1
|
Zheng X, Weng Y, Satoh A, Tanai A, Ikegame M, Kimura K, Yoshitani N, Xie X, Okamura H. PTPA localized in the Golgi apparatus plays an important role in osteoblast differentiation. Biochem Biophys Res Commun 2025; 748:151329. [PMID: 39827549 DOI: 10.1016/j.bbrc.2025.151329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Regulatory subunits of protein phosphatase 2A (PP2A) define the substrate and functional specificity of the PP2A holoenzyme within specific organelles. While PP2A regulates osteoblast differentiation, the roles and localization of its regulatory subunits in osteoblasts remain unclear. Here, we identified PTPA, a PP2A regulatory protein, predominantly localized to the Golgi apparatus, closely overlapping with the Golgi marker Giantin. Disruption of the Golgi structure by Brefeldin A caused PTPA to disperse into the cytoplasm. PTPA overexpression inhibited osteoblast differentiation by downregulating key transcriptional regulators. The Golgi-specific localization of PTPA suggests it may influence bone-related protein secretion and maintain Golgi integrity. These findings highlight the critical role of PTPA in osteoblast differentiation and its association with the Golgi apparatus.
Collapse
Affiliation(s)
- Xinyu Zheng
- Department of Oral Morphology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan; Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yao Weng
- Department of Oral Morphology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ayano Satoh
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Airi Tanai
- Department of Oral Morphology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mika Ikegame
- Department of Oral Morphology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Koji Kimura
- Department of Oral Morphology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Nana Yoshitani
- Department of Oral Maxillofacial Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Xiaohua Xie
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Hirohiko Okamura
- Department of Oral Morphology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| |
Collapse
|
2
|
Khakurel A, Pokrovskaya I, Aragon‐Ramirez WS, Lupashin VV. Acute GARP Depletion Disrupts Vesicle Transport, Leading to Severe Defects in Sorting, Secretion and O-Glycosylation. Traffic 2025; 26:e70003. [PMID: 40100055 PMCID: PMC11917462 DOI: 10.1111/tra.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/26/2025] [Accepted: 03/02/2025] [Indexed: 03/20/2025]
Abstract
The GARP complex is an evolutionarily conserved protein complex proposed to tether endosome-derived vesicles at the trans-Golgi network. While complete depletion of the GARP leads to severe trafficking and glycosylation defects, the primary defects linked to GARP dysfunction remain unclear. In this study, we utilized the mAID degron strategy to achieve rapid degradation of VPS54 in human cells, acutely disrupting GARP function. This resulted in the partial mislocalization and degradation of a subset of Golgi-resident proteins, including TGN46, ATP7A, TMEM87A, CPD, C1GALT1 and GS15. Enzyme recycling defects led to O-glycosylation abnormalities. Additionally, while fibronectin and cathepsin D secretion were altered, mannose-6-phosphate receptors were largely unaffected. Partial displacement of COPI, AP1 and GGA coats caused a significant accumulation of vesicle-like structures and large vacuoles. Electron microscopy detection of GARP-dependent vesicles and identifying specific cargo proteins provide direct experimental evidence of GARP's role as a vesicular tether. We conclude that the primary defects of GARP dysfunction involve vesicular coat mislocalization, accumulation of GARP-dependent vesicles, degradation and mislocalization of specific Golgi proteins and O-glycosylation defects.
Collapse
Affiliation(s)
- Amrita Khakurel
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Irina Pokrovskaya
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Walter S. Aragon‐Ramirez
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Vladimir V. Lupashin
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| |
Collapse
|
3
|
Nuñez M, Carvajal P, Aguilera S, Barrera MJ, Matus S, Couto A, Landoni M, Boncompain G, González S, Molina C, Pino K, Indo S, Figueroa L, González MJ, Castro I. Giantin mediates Golgi localization of Gal3-O-sulfotransferases and affects salivary mucin sulfation in patients with Sjögren's disease. JCI Insight 2024; 9:e171585. [PMID: 39388276 PMCID: PMC11601944 DOI: 10.1172/jci.insight.171585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/08/2024] [Indexed: 10/12/2024] Open
Abstract
Sjögren's disease is a chronic autoimmune disease characterized by symptoms of oral and ocular dryness and extraglandular manifestations. Mouth dryness is not only due to reduced saliva volume, but also to alterations in the quality of salivary mucins in patients with Sjögren's disease. Mucins play a leading role in mucosa hydration and protection, where sulfated and sialylated oligosaccharides retain water molecules at the epithelial surface. The correct localization of glycosyltransferases and sulfotransferases within the Golgi apparatus determines adequate O-glycosylation and sulfation of mucins, which depends on specific golgins that tether enzyme-bearing vesicles. Here, we show that a golgin called Giantin was mislocalized in salivary glands from patients with Sjögren's disease and formed protein complexes with Gal3-O-sulfotransferases (Gal3STs), which changed their localization in Giantin-knockout and -knockdown cells. Our results suggest that Giantin could tether Gal3ST-bearing vesicles and that its altered localization could affect Gal3ST activity, explaining the decreased sulfation of MUC5B observed in salivary glands from patients with Sjögren's disease.
Collapse
Affiliation(s)
- Matilde Nuñez
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Patricia Carvajal
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | - María-José Barrera
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Soledad Matus
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile
| | - Alicia Couto
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigación en Hidratos de Carbono, Buenos Aires, Argentina
| | - Malena Landoni
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigación en Hidratos de Carbono, Buenos Aires, Argentina
| | - Gaelle Boncompain
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, Paris, France
| | - Sergio González
- Escuela de Odontología, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Santiago, Chile
| | - Claudio Molina
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Karina Pino
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sebastián Indo
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Lourdes Figueroa
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - María-Julieta González
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Isabel Castro
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Sumya FT, Aragon-Ramirez WS, Lupashin VV. Comprehensive Proteomic Characterization of the Intra-Golgi Trafficking Intermediates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620336. [PMID: 39484492 PMCID: PMC11527126 DOI: 10.1101/2024.10.25.620336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Intracellular trafficking relies on small vesicular intermediates, though their specific role in Golgi function is still debated. To clarify this, we induced acute dysfunction of the Conserved Oligomeric Golgi (COG) complex and analyzed vesicles from cis, medial, and trans-Golgi compartments. Proteomic analysis of Golgi-derived vesicles from wild-type cells revealed distinct molecular profiles, indicating a robust recycling system for Golgi proteins. Notably, these vesicles retained various vesicular coats, while COG depletion accelerated uncoating. The increased overlap in molecular profiles with COG depletion suggests that persistent defects in vesicle tethering disrupt intra-Golgi sorting. Our findings reveal that the entire Golgi glycosylation machinery recycles within vesicles in a COG-dependent manner, whereas secretory and ER-Golgi trafficking proteins were not enriched. These results support a model in which the COG complex orchestrates multi-step recycling of glycosylation machinery, coordinated by specific Golgi coats, tethers, Rabs, and SNAREs.
Collapse
Affiliation(s)
- Farhana Taher Sumya
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, Arkansas, US
| | - Walter S. Aragon-Ramirez
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, Arkansas, US
| | - Vladimir V Lupashin
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, Arkansas, US
| |
Collapse
|
5
|
Khakurel A, Pokrovskaya I, Lupashin1 VV. Acute GARP depletion disrupts vesicle transport, leading to severe defects in sorting, secretion, and O-glycosylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617053. [PMID: 39416116 PMCID: PMC11482758 DOI: 10.1101/2024.10.07.617053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The GARP complex is an evolutionarily conserved protein complex proposed to tether endosome-derived vesicles at the trans-Golgi network. While prolonged depletion of GARP leads to severe trafficking and glycosylation defects, the primary defects linked to GARP dysfunction remain unclear. In this study, we utilized the mAID degron strategy to achieve rapid degradation of VPS54 in human cells, acutely disrupting GARP function. This resulted in the partial mislocalization and degradation of a subset of Golgi-resident proteins, including TGN46, ATP7A, TMEM87A, CPD, C1GALT1, and GS15. Enzyme recycling defects led to the early onset of O-glycosylation abnormalities. Additionally, while the secretion of fibronectin and cathepsin D was altered, mannose-6-phosphate receptors were largely unaffected. Partial displacement of COPI, AP1, and GGA coats caused a significant accumulation of vesicle-like structures and large vacuoles. Electron microscopy detection of GARP-dependent vesicles, along with the identification of specific cargo proteins, provides direct experimental evidence of GARP's role as a vesicular tether. We conclude that the primary defects of GARP dysfunction involve vesicular coat mislocalization, accumulation of GARP-dependent vesicles, degradation and mislocalization of specific Golgi proteins, and O-glycosylation defects.
Collapse
Affiliation(s)
- Amrita Khakurel
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, Arkansas, US
| | - Irina Pokrovskaya
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, Arkansas, US
| | - Vladimir V. Lupashin1
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, Arkansas, US
| |
Collapse
|
6
|
Huang L, Lee LCC, Shum J, Xu GX, Lo KKW. Construction of photofunctional peptide conjugates through selective modification of N-terminal cysteine with cyclometallated iridium(III) 2-formylphenylboronic acid complexes for organelle-specific imaging, enzyme activity sensing and photodynamic therapy. Chem Commun (Camb) 2024; 60:6186-6189. [PMID: 38805236 DOI: 10.1039/d4cc01824a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Luminescent cyclometallated iridium(III) complexes bearing a 2-formylphenylboronic acid moiety were designed; one of the complexes was utilised to modify peptides containing an N-terminal cysteine to afford luminescent conjugates with selective organelle-targeting or furin-responsive properties.
Collapse
Affiliation(s)
- Lili Huang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.
| | - Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17 W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Justin Shum
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.
| | - Guang-Xi Xu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.
