1
|
Islam SMS, Kim HA, Choi B, Jung JY, Lee SM, Suh CH, Sohn S. Differences in Expression of Human Leukocyte Antigen Class II Subtypes and T Cell Subsets in Behçet's Disease with Arthritis. Int J Mol Sci 2019; 20:ijms20205044. [PMID: 31614573 PMCID: PMC6829274 DOI: 10.3390/ijms20205044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022] Open
Abstract
It has been reported Human Leukocyte Antigen (HLA) gene polymorphism is a risk factor for the development of Behçet’s disease (BD). In this study, the association of HLA class II subtypes HLA-DP, DQ, DR, and T cell subsets in BD patients with arthritis was evaluated. Frequencies of HLA-DP, DQ, DR positive cells, and T cell subsets in peripheral blood leukocytes (PBL) were measured by flow cytometric analysis in BD, and compared to rheumatoid arthritis as disease controls and healthy controls. Frequencies of HLA-DQ were significantly decreased in whole PBL and granulocytes of BD active patients as compared to healthy controls. In monocytes populations, proportions of HLA-DR positive cells were significantly increased in BD active patients as compared to healthy controls. Proportions of CD4+CCR7+ and CD8+CCR7+ cells were significantly higher in BD active patients than in BD inactive in whole PBL. Frequencies of CD4+CD62L- and CD8+CD62L- cells in lymphocytes were significantly decreased in active BD than those in inactive BD. There were also correlations between disease activity markers and T cell subsets. Our results revealed HLA-DP, DQ, and DR expressing cell frequencies and several T cell subsets were significantly correlated with BD arthritis symptoms.
Collapse
Affiliation(s)
- S M Shamsul Islam
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Korea.
| | - Hyoun-Ah Kim
- Department of Rheumatology, Ajou University School of Medicine, Suwon 16499, Korea.
| | - Bunsoon Choi
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Korea.
| | - Ju-Yang Jung
- Department of Rheumatology, Ajou University School of Medicine, Suwon 16499, Korea.
| | - Sung-Min Lee
- Department of Rheumatology, Ajou University School of Medicine, Suwon 16499, Korea.
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine, Suwon 16499, Korea.
| | - Seonghyang Sohn
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Korea.
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Korea.
| |
Collapse
|
2
|
Mazor R, King EM, Pastan I. Strategies to Reduce the Immunogenicity of Recombinant Immunotoxins. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1736-1743. [PMID: 29870741 DOI: 10.1016/j.ajpath.2018.04.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/19/2018] [Accepted: 04/06/2018] [Indexed: 12/23/2022]
Abstract
Recombinant immunotoxins (RITs) are genetically engineered proteins being developed to treat cancer. They are composed of an Fv that targets a cancer antigen and a fragment of a bacterial toxin that kills tumor cells. Because the toxin is a foreign protein, it is immunogenic. The clinical success of RITs in patients with a normal immune system is limited by their immunogenicity. In this review, we discuss our progress in therapeutic protein deimmunization and the balancing act between immunogenicity and therapeutic potency. One approach is to prevent the activation of B cells by mapping and elimination of B-cell epitopes. A second approach is to prevent helper T-cell activation by interfering with major histocompatibility complex II presentation or T-cell recognition. Immunizing mice with RITs that were deimmunized by elimination of the murine B- or T-cell epitopes showed that both approaches are effective. Another approach to control immunogenicity is to modify the host immune system. Nanoparticles containing synthetic vaccine particles encapsulating rapamycin can induce immune tolerance and prevent anti-drug antibody formation. This treatment restores RIT anti-tumor activity that is otherwise neutralized because of immunogenicity.
Collapse
Affiliation(s)
- Ronit Mazor
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Emily M King
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
3
|
Fleischhauer K, Shaw BE. HLA-DP in unrelated hematopoietic cell transplantation revisited: challenges and opportunities. Blood 2017; 130:1089-1096. [PMID: 28667011 DOI: 10.1182/blood-2017-03-742346] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/17/2017] [Indexed: 11/20/2022] Open
Abstract
When considering HLA-matched hematopoietic cell transplantation (HCT), sibling and unrelated donors (UDs) are biologically different because UD-HCT is typically performed across HLA-DP disparities absent in sibling HCT. Mismatched HLA-DP is targeted by direct alloreactive T cell responses with important implications for graft-versus-host disease and graft-versus-leukemia. This concise review details special features of HLA-DP as model antigens for clinically permissive mismatches mediating limited T-cell alloreactivity with minimal toxicity, and describes future avenues for their exploitation in cellular immunotherapy of malignant blood disorders.
