1
|
Dunislawska A, Herosimczyk A, Lepczynski A, Slama P, Slawinska A, Bednarczyk M, Siwek M. Molecular Response in Intestinal and Immune Tissues to in Ovo Administration of Inulin and the Combination of Inulin and Lactobacillus lactis Subsp. cremoris. Front Vet Sci 2021; 7:632476. [PMID: 33614758 PMCID: PMC7886801 DOI: 10.3389/fvets.2020.632476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/15/2020] [Indexed: 02/02/2023] Open
Abstract
Intestinal microbiota are a key factor in maintaining good health and production results in chickens. They play an important role in the stimulation of immune responses, as well as in metabolic processes and nutrient digestion. Bioactive substances such as prebiotics, probiotics, or a combination of the two (synbiotic) can effectively stimulate intestinal microbiota and therefore replace antibiotic growth promoters. Intestinal microbiota might be stimulated at the early stage of embryo development in ovo. The aim of the study was to analyze the expression of genes related to energy metabolism and immune response after the administration of inulin and a synbiotic, in which lactic acid bacteria were combined with inulin in the intestines and immune tissues of chicken broilers. The experiment was performed on male broiler chickens. Eggs were incubated for 21 days in a commercial hatchery. On day 12 of egg incubation, inulin as a prebiotic and inulin with Lactobacillus lactis subsp. cremoris as a synbiotic were delivered to the egg chamber. The control group was injected with physiological saline. On day 35 post-hatching, birds from each group were randomly selected and sacrificed. Tissues (spleen, cecal tonsils, and large intestine) were collected and intended for RNA isolation. The gene panel (ABCG8, HNF4A, ACOX2, APBB1IP, BRSK2, APOA1, and IRS2) was selected based on the microarray dataset and biological functions of genes related to the energy metabolism and immune responses. Isolated RNA was analyzed using the RT-qPCR method, and the relative gene expression was calculated. In our experiment, distinct effects of prebiotics and synbiotics following in ovo delivery were manifested in all analyzed tissues, with the lowest number of genes with altered expression shown in the large intestines of broilers. The results demonstrated that prebiotics or synbiotics provide a potent stimulation of gene expression in the spleen and cecal tonsils of broiler chickens. The overall number of gene expression levels and the magnitude of their changes in the spleen and cecal tonsils were higher in the group of synbiotic chickens compared to the prebiotic group.
Collapse
Affiliation(s)
- Aleksandra Dunislawska
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Bydgoszcz, Poland
| | - Agnieszka Herosimczyk
- Department of Physiology, Cytobiology, and Proteomics, West Pomeranian University of Technology, Szczecin, Poland
| | - Adam Lepczynski
- Department of Physiology, Cytobiology, and Proteomics, West Pomeranian University of Technology, Szczecin, Poland
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Mendel University in Brno, Brno, Czechia
| | - Anna Slawinska
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Bydgoszcz, Poland
| | - Marek Bednarczyk
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Bydgoszcz, Poland
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Bydgoszcz, Poland
| |
Collapse
|
2
|
Jiang K, Ma Z, Wang Z, Li H, Wang Y, Tian Y, Li D, Liu X. Evolution, Expression Profile, Regulatory Mechanism, and Functional Verification of EBP-Like Gene in Cholesterol Biosynthetic Process in Chickens (Gallus Gallus). Front Genet 2021; 11:587546. [PMID: 33519893 PMCID: PMC7841431 DOI: 10.3389/fgene.2020.587546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/14/2020] [Indexed: 12/30/2022] Open
Abstract
The emopamil binding protein (EBP) is an important enzyme participating in the final steps of cholesterol biosynthesis in mammals. A predictive gene EBP-like, which encodes the protein with a high identity to human EBP, was found in chicken genome. No regulatory mechanisms and biological functions of EBP-like have been characterized in chickens. In the present study, the coding sequence of EBP-like was cloned, the phylogenetic trees of EBP/EBP-like were constructed and the genomic synteny of EBP-like was analyzed. The regulatory mechanism of EBP-like were explored with in vivo and in vitro experiments. The biological functions of EBP-like in liver cholesterol biosynthetic were examined by using gain- or loss-of-function strategies. The results showed that chicken EBP-like gene was originated from a common ancestral with Japanese quail EBP gene, and was relatively conservative with EBP gene among different species. The EBP-like gene was highly expressed in liver, its expression level was significantly increased in peak-laying stage, and was upregulated by estrogen. Inhibition of the EBP-like mRNA expression could restrain the expressions of EBP-like downstream genes (SC5D, DHCR24, and DHCR7) in the cholesterol synthetic pathway, therefore downregulate the liver intracellular T-CHO level. In conclusion, as substitute of EBP gene in chickens, EBP-like plays a vital role in the process of chicken liver cholesterol synthesis. This research provides a basis for revealing the molecular regulatory mechanism of cholesterol synthesis in birds, contributes insights into the improvement of the growth and development, laying performance and egg quality in poultry.