- State Key Laboratory of Terahertz and Millimetre Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
7
|
Anglès F, Gupta V, Wang C, Balch WE. COPII cage assembly factor Sec13 integrates information flow regulating endomembrane function in response to human variation. Sci Rep 2024; 14:10160. [PMID: 38698045 PMCID: PMC11065896 DOI: 10.1038/s41598-024-60687-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
How information flow is coordinated for managing transit of 1/3 of the genome through endomembrane pathways by the coat complex II (COPII) system in response to human variation remains an enigma. By examining the interactome of the COPII cage-assembly component Sec13, we show that it is simultaneously associated with multiple protein complexes that facilitate different features of a continuous program of chromatin organization, transcription, translation, trafficking, and degradation steps that are differentially sensitive to Sec13 levels. For the trafficking step, and unlike other COPII components, reduction of Sec13 expression decreased the ubiquitination and degradation of wild-type (WT) and F508del variant cargo protein cystic fibrosis transmembrane conductance regulator (CFTR) leading to a striking increase in fold stability suggesting that the events differentiating export from degradation are critically dependent on COPII cage assembly at the ER Golgi intermediate compartment (ERGIC) associated recycling and degradation step linked to COPI exchange. Given Sec13's multiple roles in protein complex assemblies that change in response to its expression, we suggest that Sec13 serves as an unanticipated master regulator coordinating information flow from the genome to the proteome to facilitate spatial covariant features initiating and maintaining design and function of membrane architecture in response to human variation.
Collapse
Affiliation(s)
- Frédéric Anglès
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Vijay Gupta
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Chao Wang
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - William E Balch
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
8
|
Lujan P, Garcia-Cabau C, Wakana Y, Vera Lillo J, Rodilla-Ramírez C, Sugiura H, Malhotra V, Salvatella X, Garcia-Parajo MF, Campelo F. Sorting of secretory proteins at the trans-Golgi network by human TGN46. eLife 2024; 12:RP91708. [PMID: 38466628 PMCID: PMC10928510 DOI: 10.7554/elife.91708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Secretory proteins are sorted at the trans-Golgi network (TGN) for export into specific transport carriers. However, the molecular players involved in this fundamental process remain largely elusive. Here, we identified the human transmembrane protein TGN46 as a receptor for the export of secretory cargo protein PAUF in CARTS - a class of protein kinase D-dependent TGN-to-plasma membrane carriers. We show that TGN46 is necessary for cargo sorting and loading into nascent carriers at the TGN. By combining quantitative fluorescence microscopy and mutagenesis approaches, we further discovered that the lumenal domain of TGN46 encodes for its cargo sorting function. In summary, our results define a cellular function of TGN46 in sorting secretory proteins for export from the TGN.
Collapse
Affiliation(s)
- Pablo Lujan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Carla Garcia-Cabau
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Yuichi Wakana
- School of Life Sciences, Tokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Javier Vera Lillo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Carmen Rodilla-Ramírez
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Hideaki Sugiura
- School of Life Sciences, Tokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Vivek Malhotra
- Centre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Maria F Garcia-Parajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| |
Collapse
|
9
|
Parchure A, von Blume J. Sorting secretory proteins. eLife 2023; 12:e93490. [PMID: 37997893 PMCID: PMC10672786 DOI: 10.7554/elife.93490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Abstract
A receptor protein called TGN46 has an important role in sorting secretory proteins into vesicles going to different destinations inside cells.
Collapse
Affiliation(s)
- Anup Parchure
- Department of Cell Biology, Yale University School of MedicineNew HavenUnited States
| | - Julia von Blume
- Department of Cell Biology, Yale University School of MedicineNew HavenUnited States
| |
Collapse
|
10
|
Buser DP, Spang A. Protein sorting from endosomes to the TGN. Front Cell Dev Biol 2023; 11:1140605. [PMID: 36895788 PMCID: PMC9988951 DOI: 10.3389/fcell.2023.1140605] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
Retrograde transport from endosomes to the trans-Golgi network is essential for recycling of protein and lipid cargoes to counterbalance anterograde membrane traffic. Protein cargo subjected to retrograde traffic include lysosomal acid-hydrolase receptors, SNARE proteins, processing enzymes, nutrient transporters, a variety of other transmembrane proteins, and some extracellular non-host proteins such as viral, plant, and bacterial toxins. Efficient delivery of these protein cargo molecules depends on sorting machineries selectively recognizing and concentrating them for their directed retrograde transport from endosomal compartments. In this review, we outline the different retrograde transport pathways governed by various sorting machineries involved in endosome-to-TGN transport. In addition, we discuss how this transport route can be analyzed experimentally.
Collapse
Affiliation(s)
| | - Anne Spang
- *Correspondence: Dominik P. Buser, ; Anne Spang,
| |
Collapse
|
11
|
Sato Y, Tsuyusaki M, Takahashi-Iwanaga H, Fujisawa R, Masamune A, Hamada S, Matsumoto R, Tanaka Y, Kakuta Y, Yamaguchi-Kabata Y, Furuse T, Wakana S, Shimura T, Kobayashi R, Shinoda Y, Goitsuka R, Maezawa S, Sadakata T, Sano Y, Furuichi T. Loss of CAPS2/Cadps2 leads to exocrine pancreatic cell injury and intracellular accumulation of secretory granules in mice. Front Mol Biosci 2022; 9:1040237. [DOI: 10.3389/fmolb.2022.1040237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
The type 2 Ca2+-dependent activator protein for secretion (CAPS2/CADPS2) regulates dense-core vesicle trafficking and exocytosis and is involved in the regulated release of catecholamines, peptidergic hormones, and neuromodulators. CAPS2 is expressed in the pancreatic exocrine acinar cells that produce and secrete digestive enzymes. However, the functional role of CAPS2 in vesicular trafficking and/or exocytosis of non-regulatory proteins in the exocrine pancreas remains to be determined. Here, we analyzed the morpho-pathological indicators of the pancreatic exocrine pathway in Cadps2-deficient mouse models using histochemistry, biochemistry, and electron microscopy. We used whole exosome sequencing to identify CADPS2 variants in patients with chronic pancreatitis (CP). Caps2/Cadps2-knockout (KO) mice exhibited morphophysiological abnormalities in the exocrine pancreas, including excessive accumulation of secretory granules (zymogen granules) and their amylase content in the cytoplasm, deterioration of the fine intracellular membrane structures (disorganized rough endoplasmic reticulum, dilated Golgi cisternae, and the appearance of empty vesicles and autophagic-like vacuoles), as well as exocrine pancreatic cell injury, including acinar cell atrophy, increased fibrosis, and inflammatory cell infiltration. Pancreas-specific Cadps2 conditional KO mice exhibited pathological abnormalities in the exocrine pancreas similar to the global Cadps2 KO mice, indicating that these phenotypes were caused either directly or indirectly by CAPS2 deficiency in the pancreas. Furthermore, we identified a rare variant in the exon3 coding region of CADPS2 in a non-alcoholic patient with CP and showed that Cadps2-dex3 mice lacking CAPS2 exon3 exhibited symptoms similar to those exhibited by the Cadps2 KO and cKO mice. These results suggest that CAPS2 is critical for the proper functioning of the pancreatic exocrine pathway, and its deficiency is associated with a risk of pancreatic acinar cell pathology.
Collapse
|
12
|
Campisi D, Desrues L, Dembélé KP, Mutel A, Parment R, Gandolfo P, Castel H, Morin F. The core autophagy protein ATG9A controls dynamics of cell protrusions and directed migration. J Cell Biol 2022; 221:e202106014. [PMID: 35180289 PMCID: PMC8932524 DOI: 10.1083/jcb.202106014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/09/2021] [Accepted: 12/08/2021] [Indexed: 01/18/2023] Open
Abstract
Chemotactic migration is a fundamental cellular behavior relying on the coordinated flux of lipids and cargo proteins toward the leading edge. We found here that the core autophagy protein ATG9A plays a critical role in the chemotactic migration of several human cell lines, including highly invasive glioma cells. Depletion of ATG9A protein altered the formation of large and persistent filamentous actin (F-actin)-rich lamellipodia that normally drive directional migration. Using live-cell TIRF microscopy, we demonstrated that ATG9A-positive vesicles are targeted toward the migration front of polarized cells, where their exocytosis correlates with protrusive activity. Finally, we found that ATG9A was critical for efficient delivery of β1 integrin to the leading edge and normal adhesion dynamics. Collectively, our data uncover a new function for ATG9A protein and indicate that ATG9A-positive vesicles are mobilized during chemotactic stimulation to facilitate expansion of the lamellipodium and its anchorage to the extracellular matrix.
Collapse
Affiliation(s)
- Daniele Campisi
- Normandie University, UNIROUEN, Institut national de la santé et de la recherche médicale U1239, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Laurence Desrues
- Normandie University, UNIROUEN, Institut national de la santé et de la recherche médicale U1239, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Kléouforo-Paul Dembélé
- Normandie University, UNIROUEN, Institut national de la santé et de la recherche médicale U1239, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Alexandre Mutel
- Normandie University, UNIROUEN, Institut national de la santé et de la recherche médicale U1239, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Renaud Parment
- Normandie University, UNIROUEN, Institut national de la santé et de la recherche médicale U1239, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Pierrick Gandolfo
- Normandie University, UNIROUEN, Institut national de la santé et de la recherche médicale U1239, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Hélène Castel
- Normandie University, UNIROUEN, Institut national de la santé et de la recherche médicale U1239, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Fabrice Morin
- Normandie University, UNIROUEN, Institut national de la santé et de la recherche médicale U1239, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine, Rouen, France
| |
Collapse
|
13
|
Romano R, Del Fiore VS, Saveri P, Palamà IE, Pisciotta C, Pareyson D, Bucci C, Guerra F. Autophagy and Lysosomal Functionality in CMT2B Fibroblasts Carrying the RAB7 K126R Mutation. Cells 2022; 11:cells11030496. [PMID: 35159308 PMCID: PMC8834514 DOI: 10.3390/cells11030496] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 01/18/2023] Open
Abstract
Charcot-Marie-Tooth type 2B (CMT2B) disease is a dominant axonal peripheral neuropathy caused by five mutations in the RAB7A gene. Autophagy and late endocytic trafficking were already characterized in CMT2B. Indeed, impairment of autophagy and an increase in lysosomal degradative activity were found in cells expressing the mutant proteins. Recently, we described a novel RAB7 mutation associated with predominantly motor CMT2 and impaired EGFR trafficking. With the aim to analyze the autophagy process and lysosomal activity in CMT2B fibroblasts carrying the p.K126R RAB7 novel mutation and to investigate further the causes of the different phenotype, we have performed Western blot, immunofluorescence and cytometric analyses monitoring autophagic markers and endocytic proteins. Moreover, we investigated lipophagy by analyzing accumulation of lipid droplets and their co-localization with endolysosomal degradative compartments. We found that cells expressing the RAB7K126R mutant protein were characterized by impairment of autophagy and lipophagy processes and by a moderate increase in lysosomal activity compared to the previously studied cells carrying the RAB7V162M mutation. Thus, we concluded that EGFR trafficking alterations and a moderate increase in lysosomal activity with concomitant impairment of autophagy could induce the specific predominantly motor phenotype observed in K126R patients.