Collapse
Affiliation(s)
- Katharina Fleischhauer
- Institute for Experimental Cellular Therapy, Essen University Hospital, Essen, Germany
- German Cancer Consortium, Heidelberg, Germany; and
| | - Bronwen E Shaw
- Center for International Blood and Marrow Transplant Research, Froedtert & The Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
4
|
Mazor R, Addissie S, Jang Y, Tai CH, Rose J, Hakim F, Pastan I. Role of HLA-DP in the Presentation of Epitopes from the Truncated Bacterial PE38 Immunotoxin. AAPS J 2017; 19:117-129. [PMID: 27796910 PMCID: PMC7900900 DOI: 10.1208/s12248-016-9986-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/18/2016] [Indexed: 02/07/2023] Open
Abstract
Identification of helper T-cell epitopes is important in many fields of medicine. We previously used an experimental approach to identify T-cell epitopes in PE38, a truncated bacterial toxin used in immunotoxins. Here, we evaluated the ability of antibodies to DR, DP, or DQ to block T-cell responses to PE38 epitopes in 36 PBMC samples. We predicted the binding affinities of peptides to DR, DP, and DQ alleles using computational tools and analyzed their ability to predict the T-cell epitopes. We found that HLA-DR is responsible for 65% of the responses, DP 24%, and DQ 4%. One epitope that is presented in 20% of the samples (10/50) is entirely DP restricted and was not predicted to bind to DR or DP reference alleles using binding algorithms. We conclude that DP has an important role in helper T-cell response to PE38.
Collapse
Affiliation(s)
- Ronit Mazor
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5106, Bethesda, Maryland, 20892-4264, USA
| | - Selamawit Addissie
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5106, Bethesda, Maryland, 20892-4264, USA
| | - Youjin Jang
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5106, Bethesda, Maryland, 20892-4264, USA
| | - Chin-Hsien Tai
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5106, Bethesda, Maryland, 20892-4264, USA
| | - Jeremy Rose
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Fran Hakim
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5106, Bethesda, Maryland, 20892-4264, USA.
| |
Collapse
|
5
|
Bengtsson M. DPB1*8601, a previously unrecognized DPB1 variant in the Caucasoid population. TISSUE ANTIGENS 2001; 57:536-9. [PMID: 11556983 DOI: 10.1034/j.1399-0039.2001.057006536.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A new, previously unrecognized DPB1* allele, DPB1*8601, was found in a Swedish family. The new allele was carried on the common North European haplotype HLA A1-B8-DR3. Both individuals carrying the new allele were initially typed as clear DPB1*4601,*6601 but after family studies and further typing with allele-specific primers it was concluded that a new allele was present together with the common DPB1*0401. The new allele was investigated by direct sequencing of exon 2 in both forward and reverse directions employing intron primers combined with either an allele-specific sense or anti-sense biotinylated primer for bi-directional sequencing. The new allele is identical to DPB1*1701 in the five first variable regions. In the sixth region, however, DPB1*8601 carries the GGPM motif shared by several common alleles such as DPB1*0201 and 0401and 0402.
Collapse
Affiliation(s)
- M Bengtsson
- Section of Clinical Immunology, Department of Oncology, Radiology and Clinical Immunology, Rudbeck Laboratory, University Hospital, Uppsala, Sweden.