Collapse
Affiliation(s)
- Keren Jiang
- College of Animal Science, Henan Agricultural University, Zhengzhou, China
| | - Zheng Ma
- College of Animal Science, Henan Agricultural University, Zhengzhou, China
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Zhang Wang
- College of Animal Science, Henan Agricultural University, Zhengzhou, China
| | - Hong Li
- College of Animal Science, Henan Agricultural University, Zhengzhou, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Yanbin Wang
- College of Animal Science, Henan Agricultural University, Zhengzhou, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Yadong Tian
- College of Animal Science, Henan Agricultural University, Zhengzhou, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Donghua Li
- College of Animal Science, Henan Agricultural University, Zhengzhou, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Xiaojun Liu
- College of Animal Science, Henan Agricultural University, Zhengzhou, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| |
Collapse
|
3
|
Oestrogen regulates the expression of cathepsin E-A-like gene through ER
$$\upbeta $$
β
in liver of chicken (Gallus gallus). J Genet 2018. [DOI: 10.1007/s12041-018-0890-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
Wang CL, Fan YC, Wang C, Tsai HJ, Chou CH. The impact of Salmonella Enteritidis on lipid accumulation in chicken hepatocytes. Avian Pathol 2016; 45:450-7. [DOI: 10.1080/03079457.2016.1162280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Chia-Lan Wang
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei City, Taiwan (ROC)
| | - Yang-Chi Fan
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei City, Taiwan (ROC)
| | - Chinling Wang
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, USA
| | - Hsiang-Jung Tsai
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei City, Taiwan (ROC)
- Animal Health Research Institute, Council of Agriculture, New Taipei City, Taiwan (ROC)
| | - Chung-Hsi Chou
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei City, Taiwan (ROC)
| |
Collapse
|
5
|
Schmidinger B, Weijler AM, Schneider WJ, Hermann M. Hepatosteatosis and estrogen increase apolipoprotein O production in the chicken. Biochimie 2016; 127:37-43. [PMID: 27126072 DOI: 10.1016/j.biochi.2016.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/21/2016] [Indexed: 10/21/2022]
Abstract
Apolipoprotein O (ApoO) is a recently discovered plasma apolipoprotein that may also play a role in the mitochondrial inner membrane. Possibly due to this complexity, its physiological functions have not been elucidated yet. To gain insight from a non-mammalian experimental system, we have investigated the regulation of ApoO levels in an alternative, well-suited model for studies on lipid metabolism, the chicken. qPCR using specific primer pairs and Western blot analysis with our rabbit anti-chicken ApoO antiserum demonstrated ApoO in the liver of chickens fed a control or a fat-enriched diet, as well as in 2 chicken hepatoma cell lines, LMH cells and the estrogen-responsive LMH-2A cells, under conditions of lipid loading by incubation with BSA-complexed oleic acid. Induced triglyceride accumulation in both the liver and the hepatic cells was associated with significantly increased levels of ApoO mRNA and protein. Furthermore, upon treatment for 24 h with estrogen of the estrogen