Collapse
Affiliation(s)
- Roberta Romano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni n. 165, 73100 Lecce, Italy; (R.R.); (V.S.D.F.)
| | - Victoria Stefania Del Fiore
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni n. 165, 73100 Lecce, Italy; (R.R.); (V.S.D.F.)
| | - Paola Saveri
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (P.S.); (C.P.); (D.P.)
| | | | - Chiara Pisciotta
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (P.S.); (C.P.); (D.P.)
| | - Davide Pareyson
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (P.S.); (C.P.); (D.P.)
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni n. 165, 73100 Lecce, Italy; (R.R.); (V.S.D.F.)
- Correspondence: (C.B.); (F.G.); Tel.: +39-08-3229-8900 (C.B.)
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni n. 165, 73100 Lecce, Italy; (R.R.); (V.S.D.F.)
- Correspondence: (C.B.); (F.G.); Tel.: +39-08-3229-8900 (C.B.)
| |
Collapse
|
14
|
Liang XH, Nichols JG, De Hoyos CL, Sun H, Zhang L, Crooke ST. Golgi-58K can re-localize to late endosomes upon cellular uptake of PS-ASOs and facilitates endosomal release of ASOs. Nucleic Acids Res 2021; 49:8277-8293. [PMID: 34244781 PMCID: PMC8373082 DOI: 10.1093/nar/gkab599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 11/14/2022] Open
Abstract
Phosphorothioate (PS) modified antisense oligonucleotide (ASO) drugs can trigger RNase H1 cleavage of cellular target RNAs to modulate gene expression. Internalized PS-ASOs must be released from membraned endosomal organelles, a rate limiting step that is not well understood. Recently we found that M6PR transport between Golgi and late endosomes facilitates productive release of PS-ASOs, raising the possibility that Golgi-mediated transport may play important roles in PS-ASO activity. Here we further evaluated the involvement of Golgi in PS-ASO activity by examining additional Golgi proteins. Reduction of certain Golgi proteins, including Golgi-58K, GCC1 and TGN46, decreased PS-ASO activity, without substantial effects on Golgi integrity. Upon PS-ASO cellular uptake, Golgi-58K was recruited to late endosomes where it colocalized with PS-ASOs. Reduction of Golgi-58K caused slower PS-ASO release from late endosomes, decreased GCC2 late endosome relocalization, and led to slower retrograde transport of M6PR from late endosomes to trans-Golgi. Late endosome relocalization of Golgi-58K requires Hsc70, and is most likely mediated by PS-ASO-protein interactions. Together, these results suggest a novel function of Golgi-58K in mediating Golgi-endosome transport and indicate that the Golgi apparatus plays an important role in endosomal release of PS-ASO, ensuring antisense activity.
Collapse
Affiliation(s)
| | | | | | - Hong Sun
- Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Lingdi Zhang
- Core Antisense Research, Carlsbad, CA 92010, USA
| | | |
Collapse
|
15
|
Lie PPY, Yang DS, Stavrides P, Goulbourne CN, Zheng P, Mohan PS, Cataldo AM, Nixon RA. Post-Golgi carriers, not lysosomes, confer lysosomal properties to pre-degradative organelles in normal and dystrophic axons. Cell Rep 2021; 35:109034. [PMID: 33910020 DOI: 10.1016/j.celrep.2021.109034] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/29/2021] [Accepted: 04/06/2021] [Indexed: 01/07/2023] Open
Abstract
Lysosomal trafficking and maturation in neurons remain poorly understood and are unstudied in vivo despite high disease relevance. We generated neuron-specific transgenic mice to track vesicular CTSD acquisition, acidification, and traffic within the autophagic-lysosomal pathway in vivo, revealing that mature lysosomes are restricted from axons. Moreover, TGN-derived transport carriers (TCs), not lysosomes, supply lysosomal components to axonal organelles. Ultrastructurally distinctive TCs containing TGN and lysosomal markers enter axons, engaging autophagic vacuoles and late endosomes. This process is markedly upregulated in dystrophic axons of Alzheimer models. In cultured neurons, most axonal LAMP1 vesicles are weakly acidic TCs that shuttle lysosomal components bidirectionally, conferring limited degradative capability to retrograde organelles before they mature fully to lysosomes within perikarya. The minor LAMP1 subpopulation attaining robust acidification are retrograde Rab7+ endosomes/amphisomes, not lysosomes. Restricted lysosome entry into axons explains the unique lysosome distribution in neurons and their vulnerability toward neuritic dystrophy in disease.
Collapse
Affiliation(s)
- Pearl P Y Lie
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Dun-Sheng Yang
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Philip Stavrides
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Chris N Goulbourne
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Ping Zheng
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Panaiyur S Mohan
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anne M Cataldo
- McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Ralph A Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA; Department of Cell Biology, New York University Langone Medical Center, New York, NY 10016, USA; NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
16
|
Human Golgi phosphoprotein 3 is an effector of RAB1A and RAB1B. PLoS One 2020; 15:e0237514. [PMID: 32790781 PMCID: PMC7425898 DOI: 10.1371/journal.pone.0237514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/28/2020] [Indexed: 12/21/2022] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3) is a peripheral membrane protein localized at the trans-Golgi network that is also distributed in a large cytosolic pool. GOLPH3 has been involved in several post-Golgi protein trafficking events, but its precise function at the molecular level is not well understood. GOLPH3 is also considered the first oncoprotein of the Golgi apparatus, with important roles in several types of cancer. Yet, it is unknown how GOLPH3 is regulated to achieve its contribution in the mechanisms that lead to tumorigenesis. Binding of GOLPH3 to Golgi membranes depends on its interaction to phosphatidylinositol-4-phosphate. However, an early finding showed that GTP promotes the binding of GOLPH3 to Golgi membranes and vesicles. Nevertheless, it remains largely unknown whether this response is consequence of the function of GTP-dependent regulatory factors, such as proteins of the RAB family of small GTPases. Interestingly, in Drosophila melanogaster the ortholog of GOLPH3 interacts with- and behaves as effector of the ortholog of RAB1. However, there is no experimental evidence implicating GOLPH3 as a possible RAB1 effector in mammalian cells. Here, we show that human GOLPH3 interacted directly with either RAB1A or RAB1B, the two isoforms of RAB1 in humans. The interaction was nucleotide dependent and it was favored with GTP-locked active state variants of these GTPases, indicating that human GOLPH3 is a bona fide effector of RAB1A and RAB1B. Moreover, the expression in cultured cells of the GTP-locked variants resulted in less distribution of GOLPH3 in the Golgi apparatus, suggesting an intriguing model of GOLPH3 regulation.
Collapse
|
17
|
Romano R, Rivellini C, De Luca M, Tonlorenzi R, Beli R, Manganelli F, Nolano M, Santoro L, Eskelinen EL, Previtali SC, Bucci C. Alteration of the late endocytic pathway in Charcot-Marie-Tooth type 2B disease. Cell Mol Life Sci 2020; 78:351-372. [PMID: 32280996 PMCID: PMC7867545 DOI: 10.1007/s00018-020-03510-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 12/18/2022]
Abstract
The small GTPase RAB7A regulates late stages of the endocytic pathway and plays specific roles in neurons, controlling neurotrophins trafficking and signaling, neurite outgrowth and neuronal migration. Mutations in the RAB7A gene cause the autosomal dominant Charcot–Marie–Tooth type 2B (CMT2B) disease, an axonal peripheral neuropathy. As several neurodegenerative diseases are caused by alterations of endocytosis, we investigated whether CMT2B-causing mutations correlate with changes in this process. To this purpose, we studied the endocytic pathway in skin fibroblasts from healthy and CMT2B individuals. We found higher expression of late endocytic proteins in CMT2B cells compared to control cells, as well as higher activity of cathepsins and higher receptor degradation activity. Consistently, we observed an increased number of lysosomes, accompanied by higher lysosomal degradative activity in CMT2B cells. Furthermore, we found increased migration and increased RAC1 and MMP-2 activation in CMT2B compared to control cells. To validate these data, we obtained sensory neurons from patient and control iPS cells, to confirm increased lysosomal protein expression and lysosomal activity in CMT2B-derived neurons. Altogether, these results demonstrate that in CMT2B patient-derived cells, the endocytic degradative pathway is altered, suggesting that higher lysosomal activity contributes to neurodegeneration occurring in CMT2B.
Collapse
Affiliation(s)
- Roberta Romano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Cristina Rivellini
- Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria De Luca
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Rossana Tonlorenzi
- Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Beli
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Maria Nolano
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
- Salvatore Maugeri Foundation, Institute of Telese Terme, Benevento, Italy
| | - Lucio Santoro
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Eeva-Liisa Eskelinen
- Institute of Biomedicine, University of Turku, Turku, Finland
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Stefano C Previtali
- Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy.
| |
Collapse
|
18
|
Dirck AT, Whyte ML, Hudson AW. HHV-7 U21 exploits Golgi quality control carriers to reroute class I MHC molecules to lysosomes. Mol Biol Cell 2019; 31:196-208. [PMID: 31851583 PMCID: PMC7001482 DOI: 10.1091/mbc.e19-07-0363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The human herpesvirus-7 (HHV-7) U21 glycoprotein binds to class I major histocompatibility complex (MHC) molecules in the endoplasmic reticulum (ER) and reroutes them to lysosomes. How this single viral glycoprotein efficiently redirects the U21/class I MHC complex to the lysosomal compartment is poorly understood. To investigate the trafficking of HHV-7 U21, we followed synchronous release of U21 from the ER as it traffics through the secretory system. Sorting of integral membrane proteins from the trans-Golgi network (TGN) has been shown to occur through tubular carriers that emanate from the TGN or through vesicular carriers that recruit GGA (Golgi-localized, γ-ear–containing, ARF-binding protein), clathrin adaptors, and clathrin. Here, we present evidence for the existence of a third type of Golgi-derived carrier that is vesicular, yet clathrin independent. This U21-containing carrier also carries a Golgi membrane protein engineered to form inducible oligomers. We propose that U21 employs the novel mechanism of forming oligomeric complexes with class I MHC molecules that result in sorting of the oligomeric U21/class I MHC complexes to Golgi-derived quality control carriers destined for lysosomes.
