1
|
Leask A, Nguyen J, Naik A, Chitturi P, Riser BL. The role of yes activated protein (YAP) in melanoma metastasis. iScience 2024; 27:109864. [PMID: 38770136 PMCID: PMC11103372 DOI: 10.1016/j.isci.2024.109864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Hippo was first identified in a genetic screen as a protein that suppressed proliferation and cell growth. Subsequently, it was shown that hippo acted in a so-called canonical cascade to suppress Yorkie, the Drosophila equivalent of Yes-activated protein (YAP), a mechanosensitive transcriptional cofactor that enhances the activity of the TEAD family of transcription factors. YAP promotes fibrosis, activation of cancer-associated fibroblasts, angiogenesis and cancer cell invasion. YAP activates the expression of the matricellular proteins CCN1 (cyr61) and CCN2 (ctgf), themselves mediators of fibrogenesis and oncogenesis, and coordination of matrix deposition and angiogenesis. This review discusses how therapeutically targeting YAP through YAP inhibitors verteporfin and celastrol and its downstream mediators CCN1 and CCN2 might be useful in treating melanoma.
Collapse
Affiliation(s)
- Andrew Leask
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK S7N 5E4, Canada
| | - John Nguyen
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK S7N 5E4, Canada
| | - Angha Naik
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK S7N 5E4, Canada
| | - Pratyusha Chitturi
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK S7N 5E4, Canada
| | - Bruce L. Riser
- Department of Physiology & Biophysics, Center for Cancer Cell Biology, Immunology & Infection, Rosalind Franklin University, 3333 N. Green Bay Road, Chicago, IL 60064, USA
- BLR Bio, LLC, Kenosha, WI 53140, USA
| |
Collapse
|
2
|
Carigga Gutierrez NM, Pujol-Solé N, Arifi Q, Coll JL, le Clainche T, Broekgaarden M. Increasing cancer permeability by photodynamic priming: from microenvironment to mechanotransduction signaling. Cancer Metastasis Rev 2022; 41:899-934. [PMID: 36155874 DOI: 10.1007/s10555-022-10064-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/06/2022] [Indexed: 01/25/2023]
Abstract
The dense cancer microenvironment is a significant barrier that limits the penetration of anticancer agents, thereby restraining the efficacy of molecular and nanoscale cancer therapeutics. Developing new strategies to enhance the permeability of cancer tissues is of major interest to overcome treatment resistance. Nonetheless, early strategies based on small molecule inhibitors or matrix-degrading enzymes have led to disappointing clinical outcomes by causing increased chemotherapy toxicity and promoting disease progression. In recent years, photodynamic therapy (PDT) has emerged as a novel approach to increase the permeability of cancer tissues. By producing excessive amounts of reactive oxygen species selectively in the cancer microenvironment, PDT increases the accumulation, penetration depth, and efficacy of chemotherapeutics. Importantly, the increased cancer permeability has not been associated to increased metastasis formation. In this review, we provide novel insights into the mechanisms by which this effect, called photodynamic priming, can increase cancer permeability without promoting cell migration and dissemination. This review demonstrates that PDT oxidizes and degrades extracellular matrix proteins, reduces the capacity of cancer cells to adhere to the altered matrix, and interferes with mechanotransduction pathways that promote cancer cell migration and differentiation. Significant knowledge gaps are identified regarding the involvement of critical signaling pathways, and to which extent these events are influenced by the complicated PDT dosimetry. Addressing these knowledge gaps will be vital to further develop PDT as an adjuvant approach to improve cancer permeability, demonstrate the safety and efficacy of this priming approach, and render more cancer patients eligible to receive life-extending treatments.
Collapse
Affiliation(s)
| | - Núria Pujol-Solé
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Qendresa Arifi
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Jean-Luc Coll
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Tristan le Clainche
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France.
| | - Mans Broekgaarden
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France.
| |
Collapse
|
3
|
Obaid G, Bano S, Thomsen H, Callaghan S, Shah N, Swain JWR, Jin W, Ding X, Cameron CG, McFarland SA, Wu J, Vangel M, Stoilova‐McPhie S, Zhao J, Mino‐Kenudson M, Lin C, Hasan T. Remediating Desmoplasia with EGFR-Targeted Photoactivable Multi-Inhibitor Liposomes Doubles Overall Survival in Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104594. [PMID: 35748165 PMCID: PMC9404396 DOI: 10.1002/advs.202104594] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/31/2022] [Indexed: 05/20/2023]
Abstract
Desmoplasia is characteristic of pancreatic ductal adenocarcinoma (PDAC), which exhibits 5-year survival rates of 3%. Desmoplasia presents physical and biochemical barriers that contribute to treatment resistance, yet depleting the stroma alone is unsuccessful and even detrimental to patient outcomes. This study is the first demonstration of targeted photoactivable multi-inhibitor liposomes (TPMILs) that induce both photodynamic and chemotherapeutic tumor insult, while simultaneously remediating desmoplasia in orthotopic PDAC. TPMILs targeted with cetuximab (anti-EGFR mAb) contain lipidated benzoporphyrin derivative (BPD-PC) photosensitizer and irinotecan. The desmoplastic tumors comprise human PDAC cells and patient-derived cancer-associated fibroblasts. Upon photoactivation, the TPMILs induce 90% tumor growth inhibition at only 8.1% of the patient equivalent dose of nanoliposomal irinotecan (nal-IRI). Without EGFR targeting, PMIL photoactivation is ineffective. TPMIL photoactivation is also sixfold more effective at inhibiting tumor growth than a cocktail of Visudyne-photodynamic therapy (PDT) and nal-IRI, and also doubles survival and extends progression-free survival by greater than fivefold. Second harmonic generation imaging reveals that TPMIL photoactivation reduces collagen density by >90% and increases collagen nonalignment by >103 -fold. Collagen nonalignment correlates with a reduction in tumor burden and survival. This single-construct phototoxic, chemotherapeutic, and desmoplasia-remediating regimen offers unprecedented opportunities to substantially extend survival in patients with otherwise dismal prognoses.
