 with the production of benzyl alcohol during fermentation, a deletion mutant in the ARO10 gene of Saccharomyces cerevisiae was used. The two HvARO10 paralogues were analysed and compared with other α-ketoacid decarboxylases at the sequence and structural level.
Collapse
Affiliation(s)
- Maria Jose Valera
- Facultad de Quimica, Food Science and Technology Department, Enology and Fermentation Biotechnology Area, Universidad de la República, Montevideo, Uruguay
| | - Ari Zeida
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Eduardo Boido
- Facultad de Quimica, Food Science and Technology Department, Enology and Fermentation Biotechnology Area, Universidad de la República, Montevideo, Uruguay
| | - Gemma Beltran
- Department of Biochemistry and Biotechnology, Biotecnología Enológica, Universitat Rovira i Virgili, Tarragona, Spain
| | - María Jesús Torija
- Department of Biochemistry and Biotechnology, Biotecnología Enológica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Albert Mas
- Department of Biochemistry and Biotechnology, Biotecnología Enológica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Rafael Radi
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Eduardo Dellacassa
- Departamento de Química Orgánica, Laboratorio de Biotecnología de Aromas, Universidad de la República, Montevideo, Uruguay
| | - Francisco Carrau
- Facultad de Quimica, Food Science and Technology Department, Enology and Fermentation Biotechnology Area, Universidad de la República, Montevideo, Uruguay.,Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
8
|
Song T, Ma Z, Ren P, Yuan Y, Xiao J, Yang Y. A Bifunctional Iron Nanocomposite Catalyst for Efficient Oxidation of Alkenes to Ketones and 1,2-Diketones. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05197] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tao Song
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Laoshan District, Qingdao 266101, China
| | - Zhiming Ma
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Laoshan District, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Ren
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Laoshan District, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youzhu Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Production of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen 361005, P. R. China
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Yong Yang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Laoshan District, Qingdao 266101, China
| |
Collapse
|
9
|
Frazão CJR, Trichez D, Serrano-Bataille H, Dagkesamanskaia A, Topham CM, Walther T, François JM. Construction of a synthetic pathway for the production of 1,3-propanediol from glucose. Sci Rep 2019; 9:11576. [PMID: 31399628 PMCID: PMC6689062 DOI: 10.1038/s41598-019-48091-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/25/2019] [Indexed: 11/09/2022] Open
Abstract
In this work, we describe the construction of a synthetic metabolic pathway enabling direct biosynthesis of 1,3-propanediol (PDO) from glucose via the Krebs cycle intermediate malate. This non-natural pathway extends a previously published synthetic pathway for the synthesis of (L)-2,4-dihydroxybutyrate (L-DHB) from malate by three additional reaction steps catalyzed respectively, by a DHB dehydrogenase, a 2-keto-4-hydroxybutyrate (OHB) dehydrogenase and a PDO oxidoreductase. Screening and structure-guided protein engineering provided a (L)-DHB dehydrogenase from the membrane-associated (L)-lactate dehydrogenase of E. coli and OHB decarboxylase variants derived from the branched-chain keto-acid decarboxylase encoded by kdcA from Lactococcus lactis or pyruvate decarboxylase from Zymomonas mobilis. The simultaneous overexpression of the genes encoding these enzymes together with the endogenous ydhD-encoded aldehyde reductase enabled PDO biosynthesis from (L)-DHB. While the simultaneous expression of the six enzymatic activities in a single engineered E. coli strain resulted in a low production of 0.1 mM PDO from 110 mM glucose, a 40-fold increased PDO titer was obtained by co-cultivation of an E. coli strain expressing the malate-DHB pathway with another strain harboring the DHB-to-PDO pathway.
Collapse
Affiliation(s)
- Cláudio J R Frazão
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | - Débora Trichez
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | - Hélène Serrano-Bataille
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | - Adilia Dagkesamanskaia
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | | | - Thomas Walther
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil, F-31077, Toulouse, France.,TWB, 3 Rue des Satellites, Canal Biotech Building 2, F-31400, Toulouse, France.,TU Dresden, Institute of Natural Materials Technology, 01062, Dresden, Germany
| | - Jean Marie François
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil, F-31077, Toulouse, France. .,TWB, 3 Rue des Satellites, Canal Biotech Building 2, F-31400, Toulouse, France.
