1
|
Beaudeau F, Vermesse R, Maurin L, Madouasse A, Joly A. Assessing the reliability of innovative criteria to certify that cattle are non-Persistently Infected (non-PI) with the Bovine Viral Diarrhoea Virus (BVDV). Vet Microbiol 2023; 286:109893. [PMID: 37866330 DOI: 10.1016/j.vetmic.2023.109893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Persistently Infected (PI) animals play a central role in the transmission of BVDV infection between cattle herds. Thus, promoting the certification of non-PI animals is a relevant approach for improving control, as it contributes to securing the trade. The objectives of this study were: i) to assess the reliability of diverse certification criteria, and ii) to identify risk factors for erroneous certification. To do so, the proportion of animals wrongly certified as non-PI on the basis of tests performed after the certification date, was calculated for each criterion. The data used were collected in herds located in Brittany, involved in either a clearance process for those that were infected, or in a surveillance process for herds that were BVDV-free. A total of 23 criteria were defined by combining the technical characteristics of the tests (individual vs. pool; single vs. repeated; direct vs. indirect tests), and some pathogenic characteristics of BVDV infection. Overall, the rates of wrongly-certified animals were low (mean: 1.3 10-4). Direct and indirect criteria had equivalent performances. Heifers from birth, and even foetuses in the last third of gestation, are certified, provided that the herd to which they belong has been free of BVDV for more than 2.5 years. The risk for wrong certification increased in the case of PIs present in the herd or its surroundings. The simplicity of the output-based approach described here, and the excellent performance of indirect criteria relying on serological monitoring of BTM, make it particularly interesting, as its use could facilitate trade between countries.
Collapse
|
2
|
Schweizer M, Stalder H, Haslebacher A, Grisiger M, Schwermer H, Di Labio E. Eradication of Bovine Viral Diarrhoea (BVD) in Cattle in Switzerland: Lessons Taught by the Complex Biology of the Virus. Front Vet Sci 2021; 8:702730. [PMID: 34557540 PMCID: PMC8452978 DOI: 10.3389/fvets.2021.702730] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/10/2021] [Indexed: 01/28/2023] Open
Abstract
Bovine viral diarrhoea virus (BVDV) and related ruminant pestiviruses occur worldwide and cause considerable economic losses in livestock and severely impair animal welfare. Switzerland started a national mandatory control programme in 2008 aiming to eradicate BVD from the Swiss cattle population. The peculiar biology of pestiviruses with the birth of persistently infected (PI) animals upon in utero infection in addition to transient infection of naïve animals requires vertical and horizontal transmission to be taken into account. Initially, every animal was tested for PI within the first year, followed by testing for the presence of virus in all newborn calves for the next four years. Prevalence of calves being born PI thus diminished substantially from around 1.4% to <0.02%, which enabled broad testing for the virus to be abandoned and switching to economically more favourable serological surveillance with vaccination being prohibited. By the end of 2020, more than 99.5% of all cattle farms in Switzerland were free of BVDV but eliminating the last remaining PI animals turned out to be a tougher nut to crack. In this review, we describe the Swiss BVD eradication scheme and the hurdles that were encountered and still remain during the implementation of the programme. The main challenge is to rapidly identify the source of infection in case of a positive result during antibody surveillance, and to efficiently protect the cattle population from re-infection, particularly in light of the endemic presence of the related pestivirus border disease virus (BDV) in sheep. As a consequence of these measures, complete eradication will (hopefully) soon be achieved, and the final step will then be the continuous documentation of freedom of disease.