receptor-expressing LMH-2A cells, quantitative analysis of ApoO transcripts and Western blotting revealed increases of ApoO expression. Finally, upon a single administration of estrogen to roosters that leads to hyperlipidemia, higher hepatic levels of both ApoO transcript and protein were observed within 24 h. Based on these data, we propose that hepatic expression of ApoO is tightly linked not only to diet-induced hepatosteatosis, but also to increased lipoprotein-production induced by, e.g., hormones. The findings support a role of ApoO as an effector of compromised mitochondrial function that likely accompanies the onset of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Barbara Schmidinger
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Anna M Weijler
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Wolfgang J Schneider
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Marcela Hermann
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Packialakshmi B, Liyanage R, Lay J, Okimoto R, Rath N. Prednisolone-induced predisposition to femoral head separation and the accompanying plasma protein changes in chickens. Biomark Insights 2015; 10:1-8. [PMID: 25635167 PMCID: PMC4295844 DOI: 10.4137/bmi.s20268] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/25/2014] [Accepted: 12/01/2014] [Indexed: 11/05/2022] Open
Abstract
UNLABELLED Femoral head separation (FHS) is an idiopathic bone problem that causes lameness and production losses in commercial poultry. In a model of prednisolone-induced susceptibility to FHS, the changes in plasma proteins and peptides were analyzed to find possible biomarkers. Plasma samples from control and FHS-susceptible birds were depleted of their high abundance proteins by acetonitrile precipitation and were then subjected to cation exchange and reverse-phase (RP) fractionations. Analysis with matrix assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF-MS) showed several differentially expressed peptides, two of which were isolated by RP-HPLC and identified as the fragments of apolipoprotein A-I. The acetonitrile fractionated plasma proteins were subjected to reduction/alkylation and trypsin digestion followed by liquid chromatography and tandem mass spectrometry, which showed the absence of protocadherin 15, vascular endothelial growth factor-C, and certain transcription and ubiquitin-mediated proteolytic factors in FHS-prone birds. It appears that prednisolone-induced dyslipidemia, vascular, and tissue adhesion problems may be consequential to FHS. Validity of these biomarkers in our model and the natural disease must be verified in future using traditional approaches. BIOMARKER INSIGHTS Lameness because of femoral head separation (FHS) is a production and welfare problem in the poultry industry. Selection against FHS requires identification of the birds with subclinical disease with biomarkers from a source such as blood. Prednisolone can induce femoral head problems and predisposition to FHS. Using this experimental model, we analyzed the plasma peptides and proteins from normal and FHS-prone chickens by mass spectrometry to identify differentially expressed peptides and proteins. We found two peptides, both derived from apolipoprotein A-I, quantitatively elevated and two proteins, protocadherin 15 and VEGF-C, that were conspicuously absent in FHS-susceptible birds.