| |
Collapse
|
10
|
Molecular and functional characterization of two pyruvate decarboxylase genes, PDC1 and PDC5, in the thermotolerant yeast Kluyveromyces marxianus. Appl Microbiol Biotechnol 2018; 102:3723-3737. [DOI: 10.1007/s00253-018-8862-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/01/2018] [Accepted: 02/08/2018] [Indexed: 10/17/2022]
|
11
|
Li H, Liu N, Hui X, Gao WY. An improved enzymatic method for the preparation of (R)-phenylacetyl carbinol. RSC Adv 2017. [DOI: 10.1039/c7ra04641c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
(R)-Phenylacetyl carbinol (R-PAC) is one of the key chiral α-hydroxyketones utilized as a synthon in the synthesis of a number of pharmaceuticals having α- and β-adrenergic properties.
Collapse
Affiliation(s)
- Heng Li
- National Engineering Research Center for Miniaturized Detection Systems
- College of Life Sciences
- Northwest University
- Xi'an
- China
| | - Nan Liu
- Department of Experimental Surgery
- Tangdu Hospital
- Fourth Military Medical University
- Xi'an
- China
| | - Xian Hui
- National Engineering Research Center for Miniaturized Detection Systems
- College of Life Sciences
- Northwest University
- Xi'an
- China
| | - Wen-Yun Gao
- National Engineering Research Center for Miniaturized Detection Systems
- College of Life Sciences
- Northwest University
- Xi'an
- China
| |
Collapse
|
12
|
Eram MS, Ma K. Pyruvate decarboxylase activity of the acetohydroxyacid synthase of Thermotoga maritima. Biochem Biophys Rep 2016; 7:394-399. [PMID: 28955930 PMCID: PMC5613635 DOI: 10.1016/j.bbrep.2016.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 06/20/2016] [Accepted: 07/13/2016] [Indexed: 11/30/2022] Open
Abstract
Acetohydroxyacid synthase (AHAS) catalyzes the production of acetolactate from pyruvate. The enzyme from the hyperthermophilic bacterium Thermotoga maritima has been purified and characterized (kcat ~100 s−1). It was found that the same enzyme also had the ability to catalyze the production of acetaldehyde and CO2 from pyruvate, an activity of pyruvate decarboxylase (PDC) at a rate approximately 10% of its AHAS activity. Compared to the catalytic subunit, reconstitution of the individually expressed and purified catalytic and regulatory subunits of the AHAS stimulated both activities of PDC and AHAS. Both activities had similar pH and temperature profiles with an optimal pH of 7.0 and temperature of 85 °C. The enzyme kinetic parameters were determined, however, it showed a non-Michaelis-Menten kinetics for pyruvate only. This is the first report on the PDC activity of an AHAS and the second bifunctional enzyme that might be involved in the production of ethanol from pyruvate in hyperthermophilic microorganisms. The acetohydroxyacid synthase of T. maritima has pyruvate decarboxylase activity The AHAS and PDC activities share the same temperature and pH optima Reconstitution of the catalytic and regulatory subunits increases both PDC and AHAS activities
Collapse
Affiliation(s)
- Mohammad S Eram
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Kesen Ma
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
13
|
Giovannini PP, Bortolini O, Massi A. Thiamine-Diphosphate-Dependent Enzymes as Catalytic Tools for the Asymmetric Benzoin-Type Reaction. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600228] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pier Paolo Giovannini
- Department of Chemical and Pharmaceutical Sciences; University of Ferrara; 17, Via Fossato di Mortara 44121 Ferrara Italy
| | - Olga Bortolini
- Department of Chemical and Pharmaceutical Sciences; University of Ferrara; 17, Via Fossato di Mortara 44121 Ferrara Italy
| | - Alessandro Massi
- Department of Chemical and Pharmaceutical Sciences; University of Ferrara; 17, Via Fossato di Mortara 44121 Ferrara Italy