Collapse
Affiliation(s)
- Girgis Obaid
- Department of DermatologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
- Present address:
Department of BioengineeringUniversity of Texas at DallasRichardsonTX75080USA
| | - Shazia Bano
- Department of DermatologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Hanna Thomsen
- Department of DermatologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Susan Callaghan
- Department of DermatologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Nimit Shah
- Present address:
Department of BioengineeringUniversity of Texas at DallasRichardsonTX75080USA
| | - Joseph W. R. Swain
- Department of DermatologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Wendong Jin
- Department of DermatologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Xiadong Ding
- Department of DermatologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | | | | | - Juwell Wu
- Department of DermatologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Mark Vangel
- Department of DermatologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | | | - Jie Zhao
- Department of DermatologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Mari Mino‐Kenudson
- Department of DermatologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Charles Lin
- Department of DermatologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Tayyaba Hasan
- Department of DermatologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
- Division of Health Sciences and TechnologyHarvard University and Massachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
4
|
Koochaki M, Hendi A, Ghasemi M, Seyedjafari E, Hamidain M, Chiniforush N. Comparative Evaluation of the Effects of Antimicrobial Photodynamic Therapy With an LED and a Laser on the Proliferation of Human Gingival Fibroblasts on the Root Surface: An In Vitro Study. J Lasers Med Sci 2021; 12:e47. [PMID: 34733770 DOI: 10.34172/jlms.2021.47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 03/14/2021] [Indexed: 12/21/2022]
Abstract
Introduction: This study aimed to compare the effects of root biomodification by citric acid and antimicrobial photodynamic therapy (aPDT) with LED and laser on the proliferation of human gingival fibroblasts (HGFs). Methods: This in vitro experimental study evaluated 60 single-rooted teeth extracted due to periodontal disease. The teeth underwent scaling and root planing (SRP), and then 5 × 5 mm blocks were prepared from the cervical area of the teeth 1 mm apical to the cementoenamel junction. The blocks were divided into 4 groups (n=15 blocks): SRP alone (control), SRP + citric acid, SRP + toluidine blue (TBO) + LED light, and SRP + TBO + laser. HGFs were seeded on the surface of the samples, and the methyl thiazolyl tetrazolium (MTT) assay was performed after 24, 48 and 72 hours. Group comparisons were performed using repeated measures ANOVA, while pairwise comparisons of the time points were performed by an LSD test. Results: Cell proliferation was higher in all experimental groups at 48 and 72 hours, compared with 24 hours (P < 0.05). Cell proliferation was significantly different in the citric acid group at 24 hours (P = 0.016) and 48 hours (P = 0.015), compared with other groups. However, cell proliferation was not significantly different in the aPDT group with LED Photosan and a diode laser at 24 and 48 hours (P > 0.05). Conclusion: aPDT and citric acid can enhance the proliferation of HGFs on dentin blocks. Further studies can pave the way for their future use in the clinical setting.
Collapse
Affiliation(s)
- Mahsa Koochaki
- Department of Oral and Maxillofacial Disease, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirreza Hendi
- Dental Sciences Research Center, Department of Prosthodontics, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahmood Ghasemi
- Department of periodontics, Dental Faculty, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Sciences, University of Tehran, Tehran, Iran
| | - Mehdi Hamidain
- Dental Faculty, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nasim Chiniforush
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Shao J, Yu N, Kolwijck E, Wang B, Tan KW, Jansen JA, Walboomers XF, Yang F. Biological evaluation of silver nanoparticles incorporated into chitosan-based membranes. Nanomedicine (Lond) 2017; 12:2771-2785. [PMID: 28967828 DOI: 10.2217/nnm-2017-0172] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To evaluate the antibacterial potential and biological performance of silver nanoparticles in chitosan-based membranes. MATERIALS & METHODS Electrospun chitosan/poly(ethylene oxide) membranes with different amounts of silver nanoparticles were evaluated for antibacterial properties and cytotoxicity in vitro and for tissue response in a rabbit subcutaneous model. RESULTS The nanoparticles displayed dose-dependent antibacterial properties against Porphyromonas gingivalis and Fusobacterium nucleatum, without showing noticeable cytotoxicity. The membranes with silver nanoparticles evoked a similar inflammatory response compared with the membranes without silver nanoparticles. CONCLUSION The antibacterial effect, combined with the findings on cyto- and biocompatibility warrants further investigation to the usefulness of chitosan/poly(ethylene oxide) membranes with silver nanoparticles, for clinical applications like guided tissue regeneration.
Collapse
Affiliation(s)
- Jinlong Shao
- Department of Biomaterials, Radboud University Medical Centre, 6500 HB, Nijmegen, The Netherlands
| | - Na Yu
- National Dental Centre Singapore, 5 Second Hospital Ave, 168938, Singapore.,Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Eva Kolwijck
- Department of Medical Microbiology, Radboud University Medical Centre, 6500 HB, Nijmegen, The Netherlands
| | - Bing Wang
- Department of Biomaterials, Radboud University Medical Centre, 6500 HB, Nijmegen, The Netherlands
| | - Ke Wei Tan
- National Dental Centre Singapore, 5 Second Hospital Ave, 168938, Singapore
| | - John A Jansen
- Department of Biomaterials, Radboud University Medical Centre, 6500 HB, Nijmegen, The Netherlands
| | - X Frank Walboomers
- Department of Biomaterials, Radboud University Medical Centre, 6500 HB, Nijmegen, The Netherlands
| | - Fang Yang
- Department of Biomaterials, Radboud University Medical Centre, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Calvo G, Sáenz D, Simian M, Sampayo R, Mamone L, Vallecorsa P, Batlle A, Casas A, Di Venosa G. Reversal of the Migratory and Invasive Phenotype of Ras-Transfected Mammary Cells by Photodynamic Therapy Treatment. J Cell Biochem 2016; 118:464-477. [PMID: 27438675 DOI: 10.1002/jcb.25657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/19/2016] [Indexed: 12/23/2022]
Abstract
Photodynamic therapy (PDT) is a non-thermal technique for inducing tumor damage following administration of a light-activated photosensitizing drug (PS). In a previous work we found that PDT induces cytoskeleton changes in HB4a-Ras cells (human mammary breast carcinoma HB4a cells transfected with the RAS oncogene). In the present work we have studied the migratory and invasive features and the expression of proteins related to these processes on HB4a-Ras cells after three successive cycles of PDT using different PSs: 5-aminolevulinic acid (ALA), Verteporfin (Verte), m-tetrahydroxyphenylchlorin (m-THPC), and Merocyanine 540 (MC). A slight (1.25- to 2-fold) degree of resistance was acquired in cell populations subjected to the three successive PDT treatments. However, complete cell killing was achieved after a light dose increase. Regardless of the PS employed, all the PDT-treated populations had shorter stress fibres than the untreated control HB4a-Ras cells, and the number of dorsal stress fibres was decreased in the PDT-treated populations. E-Cadherin distribution, which was already aberrant in HB4a-Ras cells, became even more diffuse in the PDT-treated populations, though its expression was increased in some of them. The strong migratory and invasive ability of HB4a-Ras cells in vitro was impaired in all the PDT-treated populations, with a behavior that was similar to the parental non-tumoral HB4a cells. MMP-2 and -9 metalloproteinase activities were also impaired in the PDT-treated populations. The evidence presented herein suggests that the cells surviving PDT would be less metastatic than the initial population. These findings encourage the use of PDT in combination with other treatments such as intraoperative or post-surgery therapeutic procedures. J. Cell. Biochem. 118: 464-477, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gustavo Calvo
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martín, CONICET, University of Buenos Aires, Av. Córdoba 2351 1er subsuelo, Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniel Sáenz
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martín, CONICET, University of Buenos Aires, Av. Córdoba 2351 1er subsuelo, Ciudad Autónoma de Buenos Aires, Argentina
| | - Marina Simian
- Instituto de Nanosistemas & CEDESI, Universidad Nacional de San Martín. 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires, Argentina
| | - Rocío Sampayo
- Instituto de Oncología "Ángel H. Roffo", Av. San Martín 5481, Ciudad Autónoma de Buenos Aires, Argentina