| |
Collapse
|
6
|
Fontenot AP, Torres M, Marshall WH, Newman LS, Kotzin BL. Beryllium presentation to CD4+ T cells underlies disease-susceptibility HLA-DP alleles in chronic beryllium disease. Proc Natl Acad Sci U S A 2000; 97:12717-22. [PMID: 11050177 PMCID: PMC18830 DOI: 10.1073/pnas.220430797] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chronic beryllium disease results from beryllium exposure in the workplace and is characterized by CD4(+) T cell-mediated inflammation in the lung. Susceptibility to this disease is associated with particular HLA-DP alleles. We isolated beryllium-specific T cell lines from the lungs of affected patients. These CD4(+) T cell lines specifically responded to beryllium in culture in the presence of antigen-presenting cells that expressed class II MHC molecules HLA-DR, -DQ, and -DP. The response to beryllium was nearly completely and selectively blocked by mAb to HLA-DP. Additional studies showed that only certain HLA-DP alleles allowed presentation of beryllium. Overall, the DP alleles that presented beryllium to disease-specific T cell lines match those implicated in disease susceptibility, providing a mechanism for this association. Based on amino acid residues shared by these restricting and susceptibility DP alleles, our results provide insight into the residues of the DP beta-chain required for beryllium presentation.
Collapse
Affiliation(s)
- A P Fontenot
- Departments of Medicine and Immunology, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | | | | | |
Collapse
|
7
|
Chang WL, Audet RG, Aizenstein BD, Hogan LH, DeMars RI, Klein BS. T-Cell epitopes and human leukocyte antigen restriction elements of an immunodominant antigen of Blastomyces dermatitidis. Infect Immun 2000; 68:502-10. [PMID: 10639410 PMCID: PMC97169 DOI: 10.1128/iai.68.2.502-510.2000] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Humans infected with the dimorphic fungus Blastomyces dermatitidis develop strong T-lymphocyte responses to WI-1, an immunodominant antigen that has been shown to elicit protective immunity in mice. In the present study, the T-cell epitopes of WI-1 and human leukocyte antigen (HLA) restricting elements that display them were investigated. Peripheral blood mononuclear cells (PBMC) from 37 patients with a confirmed history of blastomycosis were tested for a response to WI-1 in primary proliferation assays; PBMC from 35 (95%) responded. Six patients whose PBMC proliferated strongly in response to WI-1 (defined as a stimulation index greater than 50) were tested further for responses to subcloned, recombinant fragments of the antigen. These patients responded chiefly to sequences within the N terminus and the 25-amino-acid tandem repeat. Cloned CD4(+) T cells from an infected individual were used to delineate more precisely the peptide epitopes in the fragments and HLA restricting elements that present them. A majority of the T-cell clones recognized an epitope spanning amino acids 149 to 172 within the N terminus, displayed by HLA-DR 15. A minority of the clones, which have been shown to perform a cytolytic function in vitro, recognized an epitope in the tandem repeat displayed by HLA-DPw4, an uncommon restricting element. Tandem repeat epitopes required display by the beta chain of DPw4 heterodimers. Thus, human T cells with different functions in vitro also recognize distinct regions of WI-1, raising the possibility that HLA restricting elements that present them could modulate immunity during blastomycosis by selection and display of WI-1 peptides.
Collapse
Affiliation(s)
- W L Chang
- Department of Internal Medicine, Louisiana State University Medical School, Shreveport, Louisiana 71103, USA
| | | | | | | | | | | |
Collapse
|
8
|
May J, Mockenhaupt FP, Löliger CC, Ademowo GO, Falusi AG, Jenisch S, Dippmann K, Schnittger L, Kremsner PG, Bienzle U, Meyer CG. HLA DPA1/DPB1 genotype and haplotype frequencies, and linkage disequilibria in Nigeria, Liberia, and Gabon. TISSUE ANTIGENS 1998; 52:199-207. [PMID: 9802598 DOI: 10.1111/j.1399-0039.1998.tb03033.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The frequencies of DPA1 and DPB1 alleles and their occurrence in haplotypic linkage were assessed and compared in Nigerian, Liberian, and Gabonese individuals. Differences were seen in the distribution patterns; these differences were more pronounced between the Gabonese and the other two populations than between Liberians and Nigerians. Several haplotypic DPA1-DPB1 combinations could be verified by homozygosity. Linkage disequilibria of DPA1-DPB1 combinations, indicating further probable haplotypes, were estimated. Although different allele and haplotype frequencies were recognized in the three subgroups, the linkage disequilibria were mostly either positive or negative in all populations.
Collapse
Affiliation(s)
- J May
- Institut für Tropenmedizin und Medizinische Fakultät Charité, Humboldt-Universität zu Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|