Collapse
Affiliation(s)
- Aaron T Dirck
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Melissa L Whyte
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Amy W Hudson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
19
|
Zhao P, Pattison LA, Jensen DD, Jimenez-Vargas NN, Latorre R, Lieu T, Jaramillo JO, Lopez-Lopez C, Poole DP, Vanner SJ, Schmidt BL, Bunnett NW. Protein kinase D and Gβγ mediate sustained nociceptive signaling by biased agonists of protease-activated receptor-2. J Biol Chem 2019; 294:10649-10662. [PMID: 31142616 DOI: 10.1074/jbc.ra118.006935] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
Proteases sustain hyperexcitability and pain by cleaving protease-activated receptor-2 (PAR2) on nociceptors through distinct mechanisms. Whereas trypsin induces PAR2 coupling to Gαq, Gαs, and β-arrestins, cathepsin-S (CS) and neutrophil elastase (NE) cleave PAR2 at distinct sites and activate it by biased mechanisms that induce coupling to Gαs, but not to Gαq or β-arrestins. Because proteases activate PAR2 by irreversible cleavage, and activated PAR2 is degraded in lysosomes, sustained extracellular protease-mediated signaling requires mobilization of intact PAR2 from the Golgi apparatus or de novo synthesis of new receptors by incompletely understood mechanisms. We found here that trypsin, CS, and NE stimulate PAR2-dependent activation of protein kinase D (PKD) in the Golgi of HEK293 cells, in which PKD regulates protein trafficking. The proteases stimulated translocation of the PKD activator Gβγ to the Golgi, coinciding with PAR2 mobilization from the Golgi. Proteases also induced translocation of a photoconverted PAR2-Kaede fusion protein from the Golgi to the plasma membrane of KNRK cells. After incubation of HEK293 cells and dorsal root ganglia neurons with CS, NE, or trypsin, PAR2 responsiveness initially declined, consistent with PAR2 cleavage and desensitization, and then gradually recovered. Inhibitors of PKD, Gβγ, and protein translation inhibited recovery of PAR2 responsiveness. PKD and Gβγ inhibitors also attenuated protease-evoked mechanical allodynia in mice. We conclude that proteases that activate PAR2 by canonical and biased mechanisms stimulate PKD in the Golgi; PAR2 mobilization and de novo synthesis repopulate the cell surface with intact receptors and sustain nociceptive signaling by extracellular proteases.
Collapse
Affiliation(s)
- Peishen Zhao
- From the Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Luke A Pattison
- From the Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Dane D Jensen
- the Departments of Surgery and Pharmacology, Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Nestor N Jimenez-Vargas
- the Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, Ontario K7L 3N6, Canada, and
| | - Rocco Latorre
- the Departments of Surgery and Pharmacology, Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - TinaMarie Lieu
- From the Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Josue O Jaramillo
- the Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, Ontario K7L 3N6, Canada, and
| | - Cintya Lopez-Lopez
- the Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, Ontario K7L 3N6, Canada, and
| | - Daniel P Poole
- From the Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Stephen J Vanner
- the Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, Ontario K7L 3N6, Canada, and
| | - Brian L Schmidt
- the Bluestone Center for Clinical Research, New York University College of Dentistry, New York, New York 10010
| | - Nigel W Bunnett
- the Departments of Surgery and Pharmacology, Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, New York 10032,
| |
Collapse
|
20
|
Downregulation of a GPCR by β-Arrestin2-Mediated Switch from an Endosomal to a TGN Recycling Pathway. Cell Rep 2017; 17:2966-2978. [PMID: 27974210 DOI: 10.1016/j.celrep.2016.11.050] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/17/2016] [Accepted: 11/14/2016] [Indexed: 01/14/2023] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone involved in nutrient homeostasis. GIP receptor (GIPR) is constitutively internalized and returned to the plasma membrane, atypical behavior for a G-protein-coupled receptor (GPCR). GIP promotes GIPR downregulation from the plasma membrane by inhibiting recycling without affecting internalization. This transient desensitization is achieved by altered intracellular trafficking of activated GIPR. GIP stimulation induces a switch in GIPR recycling from a rapid endosomal to a slow trans-Golgi network (TGN) pathway. GPCR kinases and β-arrestin2 are required for this switch in recycling. A coding sequence variant of GIPR, which has been associated with metabolic alterations, has altered post-activation trafficking characterized by enhanced downregulation and prolonged desensitization. Downregulation of the variant requires β-arrestin2 targeting to the TGN but is independent of GPCR kinases. The single amino acid substitution in the variant biases the receptor to promote GIP-stimulated β-arrestin2 recruitment without receptor phosphorylation, thereby enhancing downregulation.
Collapse
|
21
|
Wegel E, Göhler A, Lagerholm BC, Wainman A, Uphoff S, Kaufmann R, Dobbie IM. Imaging cellular structures in super-resolution with SIM, STED and Localisation Microscopy: A practical comparison. Sci Rep 2016; 6:27290. [PMID: 27264341 PMCID: PMC4893670 DOI: 10.1038/srep27290] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 05/18/2016] [Indexed: 12/19/2022] Open
Abstract
Many biological questions require fluorescence microscopy with a resolution beyond the diffraction limit of light. Super-resolution methods such as Structured Illumination Microscopy (SIM), STimulated Emission Depletion (STED) microscopy and Single Molecule Localisation Microscopy (SMLM) enable an increase in image resolution beyond the classical diffraction-limit. Here, we compare the individual strengths and weaknesses of each technique by imaging a variety of different subcellular structures in fixed cells. We chose examples ranging from well separated vesicles to densely packed three dimensional filaments. We used quantitative and correlative analyses to assess the performance of SIM, STED and SMLM with the aim of establishing a rough guideline regarding the suitability for typical applications and to highlight pitfalls associated with the different techniques.
Collapse
Affiliation(s)
- Eva Wegel
- Micron Oxford Advanced Imaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Antonia Göhler
- Micron Oxford Advanced Imaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - B Christoffer Lagerholm
- Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom
| | - Alan Wainman
- Micron Oxford Advanced Imaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.,Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Rainer Kaufmann
- Micron Oxford Advanced Imaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.,Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Ian M Dobbie
- Micron Oxford Advanced Imaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
22
|
Schumacher MM, Jun DJ, Jo Y, Seemann J, DeBose-Boyd RA. Geranylgeranyl-regulated transport of the prenyltransferase UBIAD1 between membranes of the ER and Golgi. J Lipid Res 2016; 57:1286-99. [PMID: 27121042 DOI: 10.1194/jlr.m068759] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Indexed: 11/20/2022] Open
Abstract
UbiA prenyltransferase domain-containing protein-1 (UBIAD1) utilizes geranylgeranyl pyrophosphate (GGpp) to synthesize the vitamin K2 subtype menaquinone-4. Previously, we found that sterols trigger binding of UBIAD1 to endoplasmic reticulum (ER)-localized HMG-CoA reductase, the rate-limiting enzyme in synthesis of cholesterol and nonsterol isoprenoids, including GGpp. This binding inhibits sterol-accelerated degradation of reductase, which contributes to feedback regulation of the enzyme. The addition to cells of geranylgeraniol (GGOH), which can become converted to GGpp, triggers release of UBIAD1 from reductase, allowing for its maximal degradation and permitting ER-to-Golgi transport of UBIAD1. Here, we further characterize geranylgeranyl-regulated transport of UBIAD1. Results of this characterization support a model in which UBIAD1 continuously cycles between the ER and medial-trans Golgi of isoprenoid-replete cells. Upon sensing a decline of GGpp in ER membranes, UBIAD1 becomes trapped in the organelle where it inhibits reductase degradation. Mutant forms of UBIAD1 associated with Schnyder corneal dystrophy (SCD), a human eye disease characterized by corneal accumulation of cholesterol, are sequestered in the ER and block reductase degradation. Collectively, these findings disclose a novel sensing mechanism that allows for stringent metabolic control of intracellular trafficking of UBIAD1, which directly modulates reductase degradation and becomes disrupted in SCD.
Collapse
Affiliation(s)
- Marc M Schumacher
- Departments of Molecular Genetics University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Dong-Jae Jun
- Departments of Molecular Genetics University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Youngah Jo
- Departments of Molecular Genetics University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Joachim Seemann
- Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Russell A DeBose-Boyd
- Departments of Molecular Genetics University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| |
Collapse
|
23
|
Windheim M, Höning S, Leppard KN, Butler L, Seed C, Ponnambalam S, Burgert HG. Sorting Motifs in the Cytoplasmic Tail of the Immunomodulatory E3/49K Protein of Species D Adenoviruses Modulate Cell Surface Expression and Ectodomain Shedding. J Biol Chem 2016; 291:6796-812. [PMID: 26841862 DOI: 10.1074/jbc.m115.684787] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Indexed: 11/06/2022] Open
Abstract
The E3 transcription unit of human species C adenoviruses (Ads) encodes immunomodulatory proteins that mediate direct protection of infected cells. Recently, we described a novel immunomodulatory function for E3/49K, an E3 protein uniquely expressed by species D Ads. E3/49K of Ad19a/Ad64, a serotype that causes epidemic keratokonjunctivitis, is synthesized as a highly glycosylated type I transmembrane protein that is subsequently cleaved, resulting in secretion of its large ectodomain (sec49K). sec49K binds to CD45 on leukocytes, impairing activation and functions of natural killer cells and T cells. E3/49K is localized in the Golgi/trans-Golgi network (TGN), in the early endosomes, and on the plasma membrane, yet the cellular compartment where E3/49K is cleaved and the protease involved remained elusive. Here we show that TGN-localized E3/49K comprises both newly synthesized and recycled molecules. Full-length E3/49K was not detected in late endosomes/lysosomes, but the C-terminal fragment accumulated in this compartment at late times of infection. Inhibitor studies showed that cleavage occurs in a post-TGN compartment and that lysosomotropic agents enhance secretion. Interestingly, the cytoplasmic tail of E3/49K contains two potential sorting motifs, YXXΦ (where Φ represents a bulky hydrophobic amino acid) and LL, that are important for binding the clathrin adaptor proteins AP-1 and AP-2in vitro Surprisingly, mutating the LL motif, either alone or together with YXXΦ, did not prevent proteolytic processing but increased cell surface expression and secretion. Upon brefeldin A treatment, cell surface expression was rapidly lost, even for mutants lacking all known endocytosis motifs. Together with immunofluorescence data, we propose a model for intracellular E3/49K transport whereby cleavage takes place on the cell surface by matrix metalloproteases.