| | - Leandro Mamone
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martín, CONICET, University of Buenos Aires, Av. Córdoba 2351 1er subsuelo, Ciudad Autónoma de Buenos Aires, Argentina
| | - Pablo Vallecorsa
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martín, CONICET, University of Buenos Aires, Av. Córdoba 2351 1er subsuelo, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alcira Batlle
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martín, CONICET, University of Buenos Aires, Av. Córdoba 2351 1er subsuelo, Ciudad Autónoma de Buenos Aires, Argentina
| | - Adriana Casas
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martín, CONICET, University of Buenos Aires, Av. Córdoba 2351 1er subsuelo, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriela Di Venosa
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martín, CONICET, University of Buenos Aires, Av. Córdoba 2351 1er subsuelo, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
7
|
de Cássia J, de Souza N, Gullo F, Fusco-Almeida A, Mendes-Giannini M. Fungal Biofilms: Formation, Resistance and Pathogenicity. Med Mycol 2015. [DOI: 10.1201/b18707-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
8
|
Glycolytic inhibitors 2-deoxyglucose and 3-bromopyruvate synergize with photodynamic therapy respectively to inhibit cell migration. J Bioenerg Biomembr 2015; 47:189-97. [PMID: 25631472 DOI: 10.1007/s10863-015-9604-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/19/2015] [Indexed: 01/06/2023]
Abstract
Most cancer cells have the specially increased glycolytic phenotype, which makes this pathway become an attractive therapeutic target. Although glycolytic inhibitor 2-deoxyglucose (2-DG) has been demonstrated to potentiate the cytotoxicity of photodynamic therapy (PDT), the impacts on cell migration after the combined treatment has never been reported yet. The present study aimed to analyze the influence of glycolytic inhibitors 2-DG and 3-bromopyruvate (3-BP) combined with Ce6-PDT on cell motility of Triple Negative Breast Cancer MDA-MB-231 cells. As determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium-bromide-Tetraz-olium (MTT) assay, more decreased cell viability was observed in 2-DG + PDT and 3-BP + PDT groups when compared with either monotherapy. Under optimal conditions, synergistic potentiation on cell membrane destruction and the decline of cell adhesion and cells migratory ability were observed in both 2-DG + PDT and 3-BP + PDT by electron microscope observation (SEM), wound healing and trans-well assays. Besides, serious microfilament network collapses as well as impairment of matrix metalloproteinases-9 (MMP-9) were notably improved after the combined treatments by immunofluorescent staining. These results suggest that 2-DG and 3-BP can both significantly potentiated Ce6-PDT efficacy of cell migration inhibition.
Collapse
|
9
|
Di Venosa G, Perotti C, Batlle A, Casas A. The role of cytoskeleton and adhesion proteins in the resistance to photodynamic therapy. Possible therapeutic interventions. Photochem Photobiol Sci 2015; 14:1451-64. [PMID: 25832889 DOI: 10.1039/c4pp00445k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It is known that Photodynamic Therapy (PDT) induces changes in the cytoskeleton, the cell shape, and the adhesion properties of tumour cells. In addition, these targets have also been demonstrated to be involved in the development of PDT resistance. The reversal of PDT resistance by manipulating the cell adhesion process to substrata has been out of reach. Even though the existence of cell adhesion-mediated PDT resistance has not been reported so far, it cannot be ruled out. In addition to its impact on the apoptotic response to photodamage, the cytoskeleton alterations are thought to be associated with the processes of metastasis and invasion after PDT. In this review, we will address the impact of photodamage on the microfilament and microtubule cytoskeleton components and its regulators on PDT-treated cells as well as on cell adhesion. We will also summarise the impact of PDT on the surviving and resistant cells and their metastatic potential. Possible strategies aimed at taking advantage of the changes induced by PDT on actin, tubulin and cell adhesion proteins by targeting these molecules will also be discussed.
Collapse
Affiliation(s)
- Gabriela Di Venosa
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP). CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad Autónoma de Buenos Aires, CP1120AAF, Argentina.
| | | | | | | |
Collapse
|
10
|
Tumor Microenvironment as a Determinant of Photodynamic Therapy Resistance. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2015. [DOI: 10.1007/978-3-319-12730-9_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Liu KH, Wang CP, Chang MF, Chung YW, Lou PJ, Lin JH. Molecular characterization of photosensitizer-mediated photodynamic therapy by gene expression profiling. Hum Exp Toxicol 2013; 33:629-37. [PMID: 24064908 DOI: 10.1177/0960327113485257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Photodynamic therapy (PDT) is a novel cancer treatment based on the tumor-specific accumulation of a photosensitizer followed by irradiation with visible light, which induces selective tumor cell death via production of reactive oxygen species. To elucidate the underlying mechanisms, microarray analysis was used to analyze the changes in gene expression patterns during PDT induced by various photosensitizers. Cancer cells were subjected to four different photosensitizer-mediated PDT and the resulting gene expression profiles were compared. We identified many differentially expressed genes reported previously as well as new genes for which the functionfunctions in PDT are still unclear. Our current results not only advance the general understanding of PDT but also suggest that distinct molecular mechanisms are involved in different photosensitizer-mediated PDT. Elucidating the signaling mechanisms in PDT will provide information to modulate the antitumor effectiveness of PDT using various photosensitizers.
Collapse
Affiliation(s)
- K-H Liu
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - C-P Wang
- Department of Otolaryngology, College of Medicine, National Taiwan University Hospital and National Taiwan University, Taipei, Taiwan
| | - M-F Chang
- Biomedical Engineering Center, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Y-W Chung
- Biomedical Engineering Center, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - P-J Lou
- Department of Otolaryngology, College of Medicine, National Taiwan University Hospital and National Taiwan University, Taipei, Taiwan
| | - J-H Lin
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| |
Collapse
|
12
|
Benachour H, Bastogne T, Toussaint M, Chemli Y, Sève A, Frochot C, Lux F, Tillement O, Vanderesse R, Barberi-Heyob M. Real-time monitoring of photocytotoxicity in nanoparticles-based photodynamic therapy: a model-based approach. PLoS One 2012; 7:e48617. [PMID: 23144911 PMCID: PMC3492457 DOI: 10.1371/journal.pone.0048617] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 09/27/2012] [Indexed: 12/13/2022] Open
Abstract
Nanoparticles are widely suggested as targeted drug-delivery systems. In photodynamic therapy (PDT), the use of multifunctional nanoparticles as photoactivatable drug carriers is a promising approach for improving treatment efficiency and selectivity. However, the conventional cytotoxicity assays are not well adapted to characterize nanoparticles cytotoxic effects and to discriminate early and late cell responses. In this work, we evaluated a real-time label-free cell analysis system as a tool to investigate in vitro cyto- and photocyto-toxicity of nanoparticles-based photosensitizers compared with classical metabolic assays. To do so, we introduced a dynamic approach based on real-time cell impedance monitoring and a mathematical model-based analysis to characterize the measured dynamic cell response. Analysis of real-time cell responses requires indeed new modeling approaches able to describe suited use of dynamic models. In a first step, a multivariate analysis of variance associated with a canonical analysis of the obtained normalized cell index (NCI) values allowed us to identify different relevant time periods following nanoparticles exposure. After light irradiation, we evidenced discriminant profiles of cell index (CI) kinetics in a concentration- and light dose-dependent manner. In a second step, we proposed a full factorial design of experiments associated with a mixed effect kinetic model of the CI time responses. The estimated model parameters led to a new characterization of the dynamic cell responses such as the magnitude and the time constant of the transient phase in response to the photo-induced dynamic effects. These parameters allowed us to characterize totally the in vitro photodynamic response according to nanoparticle-grafted photosensitizer concentration and light dose. They also let us estimate the strength of the synergic photodynamic effect. This dynamic approach based on statistical modeling furnishes new insights for in vitro characterization of nanoparticles-mediated effects on cell proliferation with or without light irradiation.
