1
|
Xie X, Ding D, Bai D, Zhu Y, Sun W, Sun Y, Zhang D. Melatonin biosynthesis pathways in nature and its production in engineered microorganisms. Synth Syst Biotechnol 2022; 7:544-553. [PMID: 35087957 PMCID: PMC8761603 DOI: 10.1016/j.synbio.2021.12.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022] Open
Abstract
Melatonin is a biogenic amine that can be found in plants, animals and microorganism. The metabolic pathway of melatonin is different in various organisms, and biosynthetic endogenous melatonin acts as a molecular signal and antioxidant protection against external stress. Microbial synthesis pathways of melatonin are similar to those of animals but different from those of plants. At present, the method of using microorganism fermentation to produce melatonin is gradually prevailing, and exploring the biosynthetic pathway of melatonin to modify microorganism is becoming the mainstream, which has more advantages than traditional chemical synthesis. Here, we review recent advances in the synthesis, optimization of melatonin pathway. l-tryptophan is one of the two crucial precursors for the synthesis of melatonin, which can be produced through a four-step reaction. Enzymes involved in melatonin synthesis have low specificity and catalytic efficiency. Site-directed mutation, directed evolution or promotion of cofactor synthesis can enhance enzyme activity and increase the metabolic flow to promote microbial melatonin production. On the whole, the status and bottleneck of melatonin biosynthesis can be improved to a higher level, providing an effective reference for future microbial modification.
Collapse
Affiliation(s)
- Xiaotong Xie
- Dalian Polytechnic University, Dalian, 116000, PR China
| | - Dongqin Ding
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Danyang Bai
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Yaru Zhu
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Wei Sun
- Tianjin University of science and technology, Tianjin, 300308, PR China
| | - Yumei Sun
- Dalian Polytechnic University, Dalian, 116000, PR China
- Corresponding author.
| | - Dawei Zhang
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- Corresponding author. Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China.
| |
Collapse
|
2
|
Nehela Y, Killiny N. Diaphorina citri Genome Possesses a Complete Melatonin Biosynthesis Pathway Differentially Expressed under the Influence of the Phytopathogenic Bacterium, Candidatus Liberibacter asiaticus. INSECTS 2021; 12:317. [PMID: 33916117 PMCID: PMC8065666 DOI: 10.3390/insects12040317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022]
Abstract
Melatonin is synthesized from the amino acid L-tryptophan via the shikimic acid pathway and ubiquitously distributed in both prokaryotes and eukaryotes. Although most of melatonin biosynthesis genes were characterized in several plants and animal species including the insect model, Drosophila melanogaster, none of these enzymes have been identified from the Asian citrus psyllid, Diaphorina citri. We used comprehensive in silico analysis and gene expression techniques to identify the melatonin biosynthesis-related genes of D. citri and to evaluate the expression patterns of these genes within the adults of D. citri with gradient infection rates (0, 28, 34, 50, 58, and 70%) of the phytopathogenic bacterium Candidatus Liberibacter asiaticus and after the treatment with exogenous melatonin. We showed that the D. citri genome possesses six putative melatonin biosynthesis-related genes including two putative tryptophan 5-hydroxylase (DcT5H-1 and DcT5H-2), a putative aromatic amino acid decarboxylase (DcAADC), two putative arylalkylamine N-acetyltransferase (DcAANAT-1 and DcAANAT-2), and putative N-acetylserotonin O-methyltransferase (DcASMT). The infection with Ca. L. asiaticus decreased the transcript levels of all predicted genes in the adults of D. citri. Moreover, melatonin supplementation induced their expression levels in both healthy and Ca. L. asiaticus-infected psyllids. These findings confirm the association of these genes with the melatonin biosynthesis pathway.