Collapse
Affiliation(s)
- Mark Windheim
- From the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom, the Institute of Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Stefan Höning
- the Institute for Biochemistry I and Center for Molecular Medicine Cologne, 50931 Cologne, Germany, and
| | - Keith N Leppard
- From the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Larissa Butler
- From the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Christina Seed
- From the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Sreenivasan Ponnambalam
- the School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Hans-Gerhard Burgert
- From the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom,
| |
Collapse
|
24
|
Kucera A, Borg Distefano M, Berg-Larsen A, Skjeldal F, Repnik U, Bakke O, Progida C. Spatiotemporal Resolution of Rab9 and CI-MPR Dynamics in the Endocytic Pathway. Traffic 2016; 17:211-29. [PMID: 26663757 DOI: 10.1111/tra.12357] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 12/08/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022]
Abstract
Rab9 is a small GTPase that localizes to the trans-Golgi Network (TGN) and late endosomes. Its main function has long been connected to the recycling of mannose-6-phosphate receptors (MPRs). However, recent studies link Rab9 also to autophagy and lysosome biogenesis. In this paper, using confocal imaging, we characterize for the first time the live dynamics of the Rab9 constitutively active mutant, Rab9Q66L. We find that it localizes predominantly to late endosomes and that its expression in HeLa cells disperses TGN46 and cation-independent (CI-MPR) away from the Golgi yet, has no effect on the retrograde transport of CI-MPR. We also show that CI-MPR and Rab9 enter the endosomal pathway together at the transition stage between early, Rab5-positive, and late, Rab7a-positive, endosomes. CI-MPR localizes transiently to separate domains on these endosomes, where vesicles carrying CI-MPR attach and detach within seconds. Taken together, our results demonstrate that Rab9 mediates the delivery of CI-MPR to the endosomal pathway, entering the maturing endosome at the early-to-late transition.
Collapse
Affiliation(s)
- Ana Kucera
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Marita Borg Distefano
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Axel Berg-Larsen
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway.,Current address: Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Frode Skjeldal
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Urska Repnik
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
van Galen J, Campelo F, Martínez-Alonso E, Scarpa M, Martínez-Menárguez JÁ, Malhotra V. Sphingomyelin homeostasis is required to form functional enzymatic domains at the trans-Golgi network. ACTA ACUST UNITED AC 2014; 206:609-18. [PMID: 25179630 PMCID: PMC4151138 DOI: 10.1083/jcb.201405009] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Sphingomyelin-mediated organization of resident transmembrane proteins into specific membrane domains at the trans-Golgi network is necessary for normal enzymatic activity. Do lipids such as sphingomyelin (SM) that are known to assemble into specific membrane domains play a role in the organization and function of transmembrane proteins? In this paper, we show that disruption of SM homeostasis at the trans-Golgi network (TGN) by treatment of HeLa cells with d-ceramide-C6, which was converted together with phosphatidylcholine to short-chain SM and diacylglycerol by SM synthase, led to the segregation of Golgi-resident proteins from each other. We found that TGN46, which cycles between the TGN and the plasma membrane, was not sialylated by a sialyltransferase at the TGN and that this enzyme and its substrate TGN46 could not physically interact with each other. Our results suggest that SM organizes transmembrane proteins into functional enzymatic domains at the TGN.
Collapse
Affiliation(s)
- Josse van Galen
- Cell and Developmental Biology Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Felix Campelo
- Cell and Developmental Biology Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Emma Martínez-Alonso
- Department of Cell Biology and Histology, Faculty of Medicine, and Institute of Murciano Biosanitary Research, University of Murcia, 30100 Murcia, Spain Department of Cell Biology and Histology, Faculty of Medicine, and Institute of Murciano Biosanitary Research, University of Murcia, 30100 Murcia, Spain
| | - Margherita Scarpa
- Cell and Developmental Biology Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - José Ángel Martínez-Menárguez
- Department of Cell Biology and Histology, Faculty of Medicine, and Institute of Murciano Biosanitary Research, University of Murcia, 30100 Murcia, Spain Department of Cell Biology and Histology, Faculty of Medicine, and Institute of Murciano Biosanitary Research, University of Murcia, 30100 Murcia, Spain
| | - Vivek Malhotra
- Cell and Developmental Biology Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08002 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
26
|
Chia PZC, Gunn P, Gleeson PA. Cargo trafficking between endosomes and the trans-Golgi network. Histochem Cell Biol 2013; 140:307-15. [PMID: 23851467 DOI: 10.1007/s00418-013-1125-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2013] [Indexed: 01/03/2023]
Abstract
The retrograde membrane transport pathways from endosomes to the trans-Golgi network (TGN) are now recognized as critical intracellular pathways to recycle and shuttle a selective subgroup of membrane proteins, including sorting receptors, membrane-bound enzymes, transporters, as well as providing an avenue for the intracellular transport of various bacterial toxins. Multiple pathways from endosomes to the TGN have now been defined which differ between the cargo transported and the machinery used. Here, we review advances in these pathways and the requirement for TGN organization, and also discuss the development of unbiased analytical approaches to quantitatively track cargo that use these endosome-to-TGN pathways.
Collapse
Affiliation(s)
- Pei Zhi Cheryl Chia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | | | | |
Collapse
|
27
|
Chia PZC, Toh WH, Sharples R, Gasnereau I, Hill AF, Gleeson PA. Intracellular itinerary of internalised β-secretase, BACE1, and its potential impact on β-amyloid peptide biogenesis. Traffic 2013; 14:997-1013. [PMID: 23773724 DOI: 10.1111/tra.12088] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 06/11/2013] [Accepted: 06/14/2013] [Indexed: 01/17/2023]
Abstract
β-Secretase (BACE1) cleavage of the amyloid precursor protein (APP) represents the initial step in the formation of the Alzheimer's disease associated amyloidogenic Aβ peptide. Substantive evidence indicates that APP processing by BACE1 is dependent on intracellular sorting of this enzyme. Nonetheless, knowledge of the intracellular trafficking pathway of internalised BACE1 remains in doubt. Here we show that cell surface BACE1 is rapidly internalised by the AP2/clathrin dependent pathway in transfected cells and traffics to early endosomes and Rab11-positive, juxtanuclear recycling endosomes, with very little transported to the TGN as has been previously suggested. Moreover, BACE1 is predominantly localised to the early and recycling endosome compartments in different cell types, including neuronal cells. In contrast, the majority of internalised wild-type APP traffics to late endosomes/lysosomes. To explore the relevance of the itinerary of BACE1 on APP processing, we generated a BACE1 chimera containing the cytoplasmic tail of TGN38 (BACE/TGN38), which cycles between the cell surface and TGN in an AP2-dependent manner. Wild-type BACE1 is less efficient in Aβ production than the BACE/TGN38 chimera, highlighting the relevance of the itinerary of BACE1 on APP processing. Overall the data suggests that internalised BACE1 and APP diverge at early endosomes and that Aβ biogenesis is regulated in part by the recycling itinerary of BACE1.
Collapse
Affiliation(s)
- Pei Zhi Cheryl Chia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | | | | | | | | |
Collapse
|
28
|
Malecka KA, Szentpetery Z, Peterson JR. Synergistic activation of p21-activated kinase 1 by phosphatidylinositol 4,5-bisphosphate and Rho GTPases. J Biol Chem 2013; 288:8887-97. [PMID: 23393142 DOI: 10.1074/jbc.m112.428904] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Autoinhibited p21-activated kinase 1 (Pak1) can be activated in vitro by the plasma membrane-bound Rho GTPases Rac1 and Cdc42 as well as by the lipid phosphatidylinositol (4,5)-bisphosphate (PIP2). Activator binding is mediated by a GTPase-binding motif and an adjacent phosphoinositide-binding motif. Whether these two classes of activators play alternative, additive, or synergistic roles in Pak1 activation is unknown, as is their contributions to Pak1 activation in vivo. To address these questions, we developed a system to mimic the membrane anchoring of Rho GTPases by creating liposomes containing both PIP2 and a Ni(2+)-NTA modified lipid capable of binding hexahistidine-tagged Cdc42. We find that among all biologically relevant phosphoinositides, only PIP2 is able to synergistically activate Pak1 in concert with Cdc42. Membrane binding of the kinase was highly sensitive to the spatial density of PIP2 and Pak1 demonstrated dramatically enhanced affinity for Cdc42 anchored in a PIP2 environment. To validate these findings in vivo, we utilized an inducible recruitment system to drive the ectopic synthesis of PIP2 on Golgi membranes, which normally have active Cdc42 but lack significant concentrations of PIP2. Pak1 was recruited to PIP2-containing membranes in a manner dependent on the ability of Pak1 to bind to both PIP2 and Cdc42. These findings provide a mechanistic explanation for the essential role of both phosphoinositides and GTPases in Pak1 recruitment and activation. In contrast, Ack, another Cdc42 effector kinase that lacks an analogous phosphoinositide-binding motif, fails to show the same enhancement of membrane binding and activation by PIP2, thus indicating that regulation by PIP2 and Cdc42 could provide a combinatorial code for activation of different GTPase effectors in different subcellular locations.