Collapse
Affiliation(s)
- Hamanou Benachour
- Université de Lorraine, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Vandœuvre-lès-Nancy, France
- CNRS, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Vandœuvre-lès-Nancy, France
| | - Thierry Bastogne
- Université de Lorraine, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Vandœuvre-lès-Nancy, France
- CNRS, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Vandœuvre-lès-Nancy, France
- Inria, Biologie, Génétique et Statistiques (BIGS), UMR 7502, Institut Elie Cartan Nancy (IECN), Vandœuvre-lès-Nancy, France
| | - Magali Toussaint
- Université de Lorraine, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Vandœuvre-lès-Nancy, France
- CNRS, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Vandœuvre-lès-Nancy, France
| | - Yosra Chemli
- Université de Lorraine, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Vandœuvre-lès-Nancy, France
- CNRS, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Vandœuvre-lès-Nancy, France
| | - Aymeric Sève
- CNRS, Laboratoire des Réactions et Génie des Procédés (LRGP), UPR 3349, Nancy, France
| | - Céline Frochot
- CNRS, Laboratoire des Réactions et Génie des Procédés (LRGP), UPR 3349, Nancy, France
- CNRS, GdR 3049 “Médicaments Photoactivables - Photochimiothérapie (PHOTOMED)”, France
| | - François Lux
- Université Claude Bernard Lyon 1, Laboratoire de Physico-Chimie des Matériaux Luminescents (LPCML), UMR 5620, Villeurbanne, Lyon, France
- CNRS, Laboratoire de Physico-Chimie des Matériaux Luminescents (LPCML), UMR 5620, Villeurbanne, Lyon, France
| | - Olivier Tillement
- Université Claude Bernard Lyon 1, Laboratoire de Physico-Chimie des Matériaux Luminescents (LPCML), UMR 5620, Villeurbanne, Lyon, France
- CNRS, Laboratoire de Physico-Chimie des Matériaux Luminescents (LPCML), UMR 5620, Villeurbanne, Lyon, France
| | - Régis Vanderesse
- Université de Lorraine, Laboratoire de Chimie-Physique Macromoléculaire (LCPM), UMR 7568, Nancy, France
- CNRS, Laboratoire de Chimie-Physique Macromoléculaire (LCPM), UMR 7568, Nancy, France
| | - Muriel Barberi-Heyob
- Université de Lorraine, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Vandœuvre-lès-Nancy, France
- CNRS, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Vandœuvre-lès-Nancy, France
- CNRS, GdR 3049 “Médicaments Photoactivables - Photochimiothérapie (PHOTOMED)”, France
- Centre Alexis Vautrin, Centre Régional de Lutte Contre le Cancer (CRLCC), Vandœuvre-lès-Nancy, France
- * E-mail:
| |
Collapse
|
13
|
Milla Sanabria L, Rodríguez ME, Cogno IS, Rumie Vittar NB, Pansa MF, Lamberti MJ, Rivarola VA. Direct and indirect photodynamic therapy effects on the cellular and molecular components of the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2012; 1835:36-45. [PMID: 23046998 DOI: 10.1016/j.bbcan.2012.10.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 12/31/2022]
Abstract
Photodynamic therapy (PDT) is a novel cancer treatment. It involves the activation of a photosensitizer (PS) with light of specific wavelength, which interacts with molecular oxygen to generate singlet oxygen and other reactive oxygen species (ROS) that lead to tumor cell death. When a tumor is treated with PDT, in addition to affect cancer cells, the extracellular matrix and the other cellular components of the microenvironment are altered and finally this had effects on the tumor cells survival. Furthermore, the heterogeneity in the availability of nutrients and oxygen in the different regions of a tridimensional tumor has a strong impact on the sensitivity of cells to PDT. In this review, we summarize how PDT affects indirectly to the tumor cells, by the alterations on the extracellular matrix, the cell adhesion and the effects over the immune response. Also, we describe direct PDT effects on cancer cells, considering the intratumoral role that autophagy mediated by hypoxia-inducible factor 1 (HIF-1) has on the efficiency of the treatment.
Collapse
Affiliation(s)
- Laura Milla Sanabria
- Department of Molecular Biology, National University of Río Cuarto, Río Cuarto (5800), Córdoba, Argentina
| | | | | | | | | | | | | |
Collapse
|
14
|
Sanz-Rodríguez F, Casas A, González S, Espada J, Jaén P, Regadera J, Blázquez-Castro A, Zamarrón A, Bagazgoitia L, Iglesias de la Cruz C, Juarranz Á. Preclinical photodynamic therapy research in Spain 4: Cytoskeleton and adhesion complexes of cultured tumor cells as targets of photosensitizers. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424609000565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tumor cell death induced by photodynamic therapy (PDT) with different photosensitizers (PSs) is due to the selective damage of several membranous organelles including mitochondria, lysosomes and Golgi apparatus. Other cell structures such as the cytoskeleton (CSK) (microtubules, actin microfilaments and cytokeratin intermediate filaments) and the cell adhesion components (cadherins and integrins) are also implicated in cell death induced by PSs. CSK and adhesion components are responsible for many cellular functions such as the maintenance of morphology, motility, division and adhesion, all of them of fundamental importance for growth and dissemination of tumors. Therefore, they are considered very important targets for anticancer therapies, including PDT. In addition, similarly to the rest of the anticancer therapies, PDT often leaves a significant number of surviving tumor cells. The reorganization of CSK as well as the adhesion proteins in the PDT resistant cells affect their invasive migratory capabilities. Taking into account all these features, both CSK and adhesion proteins are crucial targets of PDT.