Collapse
Affiliation(s)
- Yasser Nehela
- Citrus Research and Education Center, Department of Plant Pathology, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA;
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt
| | - Nabil Killiny
- Citrus Research and Education Center, Department of Plant Pathology, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA;
| |
Collapse
|
3
|
Aregbesola OA, Kumar A, Mokoena MP, Olaniran AO. Role of tetrachloro-1,4-benzoquinone reductase in phenylalanine hydroxylation system and pentachlorophenol degradation in Bacillus cereus AOA-CPS1. Int J Biol Macromol 2020; 161:875-890. [PMID: 32535205 DOI: 10.1016/j.ijbiomac.2020.06.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 12/27/2022]
Abstract
This study reports a ≅12.5 kDa protein tetrachloro-1,4-benzoquinone reductase (CpsD) from Bacillus cereus strain AOA-CPS1 (BcAOA). CpsD is purified to homogeneity with a total yield of 35% and specific activity of 160 U·mg-1 of protein. CpsD showed optimal activity at pH 7.5 and 40 °C. The enzyme was found to be functionally stable between pH 7.0-7.5 and temperature between 30 °C and 35 °C. CpsD activity was enhanced by Fe2+ and inhibited by sodium azide and SDS. CpsD followed Michaelis-Menten kinetic exhibiting an apparent vmax, Km, kcat and kcat/Km values of 0.071 μmol·s-1, 94 μmol, 0.029 s-1 and 3.13 × 10-4 s-1·μmol-1, respectively, for substrate tetrachloro-1,4-benzoquinone. The bioinformatics analysis indicated that CpsD belongs to the PCD/DCoH superfamily, with specific conserved protein domains of pterin-4α-carbinolamine dehydratase (PCD). This study proposed that CpsD catalysed the reduction of tetrachloro-1,4-benzoquinone to tetrachloro-p-hydroquinone and released the products found in phenylalanine hydroxylation system (PheOHS) via a Ping-Pong or atypical ternary mechanism; and regulate expression of phenylalanine 4-monooxygenase by blocking reverse flux in BcAOA PheOHS using a probable Yin-Yang mechanism. The study also concluded that CpsD may play a catalytic and regulatory role in BcAOA PheOHS and pentachlorophenol degradation pathway.
Collapse
Affiliation(s)
- Oladipupo A Aregbesola
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| | - Ajit Kumar
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| | - Mduduzi P Mokoena
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa.
| |
Collapse
|
4
|
Waløen K, Kleppe R, Martinez A, Haavik J. Tyrosine and tryptophan hydroxylases as therapeutic targets in human disease. Expert Opin Ther Targets 2016; 21:167-180. [PMID: 27973928 DOI: 10.1080/14728222.2017.1272581] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The ancient and ubiquitous monoamine signalling molecules serotonin, dopamine, norepinephrine, and epinephrine are involved in multiple physiological functions. The aromatic amino acid hydroxylases tyrosine hydroxylase (TH), tryptophan hydroxylase 1 (TPH1), and tryptophan hydroxylase 2 (TPH2) catalyse the rate-limiting steps in the biosynthesis of these monoamines. Genetic variants of TH, TPH1, and TPH2 genes are associated with neuropsychiatric disorders. The interest in these enzymes as therapeutic targets is increasing as new roles of these monoamines have been discovered, not only in brain function and disease, but also in development, cardiovascular function, energy and bone homeostasis, gastrointestinal motility, hemostasis, and liver function. Areas covered: Physiological roles of TH, TPH1, and TPH2. Enzyme structures, catalytic and regulatory mechanisms, animal models, and associated diseases. Interactions with inhibitors, pharmacological chaperones, and regulatory proteins relevant for drug development. Expert opinion: Established inhibitors of these enzymes mainly target their amino acid substrate binding site, while tetrahydrobiopterin analogues, iron chelators, and allosteric ligands are less studied. New insights into monoamine biology and 3D-structural information and new computational/experimental tools have triggered the development of a new generation of more selective inhibitors and pharmacological chaperones. The enzyme complexes with their regulatory 14-3-3 proteins are also emerging as therapeutic targets.