| |
Collapse
|
14
|
|
15
|
Wechsler C, Meyer D, Loschonsky S, Funk LM, Neumann P, Ficner R, Brodhun F, Müller M, Tittmann K. Tuning and Switching Enantioselectivity of Asymmetric Carboligation in an Enzyme through Mutational Analysis of a Single Hot Spot. Chembiochem 2015; 16:2580-4. [DOI: 10.1002/cbic.201500529] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Cindy Wechsler
- Abt. Molekulare Enzymologie; Georg-August-Universität Göttingen; Justus-von-Liebig-Weg 11 37077 Göttingen Germany
| | - Danilo Meyer
- Abt. Molekulare Enzymologie; Georg-August-Universität Göttingen; Justus-von-Liebig-Weg 11 37077 Göttingen Germany
| | - Sabrina Loschonsky
- Institut für Pharmazeutische Wissenschaften; Albert-Ludwigs-Universität Freiburg; Albertstrasse 25 79104 Freiburg im Breisgau Germany
| | - Lisa-Marie Funk
- Abt. Molekulare Enzymologie; Georg-August-Universität Göttingen; Justus-von-Liebig-Weg 11 37077 Göttingen Germany
| | - Piotr Neumann
- Abt. Molekulare Strukturbiologie; Georg-August-Universität Göttingen; Justus-von-Liebig-Weg 11 37077 Göttingen Germany
| | - Ralf Ficner
- Abt. Molekulare Strukturbiologie; Georg-August-Universität Göttingen; Justus-von-Liebig-Weg 11 37077 Göttingen Germany
| | - Florian Brodhun
- Abt. Molekulare Enzymologie; Georg-August-Universität Göttingen; Justus-von-Liebig-Weg 11 37077 Göttingen Germany
| | - Michael Müller
- Institut für Pharmazeutische Wissenschaften; Albert-Ludwigs-Universität Freiburg; Albertstrasse 25 79104 Freiburg im Breisgau Germany
| | - Kai Tittmann
- Abt. Molekulare Enzymologie; Georg-August-Universität Göttingen; Justus-von-Liebig-Weg 11 37077 Göttingen Germany
| |
Collapse
|
16
|
Kourist R, Guterl JK, Miyamoto K, Sieber V. Enzymatic Decarboxylation-An Emerging Reaction for Chemicals Production from Renewable Resources. ChemCatChem 2014. [DOI: 10.1002/cctc.201300881] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Eram MS, Ma K. Decarboxylation of pyruvate to acetaldehyde for ethanol production by hyperthermophiles. Biomolecules 2013; 3:578-96. [PMID: 24970182 PMCID: PMC4030962 DOI: 10.3390/biom3030578] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/02/2013] [Accepted: 08/15/2013] [Indexed: 11/16/2022] Open
Abstract
Pyruvate decarboxylase (PDC encoded by pdc) is a thiamine pyrophosphate (TPP)-containing enzyme responsible for the conversion of pyruvate to acetaldehyde in many mesophilic organisms. However, no pdc/PDC homolog has yet been found in fully sequenced genomes and proteomes of hyper/thermophiles. The only PDC activity reported in hyperthermophiles was a bifunctional, TPP- and CoA-dependent pyruvate ferredoxin oxidoreductase (POR)/PDC enzyme from the hyperthermophilic archaeon Pyrococcus furiosus. Another enzyme known to be involved in catalysis of acetaldehyde production from pyruvate is CoA-acetylating acetaldehyde dehydrogenase (AcDH encoded by mhpF and adhE). Pyruvate is oxidized into acetyl-CoA by either POR or pyruvate formate lyase (PFL), and AcDH catalyzes the reduction of acetyl-CoA to acetaldehyde in mesophilic organisms. AcDH is present in some mesophilic (such as clostridia) and thermophilic bacteria (e.g., Geobacillus and Thermoanaerobacter). However, no AcDH gene or protein homologs could be found in the released genomes and proteomes of hyperthermophiles. Moreover, no such activity was detectable from the cell-free extracts of different hyperthermophiles under different assay conditions. In conclusion, no commonly-known PDCs was found in hyperthermophiles. Instead of the commonly-known PDC, it appears that at least one multifunctional enzyme is responsible for catalyzing the non-oxidative decarboxylation of pyruvate to acetaldehyde in hyperthermophiles.