Collapse
Affiliation(s)
- Francisco Sanz-Rodríguez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Adriana Casas
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP) y Hospital de Clínicas José San Martín, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| | - Salvador González
- Servicio de Dermatología, Hospital Ramón Cajal, Madrid, Spain
- Dermatology Unit, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Jesús Espada
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arturo Duperier 4, 28029 Madrid, Spain
| | - Pedro Jaén
- Servicio de Dermatología, Hospital Ramón Cajal, Madrid, Spain
| | - Javier Regadera
- Departamento de Anatomía, Facultad de Medicina, Universidad Autónoma de Madrid, c/ Arzobispo Morcillo, 28029 Madrid, Spain
| | - Alfonso Blázquez-Castro
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alicia Zamarrón
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | - Ángeles Juarranz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
15
|
Uzdensky A, Kristiansen B, Moan J, Juzeniene A. Dynamics of signaling, cytoskeleton and cell cycle regulation proteins in glioblastoma cells after sub-lethal photodynamic treatment: antibody microarray study. Biochim Biophys Acta Gen Subj 2012; 1820:795-803. [PMID: 22484521 DOI: 10.1016/j.bbagen.2012.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) that induces oxidative stress and cell death is used for tumor destruction in oncology. To characterize early molecular events in photosensitized glioblastoma cells, we studied expression of 224 proteins after sublethal PDT that doesn't kill but wounds cells. METHODS Cultured glioblastoma D54Mg cells were photosensitized with 5-aminolevulinic acid so that cell survival was 95-100%. At following 0.5-5.5h protein expression and phosphorylation was assayed using proteomic antibody microarrays. RESULTS Within the first post-treatment hour we observed phosphorylation of protein kinase Raf, adhesion-related kinases FAK and Pyk2, and microtubule-associated protein tau. Protein kinase Cγ and microtubule-associated protein MAP-1B were overexpressed. Dystrophin, calponin, and vinculin, components of the actin cytoskeleton scaffold, microtubule-associated proteins MAP2 and CNP, cytokeratins 4 and 7 were down-regulated that indicated changes in adhesion and cell shape. Down-regulation of cyclins A, D1 and D3, c-Myc, checkpoint proteins chk1/2 and up-regulation of Smad4 could arrest the cell cycle. Overexpression of Bcl-xL and down-regulation of caspase 9 demonstrated anti-apoptotic response. At 2h post-treatment protein expression changed lesser but at 5.5h levels of PKCγ and β-synuclein and phosphorylation of Raf, FAK, Pyk2, and tau increased again. CONCLUSIONS Sub-lethal PDT induces complex response of glioblastoma cells including changes in activity and expression of proteins involved in adhesion-mediated signaling, signal transduction, cytoskeleton remodeling, cell cycle regulation and anti-apoptotic processes. GENERAL SIGNIFICANCE Multiple reactions of various cellular subsystems including adhesion, cytoskeleton, signal transduction, cell cycle, and apoptosis are integrated into the general cell response to a sublethal impact.
Collapse
Affiliation(s)
- Anatoly Uzdensky
- Department of Biophysics, Southern Federal University, Stachky 194/1, 344090, Rostov-on-Don, Russia.
| | | | | | | |
Collapse
|
16
|
Chiaviello A, Postiglione I, Palumbo G. Targets and mechanisms of photodynamic therapy in lung cancer cells: a brief overview. Cancers (Basel) 2011; 3:1014-41. [PMID: 24212652 PMCID: PMC3756402 DOI: 10.3390/cancers3011014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 02/20/2011] [Accepted: 03/01/2011] [Indexed: 01/09/2023] Open
Abstract
Lung cancer remains one of the most common cancer-related causes of death. This type of cancer typically develops over a period of many years, and if detected at an early enough stage can be eliminated by a variety of treatments including photodynamic therapy (PDT). A critical discussion on the clinical applications of PDT in lung cancer is well outside the scope of the present report, which, in turn focuses on mechanistic and other aspects of the photodynamic action at a molecular and cellular level. The knowledge of these issues at pre-clinical levels is necessary to develop, check and adopt appropriate clinical protocols in the future. This report, besides providing general information, includes a brief overview of present experimental PDT and provides some non-exhaustive information on current strategies aimed at further improving the efficacy, especially in regard to lung cancer cells.
Collapse
Affiliation(s)
- Angela Chiaviello
- Department of Biologia e Patologia Cellulare e Molecolare "L. Califano" - Università Federico II, Via S. Pansini, 5 80131 Naples, Italy.
| | | | | |
Collapse
|
17
|
Firczuk M, Nowis D, Gołąb J. PDT-induced inflammatory and host responses. Photochem Photobiol Sci 2011; 10:653-63. [PMID: 21258727 DOI: 10.1039/c0pp00308e] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Photodynamic therapy (PDT) is used in the management of neoplastic and nonmalignant diseases. Its unique mechanisms of action include direct cytotoxic effects exerted towards tumor cells, destruction of tumor and peritumoral vasculature and induction of local acute inflammatory reaction. The latter develops in response to (1) damage to tumor and stromal cells that leads to the release of cell death-associated molecular patterns (CDAMs) or damage associated molecular patterns (DAMPs), (2) early vascular changes that include increased vascular permeability, vascular occlusion, and release of vasoactive and proinflammatory mediators, (3) activation of alternative pathway of complement leading to generation of potent chemotactic factors, and (4) induction of signaling cascades and transcription factors that trigger secretion of cytokines, matrix metalloproteinases, or adhesion molecules. The majority of studies indicate that induction of local inflammatory response contributes to the antitumor effects of PDT and facilitates development of systemic immunity. However, the degree of PDT-induced inflammation and its subsequent contribution to its antitumor efficacy depend on multiple parameters, such as chemical nature, concentration and subcellular localization of the photosensitizers, the spectral characteristics of the light source, light fluence and fluence rate, oxygenation level, and tumor type. Identification of detailed molecular mechanisms and development of therapeutic approaches modulating PDT-induced inflammation will be necessary to tailor this treatment to particular clinical conditions.
Collapse
Affiliation(s)
- Małgorzata Firczuk
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Warsaw, Poland.
| | | | | |
Collapse
|
18
|
Casas A, Di Venosa G, Hasan T, Al Batlle. Mechanisms of resistance to photodynamic therapy. Curr Med Chem 2011; 18:2486-515. [PMID: 21568910 PMCID: PMC3780570 DOI: 10.2174/092986711795843272] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/11/2011] [Indexed: 01/25/2023]
Abstract
Photodynamic therapy (PDT) involves the administration of a photosensitizer (PS) followed by illumination with visible light, leading to generation of reactive oxygen species. The mechanisms of resistance to PDT ascribed to the PS may be shared with the general mechanisms of drug resistance, and are related to altered drug uptake and efflux rates or altered intracellular trafficking. As a second step, an increased inactivation of oxygen reactive species is also associated to PDT resistance via antioxidant detoxifying enzymes and activation of heat shock proteins. Induction of stress response genes also occurs after PDT, resulting in modulation of proliferation, cell detachment and inducing survival pathways among other multiple extracellular signalling events. In addition, an increased repair of induced damage to proteins, membranes and occasionally to DNA may happen. PDT-induced tissue hypoxia as a result of vascular damage and photochemical oxygen consumption may also contribute to the appearance of resistant cells. The structure of the PS is believed to be a key point in the development of resistance, being probably related to its particular subcellular localization. Although most of the features have already been described for chemoresistance, in many cases, no cross-resistance between PDT and chemotherapy has been reported. These findings are in line with the enhancement of PDT efficacy by combination with chemotherapy. The study of cross resistance in cells with developed resistance against a particular PS challenged against other PS is also highly complex and comprises different mechanisms. In this review we will classify the different features observed in PDT resistance, leading to a comparison with the mechanisms most commonly found in chemo resistant cells.