Collapse
Affiliation(s)
- Kai Waløen
- a Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders , University of Bergen , Bergen , Norway
| | - Rune Kleppe
- b Computational Biology Unit, Department of Informatics , University of Bergen , Bergen , Norway
| | - Aurora Martinez
- a Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders , University of Bergen , Bergen , Norway
| | - Jan Haavik
- a Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders , University of Bergen , Bergen , Norway
| |
Collapse
|
5
|
Yano S, Moseley K, Azen C. Melatonin and dopamine as biomarkers to optimize treatment in phenylketonuria: effects of tryptophan and tyrosine supplementation. J Pediatr 2014; 165:184-189.e1. [PMID: 24857519 PMCID: PMC8889885 DOI: 10.1016/j.jpeds.2014.03.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/18/2014] [Accepted: 03/26/2014] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To determine whether additional supplementation of tryptophan (Trp) and tyrosine (Tyr) improve serotonin and dopamine metabolism in individuals with phenylketonuria treated with large neutral amino acid (LNAA) tablets. STUDY DESIGN Ten adult individuals with phenylketonuria participated in a randomized, double-blind, placebo-controlled cross-over study consisting of three 3-week phases: washout, treatment with LNAA tablets plus supplementation with either Trp and Tyr tablets or placebo, and LNAA tablets plus the alternate supplementation. An overnight protocol to measure blood melatonin, a serotonin metabolite in the pinealocytes, and urine 6-sulfatoxymelatonin and dopamine in first-void urine specimens was conducted after each phase. RESULTS Serum melatonin and urine 6-sulfatoxymelatonin and dopamine levels were increased in the LNAA phase (LNAA plus placebo) compared with the washout phase. Serum melatonin and urine 6-sulfatoxymelatonin were not increased in the active phase (LNAA plus Trp + Tyr) compared with the LNAA phase, although plasma Trp:LNAA was increased compared with the LNAA phase. Among 7 subjects with a plasma Trp/LNAA >0.03, a negative correlation between urine 6-sulfatoxymelatonin and plasma phenylalanine levels was observed (r = -0.072). Urine dopamine levels and plasma Tyr:LNAA were increased in the active phase compared with the LNAA phase. CONCLUSION Melatonin levels were not increased with the higher dose of Trp supplementation, but dopamine levels were increased with the higher dose of Tyr supplementation. Serotonin synthesis appears to be suppressed by high phenylalanine levels at the Trp hydroxylase level.
Collapse
Affiliation(s)
- Shoji Yano
- Genetics Division, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Kathryn Moseley
- Genetics Division, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Colleen Azen
- Clinical and Translational Science Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
6
|
Abhilash M, Alex M, Mathews VV, Nair RH. Chronic Effect of Aspartame on Ionic Homeostasis and Monoamine Neurotransmitters in the Rat Brain. Int J Toxicol 2014; 33:332-341. [DOI: 10.1177/1091581814537087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aspartame is one of the most widely used artificial sweeteners globally. Data concerning acute neurotoxicity of aspartame is controversial, and knowledge on its chronic effect is limited. In the current study, we investigated the chronic effects of aspartame on ionic homeostasis and regional monoamine neurotransmitter concentrations in the brain. Our results showed that aspartame at high dose caused a disturbance in ionic homeostasis and induced apoptosis in the brain. We also investigated the effects of aspartame on brain regional monoamine synthesis, and the results revealed that there was a significant decrease of dopamine in corpus striatum and cerebral cortex and of serotonin in corpus striatum. Moreover, aspartame treatment significantly alters the tyrosine hydroxylase activity and amino acids levels in the brain. Our data suggest that chronic use of aspartame may affect electrolyte homeostasis and monoamine neurotransmitter synthesis dose dependently, and this might have a possible effect on cognitive functions.