Collapse
Affiliation(s)
- Mohammad S Eram
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| | - Kesen Ma
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
18
|
Dictamins A–C, three unprecedented apotirucallane-type trinortriterpenoids from Dictamnus dasycarpus. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.05.130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Agarwal PK, Uppada V, Noronha SB. Comparison of pyruvate decarboxylases from Saccharomyces cerevisiae and Komagataella pastoris (Pichia pastoris). Appl Microbiol Biotechnol 2013; 97:9439-49. [DOI: 10.1007/s00253-013-4758-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/03/2013] [Accepted: 02/05/2013] [Indexed: 11/30/2022]
|
20
|
Li T, Huo L, Pulley C, Liu A. Decarboxylation mechanisms in biological system. Bioorg Chem 2012; 43:2-14. [PMID: 22534166 DOI: 10.1016/j.bioorg.2012.03.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 03/04/2012] [Accepted: 03/19/2012] [Indexed: 11/30/2022]
Abstract
This review examines the mechanisms propelling cofactor-independent, organic cofactor-dependent and metal-dependent decarboxylase chemistry. Decarboxylation, the removal of carbon dioxide from organic acids, is a fundamentally important reaction in biology. Numerous decarboxylase enzymes serve as key components of aerobic and anaerobic carbohydrate metabolism and amino acid conversion. In the past decade, our knowledge of the mechanisms enabling these crucial decarboxylase reactions has continued to expand and inspire. This review focuses on the organic cofactors biotin, flavin, NAD, pyridoxal 5'-phosphate, pyruvoyl, and thiamin pyrophosphate as catalytic centers. Significant attention is also placed on the metal-dependent decarboxylase mechanisms.
Collapse
Affiliation(s)
- Tingfeng Li
- Department of Biochemistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | | | | | | |
Collapse
|
21
|
Naik HG, Yeniad B, Koning CE, Heise A. Investigation of asymmetric alcohol dehydrogenase (ADH) reduction of acetophenone derivatives: effect of charge density. Org Biomol Chem 2012; 10:4961-7. [DOI: 10.1039/c2ob06870b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Substrate specificity in thiamin diphosphate-dependent decarboxylases. Bioorg Chem 2011; 43:26-36. [PMID: 22245019 DOI: 10.1016/j.bioorg.2011.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 11/20/2022]
Abstract
Thiamin diphosphate (ThDP) is the biologically active form of vitamin B(1), and ThDP-dependent enzymes are found in all forms of life. The catalytic mechanism of this family requires the formation of a common intermediate, the 2α-carbanion-enamine, regardless of whether the enzyme is involved in C-C bond formation or breakdown, or even formation of C-N, C-O and C-S bonds. This demands that the enzymes must screen substrates prior to, and/or after, formation of the common intermediate. This review is focused on the group for which the second step is the protonation of the 2α-carbanion, i.e., the ThDP-dependent decarboxylases. Based on kinetic data, sequence/structure alignments and mutagenesis studies the factors involved in substrate specificity have been identified.
Collapse
|
23
|
Rother neé Gocke D, Kolter G, Gerhards T, Berthold CL, Gauchenova E, Knoll M, Pleiss J, Müller M, Schneider G, Pohl M. S-Selective Mixed Carboligation by Structure-Based Design of the Pyruvate Decarboxylase from Acetobacter pasteurianus. ChemCatChem 2011. [DOI: 10.1002/cctc.201100054] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
García-Urdiales E, Alfonso I, Gotor V. Update 1 of: Enantioselective Enzymatic Desymmetrizations in Organic Synthesis. Chem Rev 2011; 111:PR110-80. [DOI: 10.1021/cr100330u] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eduardo García-Urdiales
- Departamento de Química
Orgánica e Inorgánica, Facultad de Química, Universidad
de Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain,
and
| | - Ignacio Alfonso
- Departamento de Química Biológica
y Modelización Molecular, Instituto de Química Avanzada
de Cataluña (IQAC, CSIC), Jordi Girona, 18-26, 08034, Barcelona,
Spain
| | - Vicente Gotor
- Departamento de Química
Orgánica e Inorgánica, Facultad de Química, Universidad
de Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain,
and
| |
Collapse
|
25
|
Brovetto M, Gamenara D, Méndez PS, Seoane GA. C-C bond-forming lyases in organic synthesis. Chem Rev 2011; 111:4346-403. [PMID: 21417217 DOI: 10.1021/cr100299p] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Margarita Brovetto