Collapse
Affiliation(s)
- A Casas
- Centro de Invesigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clinicas José de San Martin, University of Buenos Aires Córdoba 2351 ler subsuelo, Argentina.
| | | | | | | |
Collapse
|
19
|
Gupta S, Dwarakanath BS, Muralidhar K, Koru-Sengul T, Jain V. Non-monotonic changes in clonogenic cell survival induced by disulphonated aluminum phthalocyanine photodynamic treatment in a human glioma cell line. J Transl Med 2010; 8:43. [PMID: 20433757 PMCID: PMC2885318 DOI: 10.1186/1479-5876-8-43] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 04/30/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) involves excitation of sensitizer molecules by visible light in the presence of molecular oxygen, thereby generating reactive oxygen species (ROS) through electron/energy transfer processes. The ROS, thus produced can cause damage to both the structure and the function of the cellular constituents resulting in cell death. Our preliminary investigations of dose-response relationships in a human glioma cell line (BMG-1) showed that disulphonated aluminum phthalocyanine (AlPcS2) photodynamically induced loss of cell survival in a concentration dependent manner up to 1 microM, further increases in AlPcS2concentration (>1 microM) were, however, observed to decrease the photodynamic toxicity. Considering the fact that for most photosensitizers only monotonic dose-response (survival) relationships have been reported, this result was unexpected. The present studies were, therefore, undertaken to further investigate the concentration dependent photodynamic effects of AlPcS2. METHODS Concentration-dependent cellular uptake, sub-cellular localization, proliferation and photodynamic effects of AlPcS2 were investigated in BMG-1 cells by absorbance and fluorescence measurements, image analysis, cell counting and colony forming assays, flow cytometry and micronuclei formation respectively. RESULTS The cellular uptake as a function of extra-cellular AlPcS2 concentrations was observed to be biphasic. AlPcS2 was distributed throughout the cytoplasm with intense fluorescence in the perinuclear regions at a concentration of 1 microM, while a weak diffuse fluorescence was observed at higher concentrations. A concentration-dependent decrease in cell proliferation with accumulation of cells in G2+M phase was observed after PDT. The response of clonogenic survival after AlPcS2-PDT was non-monotonic with respect to AlPcS2 concentration. CONCLUSIONS Based on the results we conclude that concentration-dependent changes in physico-chemical properties of sensitizer such as aggregation may influence intracellular transport and localization of photosensitizer. Consequent modifications in the photodynamic induction of lesions and their repair leading to different modes of cell death may contribute to the observed non-linear effects.
Collapse
Affiliation(s)
- Seema Gupta
- Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Road, Delhi-110054, India.
| | | | | | | | | |
Collapse
|
20
|
Hong X, Jiang F, Kalkanis SN, Zhang ZG, Zhang X, Zheng X, Jiang H, Chopp M. Intracellular free calcium mediates glioma cell detachment and cytotoxicity after photodynamic therapy. Lasers Med Sci 2009; 24:777-86. [PMID: 19198972 PMCID: PMC2746241 DOI: 10.1007/s10103-008-0640-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 12/23/2008] [Indexed: 10/21/2022]
Abstract
Photofrin photodynamic therapy (PDT) caused a dose-dependent decrease of enzymatic cell detachment by trypsin/ethylenediamine tetra-acetic acid (EDTA) in human glioma U251n and U87 cells. This happened coincidently with the increase of intracellular free calcium ([Ca(2+)](i)). Thapsigargin, which increased [Ca(2+)](i), induced further decrease in enzymatic cell detachment and increased cytotoxicity. Opposite effects were observed when 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetra-acetic acid tetrakis, an intracellular Ca(2+) chelator, was used. PDT-induced changes in [Ca(2+)](i) and cell detachment were not blocked by calcium channel antagonists nickel (Ni(2+)) or nimodipine, nor were they altered when cells were irradiated in a buffer free from Ca(2+) and magnesium (Mg(2+)), suggesting that [Ca(2+)](i) is derived from the internal calcium stores. Decreased cell migration was observed after PDT, as assessed by chemotactic and wound-healing assays. Our findings indicated that internal calcium store-derived [Ca(2+)](i) plays an important role in PDT-induced enzymatic cell detachment decrease and cytotoxicity. Cell migration may be affected by these changes.
Collapse
Affiliation(s)
- Xin Hong
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Feng Jiang
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | | | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | - Xuepeng Zhang
- Department of Surgical Oncology, Affiliated Hospital, North China Coal Medical University, Tangshan City, Hebei Province, People’s Republic of China
| | - Xuguang Zheng
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | - Hao Jiang
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| |
Collapse
|
21
|
Casas A, Di Venosa G, Vanzulli S, Perotti C, Mamome L, Rodriguez L, Simian M, Juarranz A, Pontiggia O, Hasan T, Batlle A. Decreased metastatic phenotype in cells resistant to aminolevulinic acid-photodynamic therapy. Cancer Lett 2008; 271:342-51. [PMID: 18662847 PMCID: PMC2602948 DOI: 10.1016/j.canlet.2008.06.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 04/30/2008] [Accepted: 06/23/2008] [Indexed: 10/21/2022]
Abstract
Photodynamic therapy (PDT) is a novel cancer treatment utilising a photosensitiser, visible light and oxygen. PDT often leaves a significant number of surviving tumour cells. In a previous work, we isolated and studied two PDT resistant clones derived from the mammary adenocarcinoma LM3 line (Int. J. Oncol. 29 (2006) 397-405). The isolated Clon 4 and Clon 8 exhibited a more fibroblastic, dendritic pattern and were larger than the parentals. In the present work we studied the metastatic potential of the two clones in comparison with LM3. We found that 100% of LM3 invaded Matrigel, whereas only 19+/-6% and 24+/-7% of Clon 4 and Clon 8 cells invaded. In addition, 100% of LM3 cells migrated towards a chemotactic stimulus whereas 38+/-8% and 73+/-10% of Clones 4 and 8, respectively, were able to migrate. In vivo, 100% of the LM3 injected mice developed spontaneous lung metastasis, whereas none of the Clon 8 did, and only one of the mice injected with Clon 4 did. No differences were found in the proteolytic enzyme profiles among the cells. Anchorage-dependent adhesion was also impaired in vivo in the resistant clones, evidenced by the lower tumour take, latency time and growth rates, although both clones showed in vitro higher binding to collagen I without overexpression of beta1 integrin. This is the first work where the metastatic potential of cells surviving to PDT has been studied. PDT strongly affects the invasive phenotype of these cells, probably related to a higher binding to collagen. These findings may be crucial for the outcome of ALA-PDT of metastatic tumours, although further studies are needed to extrapolate the results to the clinic employing another photosensitisers and cell types.
Collapse
Affiliation(s)
- Adriana Casas
- Centro de Investigaciones sobre Porfirinas y Porfirias, CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, 1056 Ciudad de Buenos Aires, Córdoba 2351 1er subsuelo, CP 1120AAF, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Pazos MDC, Nader HB. Effect of photodynamic therapy on the extracellular matrix and associated components. ACTA ACUST UNITED AC 2008; 40:1025-35. [PMID: 17665038 DOI: 10.1590/s0100-879x2006005000142] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 05/11/2007] [Indexed: 12/12/2022]
Abstract
In many countries, photodynamic therapy (PDT) has been recognized as a standard treatment for malignant conditions (for example, esophageal and lung cancers) and non-malignant ones such as age-related macular degeneration and actinic keratoses. The administration of a non-toxic photosensitizer, its selective retention in highly proliferating cells and the later activation of this molecule by light to form reactive oxygen species that cause cell death is the principle of PDT. Three important mechanisms are responsible for the PDT effectiveness: a) direct tumor cell kill; b) damage of the tumor vasculature; c) post-treatment immunological response associated with the leukocyte stimulation and release of many inflammatory mediators like cytokines, growth factors, components of the complement system, acute phase proteins, and other immunoregulators. Due to the potential applications of this therapy, many studies have been reported regarding the effect of the treatment on cell survival/death, cell proliferation, matrix assembly, proteases and inhibitors, among others. Studies have demonstrated that PDT alters the extracellular matrix profoundly. For example, PDT induces collagen matrix changes, including cross-linking. The extracellular matrix is vital for tissue organization in multicellular organisms. In cooperation with growth factors and cytokines, it provides cells with key signals in a variety of physiological and pathological processes, for example, adhesion/migration and cell proliferation/differentiation/death. Thus, the focus of the present paper is related to the effects of PDT observed on the extracellular matrix and on the molecules associated with it, such as, adhesion molecules, matrix metalloproteinases, growth factors, and immunological mediators.