Collapse
Affiliation(s)
- M. Abhilash
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Manju Alex
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | | | | |
Collapse
|
7
|
Sudhakumari CC, Senthilkumaran B, Raghuveer K, Wang DS, Kobayashi T, Kagawa H, Krishnaiah C, Dutta-Gupta A, Nagahama Y. Dimorphic expression of tryptophan hydroxylase in the brain of XX and XY Nile tilapia during early development. Gen Comp Endocrinol 2010; 166:320-9. [PMID: 19925800 DOI: 10.1016/j.ygcen.2009.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Revised: 10/15/2009] [Accepted: 11/10/2009] [Indexed: 12/11/2022]
Abstract
Serotonin (5-HT) is well known for modulating the release of GnRH and gonadotropin in teleosts. Reports on increased female:male ratio after the blockade of 5-HT biosynthesis proposed a role for 5-HT in brain sex differentiation. Two types of tryptophan hydroxylase (Tph), rate-limiting enzyme in the biosynthesis of 5-HT were cloned from vertebrates. In the present study, we cloned Tph from brain and evaluated its importance during early development of XX and XY Nile tilapia. Tph cloned from tilapia brain is 1888 bp in length and it encodes predicted protein of 462 amino acid residues. Tph activity of tilapia was confirmed by demonstrating the conversion of L-tryptophan to 5-hydroxy tryptophan by the recombinant protein after transient transfection of this cDNA clone in COS-7 cells. Northern blot identified single transcript around 2kb in male brain. Tissue distribution of Tph revealed high abundance in brain, kidney, liver and testis. Semi-quantitative RT-PCR revealed exclusive expression of Tph in the male brain from 5 to 20 days post hatch (dph) while in the female brain, it was from 25 dph. These results were authenticated by localization of Tph transcripts in olfactory bulb-telencephalon region of 11 dph male brain using in situ hybridization. Tph immunoreactivity (-ir) was also evident in the nucleus preopticus-periventricularis area of male brain as early as 12 dph. However, Tph-ir was observed in several regions of both male and female brain without any distinction from 30 dph. Dimorphic expression pattern of Tph during early brain development around the critical period (7-21 dph) of gonadal sex determination and differentiation may implicate a role for Tph in brain sex differentiation of tilapia.
Collapse
Affiliation(s)
- C C Sudhakumari
- Department of Animal Sciences, School of Life Sciences-Centre of Advanced Study, University of Hyderabad, P.O. Central University, Hyderabad 500046, Andhra Pradesh, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hasegawa H, Nakamura K. Tryptophan Hydroxylase and Serotonin Synthesis Regulation. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2010. [DOI: 10.1016/s1569-7339(10)70078-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
A simple two step procedure for purification of the catalytic domain of chicken tryptophan hydroxylase 1 in a form suitable for crystallization. Protein Expr Purif 2008; 57:116-26. [DOI: 10.1016/j.pep.2007.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 10/12/2007] [Accepted: 10/18/2007] [Indexed: 11/24/2022]
|
10
|
Carkaci-Salli N, Flanagan JM, Martz MK, Salli U, Walther DJ, Bader M, Vrana KE. Functional Domains of Human Tryptophan Hydroxylase 2 (hTPH2). J Biol Chem 2006; 281:28105-12. [PMID: 16864580 DOI: 10.1074/jbc.m602817200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in serotonin biosynthesis. A novel gene, termed TPH2, has recently been described. This gene is preferentially expressed in the central nervous system, while the original TPH1 is the peripheral gene. We have expressed human tryptophan hydroxylase 2 (hTPH2) and two deletion mutants (NDelta150 and NDelta150/CDelta24) using isopropyl beta-D-thiogalactopyranoside-free autoinduction in Escherichia coli. This expression system produced active wild type TPH2 with relatively low solubility. The solubility was increased for mutants lacking the NH(2)-terminal regulatory domain. The solubility of hTPH2, NDelta150, and NDelta150/CDelta24 are 6.9, 62, and 97.5%, respectively. Removal of the regulatory domain also produced a more than 6-fold increase in enzyme stability (t((1/2)) at 37 degrees C). The wild type hTPH2, like other members of the aromatic amino acid hydroxylase superfamily, exists as a homotetramer (236 kDa on size exclusion chromatography). Similarly, NDelta150 also migrates as a tetramer (168 kDa). In contrast, removal of the NH(2)-terminal domain and the COOH-terminal, putative leucine zipper tetramerization domain produces monomeric enzyme (39 kDa). Interestingly, removal of the NH(2)-terminal regulatory domain did not affect the Michaelis constants for either substrate but did increase V(max) values. These data identify the NH(2)-terminal regulatory domain as the source of hTPH2 instability and reduced solubility.