Collapse
Affiliation(s)
- B Packialakshmi
- Cell & Molecular Biology Program and Poultry Science Department, University of Arkansas, Fayetteville, AR, USA
| | - R Liyanage
- State wide Mass Spectrometry Facility, University of Arkansas, Fayetteville, AR, USA
| | - Jo Lay
- State wide Mass Spectrometry Facility, University of Arkansas, Fayetteville, AR, USA
| | - R Okimoto
- Cobb-Vantress Inc., Siloam Springs, AR, USA
| | - Nc Rath
- USDA, Agricultural Research Service, Poultry Production and Product Safety Research Unit, Poultry Science Center, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
7
|
Nikolay B, Plieschnig JA, Subik D, Schneider JD, Schneider WJ, Hermann M. A novel estrogen-regulated avian apolipoprotein. Biochimie 2013; 95:2445-53. [PMID: 24047540 PMCID: PMC3898076 DOI: 10.1016/j.biochi.2013.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/05/2013] [Indexed: 11/21/2022]
Abstract
In search for yet uncharacterized proteins involved in lipid metabolism of the chicken, we have isolated a hitherto unknown protein from the serum lipoprotein fraction with a buoyant density of ≤1.063 g/ml. Data obtained by protein microsequencing and molecular cloning of cDNA defined a 537 bp cDNA encoding a precursor molecule of 178 residues. As determined by SDS-PAGE, the major circulating form of the protein, which we designate apolipoprotein-VLDL-IV (Apo-IV), has an apparent Mr of approximately 17 kDa. Northern Blot analysis of different tissues of laying hens revealed Apo-IV expression mainly in the liver and small intestine, compatible with an involvement of the protein in lipoprotein metabolism. To further investigate the biology of Apo-IV, we raised an antibody against a GST-Apo-IV fusion protein, which allowed the detection of the 17-kDa protein in rooster plasma, whereas in laying hens it was detectable only in the isolated ≤1.063 g/ml density lipoprotein fraction. Interestingly, estrogen treatment of roosters caused a reduction of Apo-IV in the liver and in the circulation to levels similar to those in mature hens. Furthermore, the antibody crossreacted with a 17-kDa protein in quail plasma, indicating conservation of Apo-IV in avian species. In search for mammalian counterparts of Apo-IV, alignment of the sequence of the novel chicken protein with those of different mammalian apolipoproteins revealed stretches with limited similarity to regions of ApoC-IV and possibly with ApoE from various mammalian species. These data suggest that Apo-IV is a newly identified avian apolipoprotein. Apo-VLDL-IV (Apo-IV) is a newly identified avian apolipoprotein. Apo-IV expression is suppressed by estrogen. Apo-IV containing VLDL particles are excluded from uptake into yolk. Apo-IV has limited similarity to mammalian ApoC-IV.
Collapse
Affiliation(s)
- Birgit Nikolay
- London School of Hygiene and Tropical Medicine, Faculty of Infectious and Tropical Diseases, Keppel St., London WC1E 7 HT, UK
| | | | | | | | | | | |
Collapse
|
8
|
Kato N, Shibutani M, Takagi H, Uneyama C, Lee KY, Takigami S, Mashima K, Hirose M. Gene expression profile in the livers of rats orally administered ethinylestradiol for 28 days using a microarray technique. Toxicology 2004; 200:179-92. [PMID: 15212814 DOI: 10.1016/j.tox.2004.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Accepted: 03/23/2004] [Indexed: 11/20/2022]
Abstract
To identify genes showing responses to estrogen exposure in the livers of animals in a repeated oral dose toxicity study, dose-dependent gene expression profiles were analyzed using high-density oligonucleotide microarrays in Sprague-Dawley rats of both sexes administered ethinylestradiol (EE) for 28 days at concentrations of 0, 0.01, 0.1, and 1.0 ppm in the diet. Among 3776 genes examined, examples showing increased expression on EE-treatment were detected predominantly in females. Genes showing dose-dependent up-regulation with greater than five-fold change at 1.0 ppm from the control levels were found to, respectively, number 4 in males, and 24 in females. Most of the latter exhibited relatively high basal expression as well as low variability, and many exhibited clear dose-dependence. Genes showing dose-dependent down-regulation were rather few, and many of those affected exhibited relatively low expression levels with large variation between animals, like genes showing dose-unrelated expression patterns in both sexes or dose-dependent up-regulation in males. Considering that detection of changes in endocrine-linked organs and estrous cyclicity is only possible at the high dose of 1.0 ppm, up-regulation of genes dose-dependently in females provides a sensitive tool to detect estrogenic effects in the rat liver in the framework of the 28-day toxicity study.
Collapse
Affiliation(s)
- Natsumi Kato
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|