- Grupo de Fisicoquímica Orgánica y Bioprocesos, Departamento de Química Orgánica, DETEMA, Facultad de Química, Universidad de la República (UdelaR), Gral. Flores 2124, 11800 Montevideo, Uruguay
| | | | | | | |
Collapse
|
26
|
Prokop Z, Sato Y, Brezovsky J, Mozga T, Chaloupkova R, Koudelakova T, Jerabek P, Stepankova V, Natsume R, van Leeuwen J, Janssen D, Florian J, Nagata Y, Senda T, Damborsky J. Enantioselectivity of Haloalkane Dehalogenases and its Modulation by Surface Loop Engineering. Angew Chem Int Ed Engl 2010; 49:6111-5. [DOI: 10.1002/anie.201001753] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Prokop Z, Sato Y, Brezovsky J, Mozga T, Chaloupkova R, Koudelakova T, Jerabek P, Stepankova V, Natsume R, van Leeuwen J, Janssen D, Florian J, Nagata Y, Senda T, Damborsky J. Enantioselectivity of Haloalkane Dehalogenases and its Modulation by Surface Loop Engineering. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201001753] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Widmann M, Radloff R, Pleiss J. The Thiamine diphosphate dependent Enzyme Engineering Database: a tool for the systematic analysis of sequence and structure relations. BMC BIOCHEMISTRY 2010; 11:9. [PMID: 20122171 PMCID: PMC2831816 DOI: 10.1186/1471-2091-11-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 02/01/2010] [Indexed: 01/12/2023]
Abstract
BACKGROUND Thiamine diphosphate (ThDP)-dependent enzymes form a vast and diverse class of proteins, catalyzing a wide variety of enzymatic reactions including the formation or cleavage of carbon-sulfur, carbon-oxygen, carbon-nitrogen, and especially carbon-carbon bonds. Although very diverse in sequence and domain organisation, they share two common protein domains, the pyrophosphate (PP) and the pyrimidine (PYR) domain. For the comprehensive and systematic comparison of protein sequences and structures the Thiamine diphosphate (ThDP)-dependent Enzyme Engineering Database (TEED) was established. DESCRIPTION The TEED http://www.teed.uni-stuttgart.de contains 12048 sequence entries which were assigned to 9443 different proteins and 379 structure entries. Proteins were assigned to 8 different superfamilies and 63 homologous protein families. For each family, the TEED offers multisequence alignments, phylogenetic trees, and family-specific HMM profiles. The conserved pyrophosphate (PP) and pyrimidine (PYR) domains have been annotated, which allows the analysis of sequence similarities for a broad variety of proteins. Human ThDP-dependent enzymes are known to be involved in many diseases. 20 different proteins and over 40 single nucleotide polymorphisms (SNPs) of human ThDP-dependent enzymes were identified in the TEED. CONCLUSIONS The online accessible version of the TEED has been designed to serve as a navigation and analysis tool for the large and diverse family of ThDP-dependent enzymes.
Collapse
Affiliation(s)
- Michael Widmann
- Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Robert Radloff
- Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
29
|
|
30
|
|
31
|
|
32
|
Topal KG, Atilgan C, Demir AS, Aviyente V. Understanding the mode of action of ThDP in benzoylformate decarboxylase. Biopolymers 2009; 93:32-46. [PMID: 19688812 DOI: 10.1002/bip.21291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mechanism of all elementary steps involved in the catalytic cycle of benzoylformate decarboxylase (BFD, E.C. 4.1.1.7) to generate the acyloin linkage is investigated by extensive molecular dynamics simulations. Models involving different charge states of amino acids and/or mutants of critical residues were constructed to understand the involvement of the catalytically active residues and the reactivity differences between different substrates in this reaction. Our calculations confirm that H70, S26, and H281 are catalytically active amino acids. H281 functions as a base to accept H(donor) in the first nucleophilic attack and as an acid in the second, to donate the proton back to O(acceptor). S26 assists H281 in deprotonation of the donor aldehyde and protonation of the acceptor aldehyde. In both the first and second nucleophilic attacks, H70 interacts with O(aldehyde) and aligns it toward the nucleophilic center. H70 has been found to have an electrostatic effect on the approaching aldehyde whose absence would block the initiation of the reaction. The reactivity difference between benzaldehyde (BA) and acetaldehyde (AA) is mainly explained by the steric interactions of the acceptor aldehyde with the surrounding amino acids in the active center of the enzyme.