Collapse
Affiliation(s)
- M d C Pazos
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio 100, 04044-020 São Paulo, SP, Brazil.
| | | |
Collapse
|
23
|
The history of PDT in Norway. Photodiagnosis Photodyn Ther 2007; 4:80-7. [DOI: 10.1016/j.pdpdt.2006.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 11/08/2006] [Indexed: 11/18/2022]
|
24
|
Krieg RC, Messmann H, Schlottmann K, Endlicher E, Seeger S, Schölmerich J, Knuechel R. Intracellular Localization is a Cofactor for the Phototoxicity of Protoporphyrin IX in the Gastrointestinal Tract: In Vitro Study¶†. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2003)0780393iliacf2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Ball DJ, Mayhew S, Vernon DI, Griffin M, Brown SB. Decreased Efficiency of Trypsinization of Cells Following Photodynamic Therapy: Evaluation of a Role for Tissue Transglutaminase¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0730047deotoc2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Abstract
Photodynamic therapy (PDT) is a treatment that combines a photosensitizer with light to generate oxygen-dependent photochemical destruction of diseased tissue. This modality has been approved worldwide since 1993 for the treatment of several oncological and nononcological disorders. PDT continues to be interested in both preclinical and clinical research, with more than 500 publications each year during the past 5 years. This minireview focuses on the effects of PDT on tumor stroma. A tumor consists of two fundamental elements: parenchyma (neoplastic cells) and stroma. The stroma is composed of vasculature, cellular components, and intercellular matrix and is necessary for tumor growth. All the stromal components can be targeted by PDT. Although the exact mechanism of PDT is unknown, emerging evidence has indicated that effective PDT of tumor requires destruction of both parenchyma and stroma. Further, damage to subendothelial zone of vasculature, in addition to endothelium, also appears to be a crucial factor. The PDT-generated immune response as a way of vaccination for treatment and prevention of metastatic tumors remains to be exploited.
Collapse
Affiliation(s)
- Qian Peng
- Department of Pathology, The Norwegian Radium Hospital, University of Oslo, Oslo, Norway.
| | | |
Collapse
|
27
|
Uzdensky A, Kolpakova E, Juzeniene A, Juzenas P, Moan J. The effect of sub-lethal ALA-PDT on the cytoskeleton and adhesion of cultured human cancer cells. Biochim Biophys Acta Gen Subj 2005; 1722:43-50. [PMID: 15716135 DOI: 10.1016/j.bbagen.2004.11.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 11/09/2004] [Accepted: 11/16/2004] [Indexed: 11/26/2022]
Abstract
5-Aminolevulinic acid (ALA), a precursor of the endogenous photosensitizer protoporphyrin IX, is used in the photodynamic therapy (PDT) of cancer. Sub-lethal ALA-PDT (1-min irradiation with 370-450 nm blue light, 0.6 mW/cm(2) after 2-h incubation with 1 mM ALA) has been earlier shown to change cell morphology and to inhibit both trypsin-induced detachment of cultured cancer cells from the plastic substrata and cell attachment to the bottom of the plastic well plates. In the present study, we found that such treatment of human adenocarcinoma WiDr cells grown in dense colonies stimulated the formation of actin cortex between cells in the colonies and increased the number of actin stress fibres in some, but not in all, cells. However, ALA-PDT did not change the microtubular cytoskeleton in these cells. A similar treatment of glioblastoma D54Mg cells, which grow separately and communicate by protrusions, caused loss of fibrillar actin structures in growth cones, retraction of protrusions, and surface blebbing in some cells. The application of the cytoskeleton inhibitors cytochalasin D, colchicine or taxol showed that the inhibition of trypsin-induced detachment of photosensitized WiDr cells was related to ALA-PDT-induced changes in actin and microtubular cytoskeleton. Some signal transduction processes are suggested to be involved in ALA-PDT-induced changes in cytoskeleton, cell shape, and adhesion.
Collapse
|
28
|
Uzdensky AB, Juzeniene A, Kolpakova E, Hjortland GO, Juzenas P, Moan J. Photosensitization with protoporphyrin IX inhibits attachment of cancer cells to a substratum. Biochem Biophys Res Commun 2004; 322:452-7. [PMID: 15325251 DOI: 10.1016/j.bbrc.2004.07.132] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Indexed: 12/27/2022]
Abstract
Effects of photodynamic therapy (PDT) on adhesion of human adenocarcinoma cells of the line WiDr to a plastic substratum were investigated. Protoporphyrin IX induced by 5-aminolevulinic acid (ALA) was used as a photosensitizer. Light exposure inhibited attachment of suspended cells to a substratum. The adhesion was most strongly pronounced for light exposures around 200 mJ/cm(2) causing cell death. However, sub-lethal exposures (42 mJ/cm(2), 97% survival) inhibited cell adhesion as well. Sub-lethal ALA-PDT increased the intracellular space in dense colonies of WiDr cells. This was attributed to formation of lamellipodia between the cells and to increased numbers of focal contacts containing alpha(V)beta(3) integrin in some of the cells. The E-cadherin distribution was not changed by the treatment. Complex processes, including changes in cellular shape and reorganization of the cytoskeleton, are suggested to participate in the observed ALA-PDT effect on the cell adhesion.
Collapse
Affiliation(s)
- A B Uzdensky
- Institute for Cancer Research, 0310 Montebello, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
29
|
Krieg RC, Messmann H, Schlottmann K, Endlicher E, Seeger S, Schölmerich J, Knuechel R. Intracellular Localization is a Cofactor for the Phototoxicity of Protoporphyrin IX in the Gastrointestinal Tract: In Vitro Study¶†. Photochem Photobiol 2003; 78:393-9. [PMID: 14626668 DOI: 10.1562/0031-8655(2003)078<0393:iliacf>2.0.co;2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Photodynamic therapy (PDT) is a new treatment modality for solid tumors as well as for flat lesions of the gastrointestinal tract. Although the use of 5-aminolevulinic acid-induced protoporphyrin IX (PPIX) shows important advantages over other photosensitizers, the main mechanisms of phototoxicity induced are still poorly understood. Three human colon carcinoma cell lines with variable degrees of differentiation and a normal colon fibroblast cell line were used to generate a suitable in vitro model for investigation of photosensitizer concentration as well as the applied light dose. Also, the effects of intracellular photosensitizer localization on efficiency of PDT were examined, and cellular parameters after PDT (morphology, mitochondrial transmembrane potential, membrane integrity and DNA fragmentation) were analyzed to distinguish between PDT-induced apoptosis from necrosis. The fibroblast cell line was less affected by phototoxicity than the tumor cells to a variable degree. Well-differentiated tumor cells showed higher toxicity than less-differentiated cells. After irradiation, cell lines with cytosolic or mitochondrial PPIX localization indicate a loss of mitochondrial transmembrane potential resulting in growth arrest, whereas membrane-bound PPIX induces a loss of membrane integrity and consequent necrosis. Although the absolute amount of intracellular photosensitizer concentration plays the main determining role for PDT efficiency, data indicate that intracellular localization has additional effects on the mode of cell damage.