Collapse
Affiliation(s)
- Nurgul Carkaci-Salli
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033-2360, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
McKinney J, Knappskog PM, Haavik J. Different properties of the central and peripheral forms of human tryptophan hydroxylase. J Neurochem 2005; 92:311-20. [PMID: 15663479 DOI: 10.1111/j.1471-4159.2004.02850.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tryptophan hydroxylase (TPH) catalyses the rate-limiting reaction in the biosynthesis of serotonin. In humans, two different TPH genes exist, located on chromosomes 11 and 12, respectively, and encoding two enzymes (TPH1 and TPH2) with an overall sequence identity of 71%. We have expressed both enzymes as various fusion proteins in Escherichia coli and using an in vitro transcription/translation system, and compared their solubility and kinetic properties. TPH2 is more soluble than TPH1, has a higher molecular weight and different kinetic properties, including a lower catalytic efficiency towards phenylalanine than TPH1. Both enzymes are phosphorylated by cAMP-dependent protein kinase A. TPH2 was phosphorylated at Ser19, a phosphorylation site not present in TPH1. The differences between TPH1 and TPH2 have important implications for the regulation of serotonin production in the brain and the periphery and may provide an explanation for some of the diverging results reported for TPH from different sources in the past.
Collapse
Affiliation(s)
- Jeffrey McKinney
- Department of Biomedicine, Section of Biochemistry and Molecular Biology, University of Bergen, Bergen, Norway
| | | | | |
Collapse
|
12
|
McKinney J, Knappskog PM, Pereira J, Ekern T, Toska K, Kuitert BB, Levine D, Gronenborn AM, Martinez A, Haavik J. Expression and purification of human tryptophan hydroxylase from Escherichia coli and Pichia pastoris. Protein Expr Purif 2004; 33:185-94. [PMID: 14711505 DOI: 10.1016/j.pep.2003.09.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tryptophan hydroxylase (TPH) from several mammalian species has previously been cloned and expressed in bacteria. However, due to the instability of wild type TPH, most successful attempts have been limited to the truncated forms of this enzyme. We have expressed full-length human TPH in large amounts in Escherichia coli and Pichia pastoris and purified the enzyme using new purification protocols. When expressed as a fusion protein in E. coli, the maltose-binding protein-TPH (MBP-TPH) fusion protein was more soluble than native TPH and the other fusion proteins and had a 3-fold higher specific activity than the His-Patch-thioredoxin-TPH and 6xHis-TPH fusion proteins. The purified MBP-TPH had a V(max) of 296 nmol/min/mg and a K(m) for L-tryptophan of 7.5+/-0.7 microM, compared to 18+/-5 microM for the partially purified enzyme from P. pastoris. To overcome the unfavorable properties of TPH, the stabilizing effect of different agents was investigated. Both tryptophan and glycerol had a stabilizing effect, whereas dithiothreitol, (6R)-5,6,7,8,-tetrahydrobiopterin, and Fe(2+) inactivated the enzyme. Irrespective of expression conditions, both native TPH expressed in bacteria or yeast, or TPH fusion proteins expressed in bacteria exhibited a strong tendency to aggregate and precipitate during purification, indicating that this is an intrinsic property of this enzyme. This supports previous observations that the enzyme in vivo may be stabilized by additional interactions.