Collapse
|
33
|
Hischer T, Steinsiek S, Ansorge-Schumacher MB. Use of polyvinyl alcohol cryogels for the compartmentation of biocatalyzed reactions in non-aqueous media. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420601040261] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Schmidt T, Zavrel M, Spieß A, Ansorge-Schumacher M. Biochemical peculiarities of benzaldehyde lyase from Pseudomonas fluorescens Biovar I in the dependency on pH and cosolvent concentration. Bioorg Chem 2009; 37:84-9. [DOI: 10.1016/j.bioorg.2009.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2008] [Revised: 03/04/2009] [Accepted: 03/04/2009] [Indexed: 11/24/2022]
|
35
|
Gandolfi R, Cesarotti E, Molinari F, Romano D, Rimoldi I. Asymmetric reductions of ethyl 2-(benzamidomethyl)-3-oxobutanoate by yeasts. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.tetasy.2009.02.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Wiemann LO, Buthe A, Klein M, van den Wittenboer A, Dähne L, Ansorge-Schumacher MB. Encapsulation of synthetically valuable biocatalysts into polyelectrolyte multilayer systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:618-623. [PMID: 19209447 DOI: 10.1021/la803152c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Layer-by-Layer (LbL) technology recently turned out to be a versatile tool for the encapsulation of bioactive entities. In this study, the factual potential of this technology to encapsulate synthetically valuable biocatalysts, that is enzymes and whole cells expressing a specific catalytic activity, was investigated. The biocatalysts were embedded into a polyelectrolyte multilayer system involving poly(allylamine) hydrochloride (PAH) and poly(styrene sulfonate) sodium salt (PSS). The enzymes were adsorbed to CaCO3 or DEAE-cellulose previous to encapsulation. A slight increase (32%) of the catalytic performance was observed for lipase B from Candida antarctica when four layers of polyelectrolytes were applied. On the whole, however, the residual activity of the investigated enzymes after encapsulation was rather low. Similar results were obtained with whole-cell biocatalysts. It was found that the activity decrease can be attributed to mass transfer restrictions as well as direct interactions between polyelectrolytes and catalytically active molecules. Both effects need to be understood in more detail before LbL technology can be advanced to technically efficient biocatalysis.
Collapse
Affiliation(s)
- Lars O Wiemann
- RWTH Aachen UniVersity, Department of Biotechnology, Worringerweg 1, D-52074 Aachen, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Yun H, Kim BG. Enzymatic production of (R)-phenylacetylcarbinol by pyruvate decarboxylase from Zymomonas mobilis. BIOTECHNOL BIOPROC E 2008. [DOI: 10.1007/s12257-008-0030-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
38
|
Cosp A, Dresen C, Pohl M, Walter L, Röhr C, Müller M. α,β-Unsaturated Aldehydes as Substrates for Asymmetric CC Bond Forming Reactions with Thiamin Diphosphate (ThDP)-Dependent Enzymes. Adv Synth Catal 2008. [DOI: 10.1002/adsc.200700550] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
de María PD, Stillger T, Pohl M, Kiesel M, Liese A, Gröger H, Trauthwein H. Enantioselective CC Bond Ligation Using RecombinantEscherichia coli-Whole-Cell Biocatalysts. Adv Synth Catal 2008. [DOI: 10.1002/adsc.200700230] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Purification and characterisation of two isozymes of pyruvate decarboxylase from Rhizopus oryzae. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.05.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Rogers PL, Jeon YJ, Lee KJ, Lawford HG. Zymomonas mobilis for fuel ethanol and higher value products. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2007; 108:263-88. [PMID: 17522816 DOI: 10.1007/10_2007_060] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
High oil prices, increasing focus on renewable carbohydrate-based feedstocks for fuels and chemicals, and the recent publication of its genome sequence, have provided continuing stimulus for studies on Zymomonas mobilis. However, despite its apparent advantages of higher yields and faster specific rates when compared to yeasts, no commercial scale fermentations currently exist which use Z. mobilis for the manufacture of fuel ethanol. This may change with the recent announcement of a Dupont/Broin partnership to develop a process for conversion of lignocellulosic residues, such as corn stover, to fuel ethanol using recombinant strains of Z. mobilis. The research leading to the construction of these strains, and their fermentation characteristics, are described in the present review. The review also addresses opportunities offered by Z. mobilis for higher value products through its metabolic engineering and use of specific high activity enzymes.