Collapse
Affiliation(s)
- Kimberly A Malecka
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
29
|
Schmidt KN, Kuhns S, Neuner A, Hub B, Zentgraf H, Pereira G. Cep164 mediates vesicular docking to the mother centriole during early steps of ciliogenesis. ACTA ACUST UNITED AC 2012; 199:1083-101. [PMID: 23253480 PMCID: PMC3529528 DOI: 10.1083/jcb.201202126] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cep164 provides a molecular link between the mother centriole and the ciliary membrane biogenesis machinery by interacting with the GEF Rabin8 and the GTPase Rab8. Cilia formation is a multi-step process that starts with the docking of a vesicle at the distal part of the mother centriole. This step marks the conversion of the mother centriole into the basal body, from which axonemal microtubules extend to form the ciliary compartment. How vesicles are stably attached to the mother centriole to initiate ciliary membrane biogenesis is unknown. Here, we investigate the molecular role of the mother centriolar component Cep164 in ciliogenesis. We show that Cep164 was indispensable for the docking of vesicles at the mother centriole. Using biochemical and functional assays, we identified the components of the vesicular transport machinery, the GEF Rabin8 and the GTPase Rab8, as interacting partners of Cep164. We propose that Cep164 is targeted to the apical domain of the mother centriole to provide the molecular link between the mother centriole and the membrane biogenesis machinery that initiates cilia formation.
Collapse
Affiliation(s)
- Kerstin N Schmidt
- DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Chen A, Gössling EK, Witkowski L, Bhindi A, Bauch C, Roussy G, Sarret P, Kreienkamp HJ, Stroh T. Regional and subcellular distribution of the receptor-targeting protein PIST in the rat central nervous system. J Comp Neurol 2012; 520:889-913. [PMID: 21953547 DOI: 10.1002/cne.22774] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Protein interacting specifically with Tc10, PIST, is a Golgi-associated sorting protein involved in regulating cell-surface targeting of plasma membrane receptors. The present study provides the first comprehensive description of PIST distribution in the mammalian central nervous system and of its subcellular localization by immunocytochemistry. PIST is distributed widely throughout the neuraxis, predominantly associated with neuronal cell bodies and dendrites. In hippocampal neurons, in vitro and in situ, PIST displayed a patchy subcellular distribution in an area surrounding the nucleus and extending into one of the major dendrites. By colocalization with the trans-Golgi marker TGN38, we were able to show that PIST is associated largely but not exclusively with the trans-Golgi network in central neurons. High or moderate to high levels of PIST-like immunoreactivity were found in cortical areas, in particular in layer V of the neocortex. The motor cortex was most strongly labeled. Also, the piriform and insular cortices displayed strong PIST labeling. In the hippocampus, CA2 but not CA1 or CA3 pyramidal cells displayed strong PIST-labeling, extending into their apical dendrites. In the thalamus, ventrolateral and laterodorsal nuclei were most strongly stained, whereas in the hypothalamus the supraoptic nucleus stood out with strong immunoreactivity. Strikingly, in the brainstem all cranial nerve motor nuclei were PIST-positive at varying levels, which is in keeping with the prominent expression of PIST in forebrain motor areas. This selective distribution of PIST suggests that the protein serves distinctive roles in specific neuronal populations, establishing functionally distinct zones, for instance, in the hippocampus.
Collapse
Affiliation(s)
- Annie Chen
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wakana Y, van Galen J, Meissner F, Scarpa M, Polishchuk RS, Mann M, Malhotra V. A new class of carriers that transport selective cargo from the trans Golgi network to the cell surface. EMBO J 2012; 31:3976-90. [PMID: 22909819 DOI: 10.1038/emboj.2012.235] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/24/2012] [Indexed: 11/09/2022] Open
Abstract
We have isolated a membrane fraction enriched in a class of transport carriers that form at the trans Golgi network (TGN) and are destined for the cell surface in HeLa cells. Protein kinase D (PKD) is required for the biogenesis of these carriers that contain myosin II, Rab6a, Rab8a, and synaptotagmin II, as well as a number of secretory and plasma membrane-specific cargoes. Our findings reveal a requirement for myosin II in the migration of these transport carriers but not in their biogenesis per se. Based on the cargo secreted by these carriers we have named them CARTS for CARriers of the TGN to the cell Surface. Surprisingly, CARTS are distinct from the carriers that transport vesicular stomatitis virus (VSV)-G protein and collagen I from the TGN to the cell surface. Altogether, the identification of CARTS provides a valuable means to understand TGN to cell surface traffic.
Collapse
Affiliation(s)
- Yuichi Wakana
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG) and UPF, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
32
|
Butler J, Watson HR, Lee AG, Schuppe HJ, East JM. Retrieval from the ER-golgi intermediate compartment is key to the targeting of c-terminally anchored ER-resident proteins. J Cell Biochem 2012; 112:3543-8. [PMID: 21761444 DOI: 10.1002/jcb.23281] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Endoplasmic reticulum (ER) resident proteins may be maintained in the ER by retention, where the leak into post-ER compartments is absent or slow, or retrieval, where a significant leak is countered by retrieval from post-ER compartments. Here the targeting of the C-terminally anchored protein ER-resident protein, cytochrome b5a (cytb5a), considered to be maintained in the ER mainly by the process of retention, is compared with that of sarcolipin (SLN) and phospholamban (PLB); also C-terminally anchored ER-residents. Laser confocal microscopy, and cell fractionation of green fluorescent protein-tagged constructs expressed in COS 7 cells indicate that while calnexin appears to be retained in the ER with no evidence of leak into the ER-Golgi intermediate compartment (ERGIC), significant amounts of cytb5a, SLN, and PLB are detectable in the ERGIC, indicating that there is considerable leak from the ER. This is supported by an in vitro budding assay that shows that while small amounts of calnexin appear in the transport vesicles budding off from the ER, significant amounts of cytb5a and SLN are found in such vesicles. These data support the hypothesis that retrieval plays a major role in ensuring that C-terminally anchored proteins are maintained in the ER.
Collapse
Affiliation(s)
- John Butler
- School of Biological Sciences, Building 85, University of Southampton, Southampton SO17 1BJ, UK
| | | | | | | | | |
Collapse
|
33
|
Roboti P, High S. Keratinocyte-associated protein 2 is a bona fide subunit of the mammalian oligosaccharyltransferase. J Cell Sci 2012; 125:220-32. [PMID: 22266900 DOI: 10.1242/jcs.094599] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The oligosaccharyltransferase (OST) complex catalyses the N-glycosylation of polypeptides entering the endoplasmic reticulum, a process essential for the productive folding and trafficking of many secretory and membrane proteins. In eukaryotes, the OST typically comprises a homologous catalytic STT3 subunit complexed with several additional components that are usually conserved, and that often function to modulate N-glycosylation efficiency. By these criteria, the status of keratinocyte-associated protein 2 (KCP2) was unclear: it was found to co-purify with the canine OST suggesting it is part of the complex but, unlike most other subunits, no potential homologues are apparent in Saccharomyces cerevisiae. In this study we have characterised human KCP2 and show that the predominant species results from an alternative initiation of translation to form an integral membrane protein with three transmembrane spans. KCP2 localises to the endoplasmic reticulum, consistent with a role in protein biosynthesis, and has a functional KKxx retrieval signal at its cytosolic C-terminus. Native gel analysis suggests that the majority of KCP2 assembles into a distinct ~500 kDa complex that also contains several bona fide OST subunits, most notably the catalytic STT3A isoform. Co-immunoprecipitation studies confirmed a robust and specific physical interaction between KCP2 and STT3A, and revealed weaker associations with both STT3B and OST48. Taken together, these data strongly support the proposal that KCP2 is a newly identified subunit of the N-glycosylation machinery present in a subset of eukaryotes.
Collapse
Affiliation(s)
- Peristera Roboti
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | | |
Collapse
|
34
|
Chia PZC, Gasnereau I, Lieu ZZ, Gleeson PA. Rab9-dependent retrograde transport and endosomal sorting of the endopeptidase furin. J Cell Sci 2011; 124:2401-13. [PMID: 21693586 DOI: 10.1242/jcs.083782] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The endopeptidase furin and the trans-Golgi network protein TGN38 are membrane proteins that recycle between the TGN and plasma membrane. TGN38 is transported by a retromer-dependent pathway from early endosomes to the TGN, whereas the intracellular transport of furin is poorly defined. Here we have identified the itinerary and transport requirements of furin. Using internalisation assays, we show that furin transits the early and late endosomes en route to the TGN. The GTPase Rab9 and the TGN golgin GCC185, components of the late endosome-to-TGN pathway, were required for efficient TGN retrieval of furin. By contrast, TGN38 trafficking was independent of Rab9 and GCC185. To identify the sorting signals for the early endosome-to-TGN pathway, the trafficking of furin-TGN38 chimeras was investigated. The diversion of furin from the Rab9-dependent late-endosome-to-TGN pathway to the retromer-dependent early-endosome-to-TGN pathway required both the transmembrane domain and cytoplasmic tail of TGN38. We present evidence to suggest that the length of the transmembrane domain is a contributing factor in endosomal sorting. Overall, these data show that furin uses the Rab9-dependent pathway from late endosomes and that retrograde transport directly from early endosomes is dependent on both the transmembrane domain and the cytoplasmic tail.