Collapse
Affiliation(s)
- Jeffrey McKinney
- Department of Biochemistry and Molecular Biology, University of Bergen, Bergen, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Serotonin (5-hydroxytryptophan, 5-HT) is a neurotransmitter synthesized in the raphe nuclei of the brain stem and involved in the central control of food intake, sleep, and mood. Accordingly, dysfunction of the serotonin system has been implicated in the pathogenesis of psychiatric diseases. At the same time, serotonin is a peripheral hormone produced mainly by enterochromaffin cells in the intestine and stored in platelets, where it is involved in vasoconstriction, haemostasis, and the control of immune responses. Moreover, serotonin is a precursor for melatonin and is therefore synthesized in high amounts in the pineal gland. Tryptophan hydroxylase (TPH) catalyzes the rate limiting step in 5-HT synthesis. Until recently, only one gene encoding TPH was described for vertebrates. By gene targeting, we functionally ablated this gene in mice. To our surprise, the resulting animals, although being deficient for serotonin in the periphery and in the pineal gland, exhibited close to normal levels of 5-HT in the brain stem. This led us to the detection of a second TPH gene in the genome of humans, mice, and rats, called TPH2. This gene is predominantly expressed in the brain stem, while the classical TPH gene, now called TPH1, is expressed in the gut, pineal gland, spleen, and thymus. These findings clarify puzzling data, which have been collected over the last decades about partially purified TPH proteins with different characteristics and justify a new concept of the serotonin system. In fact, there are two serotonin systems in vertebrates, independently regulated and with distinct functions.
Collapse
Affiliation(s)
- Diego J Walther
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rossle-Strasse 10, D-13092 Berlin-Buch, Germany
| | | |
Collapse
|
14
|
McKinney J, Teigen K, Frøystein NA, Salaün C, Knappskog PM, Haavik J, Martínez A. Conformation of the substrate and pterin cofactor bound to human tryptophan hydroxylase. Important role of Phe313 in substrate specificity. Biochemistry 2001; 40:15591-601. [PMID: 11747434 DOI: 10.1021/bi015722x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tryptophan hydroxylase (TPH) carries out the 5-hydroxylation of L-Trp, which is the rate-limiting step in the synthesis of serotonin. We have prepared and characterized a stable N-terminally truncated form of human TPH that includes the catalytic domain (Delta90TPH). We have also determined the conformation and distances to the catalytic non-heme iron of both L-Trp and the tetrahydrobiopterin cofactor analogue L-erythro-7,8-dihydrobiopterin (BH2) bound to Delta90TPH by using 1H NMR spectroscopy. The bound conformers of the substrate and the pterin were then docked into the modeled three-dimensional structure of TPH. The resulting ternary TPH-BH2-L-Trp structure is very similar to that previously determined by the same methods for the complex of phenylalanine hydroxylase (PAH) with BH2 and L-Phe [Teigen, K., et al. (1999) J. Mol. Biol. 294, 807-823]. In the model, L-Trp binds to the enzyme through interactions with Arg257, Ser336, His272, Phe318, and Phe313, and the ring of BH2 interacts mainly with Phe241 and Glu273. The distances between the hydroxylation sites at C5 in L-Trp and C4a in the pterin, i.e., 6.1 +/- 0.4 A, and from each of these sites to the iron, i.e., 4.1 +/- 0.3 and 4.4 +/- 0.3 A, respectively, are also in agreement with the formation of a transient iron-4a-peroxytetrahydropterin in the reaction, as proposed for the other hydroxylases. The different conformation of the dihydroxypropyl chain of BH2 in PAH and TPH seems to be related to the presence of nonconserved residues, i.e., Tyr235 and Pro238 in TPH, at the cofactor binding site. Moreover, Phe313, which seems to interact with the substrate through ring stacking, corresponds to a Trp residue in both tyrosine hydroxylase and PAH (Trp326) and appears to be an important residue for influencing the substrate specificity in this family of enzymes. We show that the W326F mutation in PAH increases the relative preference for L-Trp as the substrate, while the F313W mutation in TPH increases the preference for L-Phe, possibly by a conserved active site volume effect.
Collapse
Affiliation(s)
- J McKinney
- Department of Biochemistry and Molecular Biology, University of Bergen, Arstadveien 19, N-5009 Bergen, Norway
| | | | | | | | | | | | | |
Collapse
|