Collapse
Affiliation(s)
- P L Rogers
- School of Biotechnology and Biomolecular Sciences, UNSW, 2052 Sydney, Australia.
| | | | | | | |
Collapse
|
42
|
Yep A, Kenyon GL, McLeish MJ. Determinants of substrate specificity in KdcA, a thiamin diphosphate-dependent decarboxylase. Bioorg Chem 2006; 34:325-36. [PMID: 17028071 DOI: 10.1016/j.bioorg.2006.08.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 08/16/2006] [Accepted: 08/19/2006] [Indexed: 11/26/2022]
Abstract
Thiamin diphosphate-dependent decarboxylases catalyze the non-oxidative decarboxylation of 2-keto carboxylic acids. Although they display relatively low sequence similarity, and broadly different range of substrates, these enzymes show a common homotetrameric structure. Here we describe a kinetic characterization of the substrate spectrum of a recently identified member of this class, the branched chain 2-keto acid decarboxylase (KdcA) from Lactococcus lactis. In order to understand the structural basis for KdcA substrate recognition we developed a homology model of its structure. Ser286, Phe381, Val461 and Met358 were identified as residues that appeared to shape the substrate binding pocket. Subsequently, site-directed mutagenesis was carried out on these residues with a view to converting KdcA into a pyruvate decarboxylase. The results show that the mutations all lowered the Km value for pyruvate and both the S286Y and F381W variants also had greatly increased values of k(cat) with pyruvate as a substrate.
Collapse
Affiliation(s)
- Alejandra Yep
- College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109-1065, USA
| | | | | |
Collapse
|
43
|
Abstract
We present a safe and convenient cross-coupling strategy for the large-scale synthesis of biaryls, commercially important structures often found in biologically active molecules. In contrast to traditional cross-couplings, which require the prior preparation of organometallic reagents, we use a copper catalyst to generate the carbon nucleophiles in situ, via decarboxylation of easily accessible arylcarboxylic acid salts. The scope and potential economic impact of the reaction are demonstrated by the synthesis of 26 biaryls, one of which is an intermediate in the large-scale production of the agricultural fungicide Boscalid.
Collapse
Affiliation(s)
- Lukas J Goossen
- Institut für Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Strasse, Building 54, D-67663 Kaiserslautern, Germany.
| | | | | |
Collapse
|
44
|
|
45
|
Vyazmensky M, Engel S, Kryukov O, Berkovich-Berger D, Kaplun L. Construction of an active acetohydroxyacid synthase I with a flexible linker connecting the catalytic and the regulatory subunits. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:955-960. [PMID: 16795146 DOI: 10.1016/j.bbapap.2006.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acetohydroxyacid synthase I (AHAS I), one of three isozymes in Escherichia coli catalyzing the first common step in the biosynthesis of branched amino acids, is composed of two kinds of subunits. The large catalytic (B) and small regulatory (N) subunits of the holoenzyme dissociate and associate freely and rapidly and are quite different in size, charge and hydrophobicity, so that high resolution purification methods lead to partial separation of subunits and to heterogeneity. We have prepared several linked AHAS I proteins, in which the large subunit B with a hexahistidine-tag at the N-terminus, was covalently joined by a flexible linker, containing several (X) amino acids, to the small subunit N to form His6-BuXN polypeptides. All linked BuXN polypeptides have similar specific activity, sensitivity to valine and substrate specificity as the wild type holoenzyme. The most successful BuXN linked protein (Bu30N-r) was inserted into and expressed in yeast and its catalytic properties were tested.
Collapse
Affiliation(s)
- Maria Vyazmensky
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | | | | | |
Collapse
|
46
|
Kneen MM, Pogozheva ID, Kenyon GL, McLeish MJ. Exploring the active site of benzaldehyde lyase by modeling and mutagenesis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1753:263-71. [PMID: 16226928 DOI: 10.1016/j.bbapap.2005.08.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 08/15/2005] [Accepted: 08/24/2005] [Indexed: 10/25/2022]
Abstract
Benzaldehyde lyase (BAL) is a thiamin diphosphate-dependent enzyme, which catalyzes the breakdown of (R)-benzoin to benzaldehyde. In essence, this is the reverse of the carboligation reaction catalyzed by benzoylformate decarboxylase (BFD). Here, we describe the first steps towards understanding the factors influencing BFD to form a CC bond under conditions wherein BAL will cleave the same bond. What are the similarities and differences between these two enzymes that result in the different catalytic activities? The X-ray structures of BFD and pyruvate decarboxylase (PDC) were used as templates for modeling benzaldehyde lyase. The model shows that a glutamine residue, Gln113, replaces the active site histidines of BFD and PDC. Replacement of the Gln113 by alanine or histidine reduced the value of k(cat) for lyase activity by more than 200-fold. The residues in BFD interacting with the phenyl ring of benzoylformate have similarly positioned counterparts in BAL but Ser26, the residue known to interact with the carboxylate group of benzoylformate, has been replaced by an alanine (Ala28). The BAL A28S variant exhibited 7% of WT activity in the BAL assay but, in the most intriguing result, this variant was able to catalyze the decarboxylation of benzoylformate. Conversely, the BFD S26A variant was unable to cleave benzoin.