Collapse
Affiliation(s)
- Pei Zhi Cheryl Chia
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | | | | | | |
Collapse
|
35
|
Watson HR, Butler J, Schuppe HJ, Lee AG, East JM. The localization of the ER retrieval sequence for the calcium pump SERCA1. Mol Membr Biol 2011; 28:216-26. [DOI: 10.3109/09687688.2011.572566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Minogue S, Chu KME, Westover EJ, Covey DF, Hsuan JJ, Waugh MG. Relationship between phosphatidylinositol 4-phosphate synthesis, membrane organization, and lateral diffusion of PI4KIIalpha at the trans-Golgi network. J Lipid Res 2010; 51:2314-24. [PMID: 20388919 PMCID: PMC2903814 DOI: 10.1194/jlr.m005751] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 04/13/2010] [Indexed: 11/20/2022] Open
Abstract
Type II phosphatidylinositol 4-kinase IIalpha (PI4KIIalpha) is the dominant phosphatidylinositol kinase activity measured in mammalian cells and has important functions in intracellular vesicular trafficking. Recently PI4KIIalpha has been shown to have important roles in neuronal survival and tumorigenesis. This study focuses on the relationship between membrane cholesterol levels, phosphatidylinositol 4-phosphate (PI4P) synthesis, and PI4KIIalpha mobility. Enzyme kinetic measurements, sterol substitution studies, and membrane fragmentation analyses all revealed that cholesterol regulates PI4KIIalpha activity indirectly through effects on membrane structure. In particular, we found that cholesterol levels determined the distribution of PI4KIIalpha to biophysically distinct membrane domains. Imaging studies on cells expressing enhanced green fluorescent protein (eGFP)-tagged PI4KIIalpha demonstrated that cholesterol depletion resulted in morphological changes to the juxtanuclear membrane pool of the enzyme. Lateral membrane diffusion of eGFP-PI4KIIalpha was assessed by fluorescence recovery after photobleaching (FRAP) experiments, which revealed the existence of both mobile and immobile pools of the enzyme. Sterol depletion decreased the size of the mobile pool of PI4KIIalpha. Further measurements revealed that the reduction in the mobile fraction of PI4KIIalpha correlated with a loss of trans-Golgi network (TGN) membrane connectivity. We conclude that cholesterol modulates PI4P synthesis through effects on membrane organization and enzyme diffusion.
Collapse
Affiliation(s)
- Shane Minogue
- Centre for Molecular Cell Biology, Department of Inflammation, Division of Medicine, University College London, London, United Kingdom
| | - K. M. Emily Chu
- Centre for Molecular Cell Biology, Department of Inflammation, Division of Medicine, University College London, London, United Kingdom
| | - Emily J. Westover
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO
| | - Douglas F. Covey
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO
| | - J. Justin Hsuan
- Centre for Molecular Cell Biology, Department of Inflammation, Division of Medicine, University College London, London, United Kingdom
| | - Mark G. Waugh
- Centre for Molecular Cell Biology, Department of Inflammation, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
37
|
Chen Y, Gan BQ, Tang BL. Syntaxin 16: Unraveling cellular physiology through a ubiquitous SNARE molecule. J Cell Physiol 2010; 225:326-32. [DOI: 10.1002/jcp.22286] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Progida C, Cogli L, Piro F, De Luca A, Bakke O, Bucci C. Rab7b controls trafficking from endosomes to the TGN. J Cell Sci 2010; 123:1480-91. [PMID: 20375062 DOI: 10.1242/jcs.051474] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025] Open
Abstract
Rab7b is a recently identified member of the Rab GTPase protein family and has high similarity to Rab7. It has been reported that Rab7b is lysosome associated, that it is involved in monocytic differentiation and that it promotes lysosomal degradation of TLR4 and TLR9. Here we investigated further the localization and function of this GTPase. We found that wild-type Rab7b is lysosome associated whereas an activated, GTP-bound form of Rab7b localizes to the Golgi apparatus. In contrast to Rab7, Rab7b is not involved in EGF and EGFR degradation. Depletion of Rab7b or expression of Rab7b T22N, a Rab7b dominant-negative mutant, impairs cathepsin-D maturation and causes increased secretion of hexosaminidase. Moreover, expression of Rab7b T22N or depletion of Rab7b alters TGN46 distribution, cation-independent mannose-6-phosphate receptor (CI-MPR) trafficking, and causes an increase in the levels of the late endosomal markers CI-MPR and cathepsin D. Vesicular stomatitis virus G protein (VSV-G) trafficking, by contrast, is normal in Rab7b-depleted or Rab7b-T22N-expressing cells. In addition, depletion of Rab7b prevents cholera toxin B-subunit from reaching the Golgi. Altogether, these data indicate that Rab7b is required for normal lysosome function, and, in particular, that it is an essential factor for retrograde transport from endosomes to the trans-Golgi network (TGN).
Collapse
Affiliation(s)
- Cinzia Progida
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni, 73100 Lecce, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Acute manipulation of Golgi phosphoinositides to assess their importance in cellular trafficking and signaling. Proc Natl Acad Sci U S A 2010; 107:8225-30. [PMID: 20404150 DOI: 10.1073/pnas.1000157107] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phosphoinositides are essential lipid regulators of trafficking and signaling pathways of all eukaryotic cells. Phosphatidylinositol 4-phosphate (PtdIns4P) is an intermediate in the synthesis of several important phosphoinositide species but also serves as a regulatory molecule in its own right. Phosphatidylinositol 4-kinases are most abundant in the Golgi but are also found in the plasma membrane and in endocytic compartments. To investigate the role of Golgi PtdIns4P in orchestrating trafficking events, we used a unique drug-inducible molecular approach to rapidly deplete PtdIns4P from Golgi membranes by a recruitable Sac1 phosphatase enzyme. The utility of the system was shown by the rapid loss of Golgi localization of PH domains known to bind PtdIns4P after Sac1 recruitment to the Golgi. Acute PtdIns4P depletion prevented the exit of cargo from the Golgi destined to both the plasma membrane and the late endosomes and led to the loss of some but not all clathrin adaptors from the Golgi membrane. Rapid PtdIns4P depletion in the Golgi also impaired but did not eliminate the replenishment of the plasma membrane PtdIns(4,5)P(2) during phospholipase C activation revealing a hitherto unrecognized contribution of Golgi PtdIns4P to this process. This unique approach will allow further studies on the role of phosphoinositides in endocytic compartments that have evaded detection using the conventional long-term manipulations of inositide kinase and phosphatase activities.
Collapse
|
40
|
Lieu ZZ, Gleeson PA. Identification of different itineraries and retromer components for endosome-to-Golgi transport of TGN38 and Shiga toxin. Eur J Cell Biol 2010; 89:379-93. [PMID: 20138391 DOI: 10.1016/j.ejcb.2009.10.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 10/22/2009] [Accepted: 10/29/2009] [Indexed: 11/19/2022] Open
Abstract
The retrograde transport pathways from early/recycling endosomes are critical for recycling a range of endogenous cargo, as well as internalisation of bacterial and plant toxins. We have previously shown that the retrograde transport of the two model cargos, TGN38 and Shiga toxin, differs in the requirement for TGN golgins; transport of TGN38 requires the TGN golgin GCC88 whereas that of Shiga toxin requires GCC185. Here we have further defined the retrograde transport requirements of these two cargos. Tracking the transport of these cargos demonstrated that the bulk of Shiga toxin is transported from early endosomes to recycling endosomes en route to the TGN whereas the bulk of TGN38 is transported from early endosomes to the TGN with only low levels detected in recycling endosomes. In cells depleted of the TGN t-SNARE syntaxin 16, TGN38 accumulated predominantly in early endosomes whereas Shiga toxin accumulated in Rab11-positive recycling endosomes, suggesting distinct routes for each cargo. Retrograde transport of Shiga toxin and TGN38 requires retromer, however, whereas sorting nexin 1 (SNX1) is specifically required for transport of Shiga toxin, sorting nexin 2 (SNX2) is required for the transport of TGN38. Overall, our data have identified different itineraries for the retrograde transport of Shiga toxin and TGN38 and distinct retromer components that regulate the transport of these cargos.
Collapse
Affiliation(s)
- Zi Zhao Lieu
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
41
|
The open reading frame 3a protein of severe acute respiratory syndrome-associated coronavirus promotes membrane rearrangement and cell death. J Virol 2009; 84:1097-109. [PMID: 19889773 DOI: 10.1128/jvi.01662-09] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The genome of the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) contains eight open reading frames (ORFs) that encode novel proteins. These accessory proteins are dispensable for in vitro and in vivo replication and thus may be important for other aspects of virus-host interactions. We investigated the functions of the largest of the accessory proteins, the ORF 3a protein, using a 3a-deficient strain of SARS-CoV. Cell death of Vero cells after infection with SARS-CoV was reduced upon deletion of ORF 3a. Electron microscopy of infected cells revealed a role for ORF 3a in SARS-CoV induced vesicle formation, a prominent feature of cells from SARS patients. In addition, we report that ORF 3a is both necessary and sufficient for SARS-CoV-induced Golgi fragmentation and that the 3a protein accumulates and localizes to vesicles containing markers for late endosomes. Finally, overexpression of ADP-ribosylation factor 1 (Arf1), a small GTPase essential for the maintenance of the Golgi apparatus, restored Golgi morphology during infection. These results establish an important role for ORF 3a in SARS-CoV-induced cell death, Golgi fragmentation, and the accumulation of intracellular vesicles.
Collapse
|
42
|
Ferrari A, Veligodskiy A, Berge U, Lucas MS, Kroschewski R. ROCK-mediated contractility, tight junctions and channels contribute to the conversion of a preapical patch into apical surface during isochoric lumen initiation. J Cell Sci 2009; 121:3649-63. [PMID: 18946028 DOI: 10.1242/jcs.018648] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epithelial cells assemble into three-dimensional aggregates to generate lumen-containing organ substructures. Cells therein contact the extracellular matrix with their basal surface, neighbouring cells with their contact surface and the lumen with their apical surface. We investigated the development of single MDCK cells into aggregates with lumen using quantitative live-cell imaging to identify morphogenetic rules for lumen formation. In two-cell aggregates, membrane insertion into the contact surface established a preapical patch (PAP) characterized by the presence of the apical marker gp135, microvilli and the absence of E-cadherin. This PAP originated from a compartment that had hallmarks of an apical recycling endosome, and matured through Brefeldin-A-sensitive membrane trafficking and the establishment of tight junctions around itself. As a result of the activity of water and ion channels, an optically resolvable lumen formed. Initially, this lumen enlarged without changes in aggregate volume or cell number but with decreasing cell volumes. Additionally, the ROCK1/2-myosin-II pathway counteracted PAP and lumen formation. Thus, lumen formation results from PAP establishment, PAP maturation, lumen initiation and lumen enlargement. These phases correlate with distinct cell surface and volume patterns, which suggests that such morphometric parameters are regulated by trafficking, ROCK-mediated contractility and hydrostatic pressure or vice versa.