Collapse
Affiliation(s)
- René C Krieg
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Sullivan LG, Hasan T, Wright M, Mankin HJ, Towle CA. Photodynamic treatment has chondroprotective effects on articular cartilage. J Orthop Res 2002; 20:241-8. [PMID: 11918303 DOI: 10.1016/s0736-0266(01)00113-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is a disabling joint disease for which there is currently no cure. It is characterized by the destruction of articular cartilage. One strategy that is being explored for protecting the cartilage in OA is the administration of transforming growth factor-beta, which in vitro antagonizes cartilage degradation initiated by catabolic stimulants such as interleukin-1 (IL-1). The problems associated with selective delivery of the growth factor to chondrocytes, undesirable side-effects on joint tissues, and short biological half-life have led us to explore modalities aimed at activating transforming growth factor-beta that is stored in the cartilage as latent complexes. Photodynamic therapy is a two-step protocol of tissue sensitization with a light-activatable chemical called a photosensitizer followed at some interval by irradiation with the appropriate wavelength visible light. Biological effects are typically elicited through oxygen-dependent photochemistry without heat generation. Transforming growth factor-beta1 can be activated by oxidative mechanism(s), prompting us to explore whether photodynamic technology can be harnessed to modulate cartilage metabolism. Disks of bovine articular cartilage were photosensitized by incubation with a chlorin(e6)-succinylated polylysine conjugate and irradiated with 1-2 J/cm2 red light (lambdamax = 671 nm). This two-step regimen dramatically inhibited IL-1-stimulated proteoglycan degradation and concomitantly increased latent and active transforming growth factor-beta1 in culture medium. This research may lead to the development of minimally invasive photodynamic therapy in which light is delivered to locally activate a chondroprotective program in photosensitized cartilage in the context of OA.
Collapse
Affiliation(s)
- Lawrence G Sullivan
- Department of Orthopaedic Surgery, Harvard Medical School, Orthopaedic Research Laboratories, Massachusetts General Hospital, Boston 02114, USA
| | | | | | | | | |
Collapse
|
31
|
Ball DJ, Mayhew S, Vernon DI, Griffin M, Brown SB. Decreased efficiency of trypsinization of cells following photodynamic therapy: evaluation of a role for tissue transglutaminase. Photochem Photobiol 2001; 73:47-53. [PMID: 11202365 DOI: 10.1562/0031-8655(2001)073<0047:deotoc>2.0.co;2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Identifying the cellular responses to photodynamic therapy (PDT) is important if the mechanisms of cellular damage are to be fully understood. The relationship between sensitizer, fluence rate and the removal of cells by trypsinization was studied using the RIF-1 cell line. Following treatment of RIF-1 cells with pyridinium zinc (II) phthalocyanine (PPC), or polyhaematoporphyrin at 10 mW cm-2 (3 J cm-2), there was a significant number of cells that were not removed by trypsin incubation compared to controls. Decreasing the fluence rate from 10 to 2.5 mW cm-2 resulted in a two-fold increase in the number of cells attached to the substratum when PPC used as sensitizer; however, with 5,10,15,20 meso-tetra(hydroxyphenyl) chlorine (m-THPC) there was no resistance to trypsinization following treatment at either fluence rate. The results indicate that resistance of cells to trypsinization following PDT is likely to be both sensitizer and fluence rate dependent. Increased activity of the enzyme tissue-transglutaminase (tTGase) was observed following PPC-PDT, but not following m-THPC-PDT. Similar results were obtained using HT29 human colonic carcinoma and ECV304 human umbilical vein endothelial cell lines. Hamster fibrosarcoma cell (Met B) clones transfected with human tTGase also exhibited resistance to trypsinization following PPC-mediated photosensitization; however, a similar degree of resistance was observed in PDT-treated control Met B cells suggesting that tTGase activity alone was not involved in this process.
Collapse
Affiliation(s)
- D J Ball
- Center for Photobiology and Photodynamic Therapy, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | |
Collapse
|
32
|
Moor AC. Signaling pathways in cell death and survival after photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2000; 57:1-13. [PMID: 11100832 DOI: 10.1016/s1011-1344(00)00065-8] [Citation(s) in RCA: 240] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Photodynamic therapy (PDT) is a cytotoxic treatment, which can induce cells to initiate a rescue response, or to undergo cell death, either apoptosis or necrosis. The many signaling pathways involved in these processes are the topic of this review. The subcellular localization of the photosensitizer has been shown to be a key factor in the outcome of PDT. Mitochondrial localized photosensitizers are able to induce apoptosis very rapidly. Lysosomal localized photosensitizers can elicit either a necrotic or an apoptotic response. In the plasma membrane, a target for various photosensitizers, rescue responses, apoptosis and necrosis is initiated. Several protein phosphorylation cascades are involved in the regulation of the response to PDT. Finally, a number of stress-induced proteins play a role in the rescue response after PDT. Notably, the induction of apoptosis by PDT might not be crucial for an optimal outcome. Recent studies indicate that abrogation of the apoptotic pathway does alter the clonogenic survival of the cells after PDT. Further studies, both in vitro and especially in vivo could lead to more efficient combination therapies in which signaling pathways, involved in cell death or rescue, are either up- or downregulated before PDT.
Collapse
Affiliation(s)
- A C Moor
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA.
| |
Collapse
|
33
|
Runnels JM, Chen N, Ortel B, Kato D, Hasan T. BPD-MA-mediated photosensitization in vitro and in vivo: cellular adhesion and beta1 integrin expression in ovarian cancer cells. Br J Cancer 1999; 80:946-53. [PMID: 10362101 PMCID: PMC2363035 DOI: 10.1038/sj.bjc.6690448] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Benzoporphyrin derivative monoacid (BPD-MA) photosensitization was examined for its effects on cellular adhesion of a human ovarian cancer cell line, OVCAR 3, to extracellular matrix (ECM) components. Mild BPD-MA photosensitization (approximately 85% cell survival) of OVCAR 3 transiently decreased adhesion to collagen IV, fibronectin, laminin and vitronectin to a greater extent than could be attributed to cell death. The loss in adhesiveness was accompanied by a loss of beta1 integrin-containing focal adhesion plaques (FAPs), although beta1 subunits were still recognized by monoclonal antibody directed against human beta1 subunits. In vivo BPD-MA photosensitization decreased OVCAR 3 adhesiveness as well. Photosensitized adhesion was reduced in the presence of sodium azide and enhanced in deuterium oxide, suggesting mediation by singlet oxygen. Co-localization studies of BPD-MA and Rhodamine 123 showed that the photosensitizer was largely mitochondrial, but also exhibited extramitochondrial, intracellullar, diffuse cytosolic fluorescence. Taken together, these data show that intracellular damage mediated by BPD-PDT remote from the FAP site can affect cellular-ECM interactions and result in loss of FAP formation. This may have an impact on long-term effects of photodynamic therapy. The topic merits further investigation.
Collapse
Affiliation(s)
- J M Runnels
- Department of Dermatology, Massachusetts General Hospital, Boston 02114, USA
| | | | | | | | | |
Collapse
|