Collapse
Affiliation(s)
- Malea M Kneen
- College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
47
|
Kaczowka SJ, Reuter CJ, Talarico LA, Maupin-Furlow JA. Recombinant production of Zymomonas mobilis pyruvate decarboxylase in the haloarchaeon Haloferax volcanii. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2005; 1:327-34. [PMID: 15876566 PMCID: PMC2685553 DOI: 10.1155/2005/325738] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The unusual physiological properties of archaea (e.g., growth in extreme salt concentration, temperature and pH) make them ideal platforms for metabolic engineering. Towards the ultimate goal of modifying an archaeon to produce bioethanol or other useful products, the pyruvate decarboxylase gene of Zymomonas mobilis (Zm pdc) was expressed in Haloferax volcanii. This gene has been used successfully to channel pyruvate to ethanol in various Gram-negative bacteria, including Escherichia coli. Although the ionic strength of the H. volcanii cytosol differs over 15-fold from that of E. coli, gel filtration and circular dichroism revealed no difference in secondary structure between the ZmPDC protein isolated from either of these hosts. Like the E. coli purified enzyme, ZmPDC from H. volcanii catalyzed the nonoxidative decarboxylation of pyruvate. A decrease in the amount of soluble ZmPDC protein was detected as H. volcanii transitioned from log phase to late stationary phase that was inversely proportional to the amount of pdc-specific mRNA. Based on these results, proteins from non-halophilic organisms can be actively synthesized in haloarchaea; however, post-transcriptional mechanisms present in stationary phase appear to limit the amount of recombinant protein expressed.
Collapse
Affiliation(s)
- Steven J. Kaczowka
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA
| | - Christopher J. Reuter
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA
| | - Lee A. Talarico
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA
| | - Julie A. Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA
- Corresponding author ()
| |
Collapse
|
48
|
García-Urdiales E, Alfonso I, Gotor V. Enantioselective enzymatic desymmetrizations in organic synthesis. Chem Rev 2005; 105:313-54. [PMID: 15720156 DOI: 10.1021/cr040640a] [Citation(s) in RCA: 400] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eduardo García-Urdiales
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Julián Clavería, 8, 33071 Oviedo, Spain
| | | | | |
Collapse
|
49
|
Engel S, Vyazmensky M, Berkovich D, Barak Z, Merchuk J, Chipman DM. Column flow reactor using acetohydroxyacid synthase I fromEscherichia coli as catalyst in continuous synthesis ofR-phenylacetyl carbinol. Biotechnol Bioeng 2005; 89:733-40. [PMID: 15685598 DOI: 10.1002/bit.20392] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We tested the possibility of utilizing acetohydroxyacid synthase I (AHAS I) from Escherichia coli in a continuous flow reactor for production of R-phenylacetyl carbinol (R-PAC). We constructed a fusion of the large, catalytic subunit of AHAS I with a cellulose binding domain (CBD). This allowed purification of the enzyme and its immobilization on cellulose in a single step. After immobilization, AHAS I is fully active and can be used as a catalyst in an R-PAC production unit, operating either in batch or continuous mode. We propose a simplified mechanistic model that can predict the product output of the AHAS I-catalyzed reaction. This model should be useful for optimization and scaling up of a R-PAC production unit, as demonstrated by a column flow reactor.
Collapse
Affiliation(s)
- Stanislav Engel
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | | | | | |
Collapse
|
50
|
Plaza M, Fernández de Palencia P, Peláez C, Requena T. Biochemical and molecular characterization of α-ketoisovalerate decarboxylase, an enzyme involved in the formation of aldehydes from amino acids byLactococcus lactis. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09778.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|