Collapse
Affiliation(s)
- Aldo Ferrari
- Institute of Biochemistry, ETH Zurich, Schafmattstrasse 18, 8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
43
|
Chapuy B, Tikkanen R, Mühlhausen C, Wenzel D, von Figura K, Höning S. AP-1 and AP-3 Mediate Sorting of Melanosomal and Lysosomal Membrane Proteins into Distinct Post-Golgi Trafficking Pathways. Traffic 2008; 9:1157-72. [DOI: 10.1111/j.1600-0854.2008.00745.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
Boucher R, Larkin H, Brodeur J, Gagnon H, Thériault C, Lavoie C. Intracellular trafficking of LRP9 is dependent on two acidic cluster/dileucine motifs. Histochem Cell Biol 2008; 130:315-27. [PMID: 18461348 DOI: 10.1007/s00418-008-0436-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2008] [Indexed: 01/09/2023]
Abstract
LDL receptor-related protein 9 (LRP9) is a distant member of the low-density lipoprotein receptor (LDLR) superfamily. To date, there are no reports on the cellular distribution of LRP9 or the signals responsible for its localization. Here, we investigated the intracellular localization and trafficking of LRP9. Using confocal microscopy, we demonstrated that LRP9 was not present at the plasma membrane but co-localized with various markers of the trans-Golgi network (TGN) and endosomes. This co-localization was dependent on the presence of two acidic cluster/dileucine (DXXLL) motifs in the cytoplasmic tail of LRP9, which interact with GGA proteins, clathrin adaptors involved in transport between the TGN and endosomes. LRP9 is the first example of a transmembrane protein with an internal GGA-binding sequence in addition to the usual C-terminal motif. An inactivating mutation (LL --> AA) in both DXXLL motifs, which completely inhibited the interaction of LRP9 with GGA proteins, led to an intracellular redistribution of LRP9 from the TGN to early endosomes and the cell surface, indicating that the two DXXLL motifs are essential sorting determinants of LRP9. In conclusion, our results suggest that LRP9 cycles between the TGN, endosomes and the plasma membrane through a GGA dependent-trafficking mechanism.
Collapse
Affiliation(s)
- Rémi Boucher
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001-12e Avenue Nord, Sherbrooke, QC, Canada, J1H 5N4
| | | | | | | | | | | |
Collapse
|
45
|
Simultaneous tracking of capsid, tegument, and envelope protein localization in living cells infected with triply fluorescent herpes simplex virus 1. J Virol 2008; 82:5198-211. [PMID: 18353954 DOI: 10.1128/jvi.02681-07] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here the construction of a triply fluorescent-tagged herpes simplex virus 1 (HSV-1) expressing capsid protein VP26, tegument protein VP22, and envelope protein gB as fusion proteins with monomeric yellow, red, and cyan fluorescent proteins, respectively. The recombinant virus enabled us to monitor the dynamics of these capsid, tegument, and envelope proteins simultaneously in the same live HSV-1-infected cells and to visualize single extracellular virions with three different fluorescent emissions. In Vero cells infected by the triply fluorescent virus, multiple cytoplasmic compartments were found to be induced close to the basal surfaces of the infected cells (the adhesion surfaces of the infected cells on the solid growth substrate). Major capsid, tegument, and envelope proteins accumulated and colocalized in the compartments, as did marker proteins for the trans-Golgi network (TGN) which has been implicated to be the site of HSV-1 secondary envelopment. Moreover, formation of the compartments was correlated with the dynamic redistribution of the TGN proteins induced by HSV-1 infection. These results suggest that HSV-1 infection causes redistribution of TGN membranes to form multiple cytoplasmic compartments, possibly for optimal secondary envelopment. This is the first real evidence for the assembly of all three types of herpesvirus proteins-capsid, tegument, and envelope membrane proteins-in TGN.
Collapse
|
46
|
Pavelka M, Neumüller J, Ellinger A. Retrograde traffic in the biosynthetic-secretory route. Histochem Cell Biol 2008; 129:277-88. [PMID: 18270728 PMCID: PMC2248610 DOI: 10.1007/s00418-008-0383-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2008] [Indexed: 02/04/2023]
Abstract
In the biosynthetic-secretory route from the rough endoplasmic reticulum, across the pre-Golgi intermediate compartments, the Golgi apparatus stacks, trans Golgi network, and post-Golgi organelles, anterograde transport is accompanied and counterbalanced by retrograde traffic of both membranes and contents. In the physiologic dynamics of cells, retrograde flow is necessary for retrieval of molecules that escaped from their compartments of function, for keeping the compartments' balances, and maintenance of the functional integrities of organelles and compartments along the secretory route, for repeated use of molecules, and molecule repair. Internalized molecules may be transported in retrograde direction along certain sections of the secretory route, and compartments and machineries of the secretory pathway may be misused by toxins. An important example is the toxin of Shigella dysenteriae, which has been shown to travel from the cell surface across endosomes, and the Golgi apparatus en route to the endoplasmic reticulum, and the cytosol, where it exerts its deleterious effects. Most importantly in medical research, knowledge about the retrograde cellular pathways is increasingly being utilized for the development of strategies for targeted delivery of drugs to the interior of cells. Multiple details about the molecular transport machineries involved in retrograde traffic are known; a high number of the molecular constituents have been characterized, and the complicated fine structural architectures of the compartments involved become more and more visible. However, multiple contradictions exist, and already established traffic models again are in question by contradictory results obtained with diverse cell systems, and/or different techniques. Additional problems arise by the fact that the conditions used in the experimental protocols frequently do not reflect the physiologic situations of the cells. Regular and pathologic situations often are intermingled, and experimental treatments by themselves change cell organizations. This review addresses physiologic and pathologic situations, tries to correlate results obtained by different cell biologic techniques, and asks questions, which may be the basis and starting point for further investigations.
Collapse
Affiliation(s)
- Margit Pavelka
- Department of Cell Biology and Ultrastructure Research, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna, Austria.
| | | | | |
Collapse
|
47
|
Tomas A, Meda P, Regazzi R, Pessin JE, Halban PA. Munc 18-1 and granuphilin collaborate during insulin granule exocytosis. Traffic 2008; 9:813-32. [PMID: 18208509 DOI: 10.1111/j.1600-0854.2008.00709.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Munc 18-1 is a member of the Sec/Munc family of syntaxin-binding proteins known to bind to the plasma membrane Q-SNARE syntaxin1 and whose precise role in regulated exocytosis remains controversial. Here, we show that Munc 18-1 plays a positive role in regulated insulin secretion from pancreatic beta cells. Munc 18-1 depletion caused a loss in the secretory capacity of both transiently transfected INS 1E cells and a stable clone with tetracycline-regulated Munc 18-1 RNA interference. In addition, Munc 18-1-depleted cells exhibited defective docking of insulin granules to the plasma membrane and accumulated insulin in the trans Golgi network. Furthermore, glucose stimulation after Munc 18-1 depletion resulted in the rapid formation of autophagosomes. In contrast, overexpression of Munc 18-1 had no effect on insulin secretion. Although there was no detectable interaction between Munc 18-1 and Munc-18-interacting protein 1 or calcium/calmodulin-dependent serine protein kinase, Munc 18-1 associated with the granular protein granuphilin. This association was regulated by glucose and was required for the specific interaction of insulin granules with syntaxin1. We conclude that Munc 18-1 and granuphilin collaborate in the docking of insulin granules to the plasma membrane in an initial fusion-incompetent state, with Munc 18-1 subsequently playing a positive role in a later stage of insulin granule exocytosis.
Collapse
Affiliation(s)
- Alejandra Tomas
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva 4, Switzerland.
| | | | | | | | | |
Collapse
|
48
|
Kanazawa T, Takematsu H, Yamamoto A, Yamamoto H, Kozutsumi Y. Wheat germ agglutinin stains dispersed post-golgi vesicles after treatment with the cytokinesis inhibitor psychosine. J Cell Physiol 2008; 215:517-25. [DOI: 10.1002/jcp.21328] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
49
|
Hirota Y, Kuronita T, Fujita H, Tanaka Y. A role for Rab5 activity in the biogenesis of endosomal and lysosomal compartments. Biochem Biophys Res Commun 2007; 364:40-7. [DOI: 10.1016/j.bbrc.2007.09.089] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 09/21/2007] [Indexed: 12/01/2022]
|
50
|
Netherton CL, McCrossan MC, Denyer M, Ponnambalam S, Armstrong J, Takamatsu HH, Wileman TE. African swine fever virus causes microtubule-dependent dispersal of the trans-golgi network and slows delivery of membrane protein to the plasma membrane. J Virol 2006; 80:11385-92. [PMID: 16956944 PMCID: PMC1642160 DOI: 10.1128/jvi.00439-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Accepted: 08/28/2006] [Indexed: 11/20/2022] Open
Abstract
Viral interference with secretory cargo is a common mechanism for pathogen immune evasion. Selective down regulation of critical immune system molecules such as major histocompatibility complex (MHC) proteins enables pathogens to mask themselves from their host. African swine fever virus (ASFV) disrupts the trans-Golgi network (TGN) by altering the localization of TGN46, an organelle marker for the distal secretory pathway. Reorganization of membrane transport components may provide a mechanism whereby ASFV can disrupt the correct secretion and/or cell surface expression of host proteins. In the study reported here, we used the tsO45 temperature-sensitive mutant of the G protein of vesicular stomatitis virus to show that ASFV significantly reduces the rate at which the protein is delivered to the plasma membrane. This is linked to a general reorganization of the secretory pathway during infection and a specific, microtubule-dependent disruption of structural components of the TGN. Golgin p230 and TGN46 are separated into distinct vesicles, whereupon TGN46 is depleted. These data suggest that disruption of the TGN by ASFV can slow membrane traffic during viral infection. This may be functionally important because infection of macrophages with virulent isolates of ASFV increased the expression of MHC class I genes, but there was no parallel increase in MHC class I molecule delivery to the plasma membrane.
Collapse
Affiliation(s)
- Christopher L Netherton
- Pirbright Laboratory, Institute for Animal Health, Ash Road, Pirbright, Surrey GU24 0NF, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|