Collapse
Affiliation(s)
- Matthias Schweizer
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Hanspeter Stalder
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | | | | - Elena Di Labio
- Federal Food Safety and Veterinary Office (FSVO), Bern, Switzerland
| |
Collapse
|
3
|
Gates MC, Evans CA, Weir AM, Heuer C, Weston JF. Recommendations for the testing and control of bovine viral diarrhoea in New Zealand pastoral cattle production systems. N Z Vet J 2019; 67:219-227. [PMID: 31104579 DOI: 10.1080/00480169.2019.1618745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Eradicating bovine viral diarrhoea (BVD) from cattle populations requires a clear approach for determining the epidemiological status of individual herds and implementing the appropriate control measures to ensure the transmission cycle is cost-effectively broken. This is particularly important in countries such as New Zealand where there is currently no coordinated national programme and the herd-level decisions to control BVD are left to the discretion of individual farmers and veterinarians. To ensure greater consistency in the information being delivered by different stakeholders, we review the epidemiology of BVD in the context of New Zealand pastoral production systems and provides a series of simplified recommendations for the future control of BVD in beef and dairy herds. Based on analysis of BVD test accession data from commercial diagnostic laboratories, it has been estimated that 40.6% of dairy herds and 45.6% of beef herds tested had positive results for antibodies to BVD virus. While BVD continues to remain widespread and under voluntary control in New Zealand, it is recommended that herds test all individual mixed-age cows and replacement heifers for BVD virus or antigen and remove persistently infected animals from the breeding population. All new breeding animals that have entered the herd either through purchase or birth should also be tested for BVD virus. Biosecurity risks should be managed by reducing contacts with other herds and implementing targeted vaccination programmes. All individual purchased cattle should be tested and confirmed negative for BVD virus before being moved onto the buyer's property, even if the herd of origin had a negative antibody-based screening test. Herds should continue annual antigen or virus testing of all calves as soon as possible after birth to identify any persistently infected animals.
Collapse
Affiliation(s)
- M C Gates
- a School of Veterinary Science , Massey University , Palmerston North , New Zealand
| | - C A Evans
- a School of Veterinary Science , Massey University , Palmerston North , New Zealand
| | - A M Weir
- b Eltham District Veterinary Services , Eltham , New Zealand
| | - C Heuer
- a School of Veterinary Science , Massey University , Palmerston North , New Zealand
| | - J F Weston
- a School of Veterinary Science , Massey University , Palmerston North , New Zealand
| |
Collapse
|
4
|
Qi L, Beaunée G, Arnoux S, Dutta BL, Joly A, Vergu E, Ezanno P. Neighbourhood contacts and trade movements drive the regional spread of bovine viral diarrhoea virus (BVDV). Vet Res 2019; 50:30. [PMID: 31036076 PMCID: PMC6489178 DOI: 10.1186/s13567-019-0647-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/11/2019] [Indexed: 11/10/2022] Open
Abstract
To explore the regional spread of endemic pathogens, investigations are required both at within and between population levels. The bovine viral diarrhoea virus (BVDV) is such a pathogen, spreading among cattle herds mainly due to trade movements and neighbourhood contacts, and causing an endemic disease with economic consequences. To assess the contribution of both transmission routes on BVDV regional and local spread, we developed an original epidemiological model combining data-driven and mechanistic approaches, accounting for heterogeneous within-herd dynamics, animal movements and neighbourhood contacts. Extensive simulations were performed over 9 years in an endemic context in a French region with high cattle density. The most uncertain model parameters were calibrated on summary statistics of epidemiological data, highlighting that neighbourhood contacts and within-herd transmission should be high. We showed that neighbourhood contacts and trade movements complementarily contribute to BVDV spread on a regional scale in endemically infected and densely populated areas, leading to intense fade-out/colonization events: neighbourhood contacts generate the vast majority of outbreaks (72%) but mostly in low immunity herds and correlated to a rather short presence of persistently infected animals (P); trade movements generate fewer infections but could affect herds with higher immunity and generate a prolonged presence of P. Both movements and neighbourhood contacts should be considered when designing control or eradication strategies for densely populated region.
Collapse
Affiliation(s)
- Luyuan Qi
- BIOEPAR, Oniris, INRA, CS40706, 44307, Nantes, France.,MaIAGE, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Gaël Beaunée
- BIOEPAR, Oniris, INRA, CS40706, 44307, Nantes, France
| | - Sandie Arnoux
- BIOEPAR, Oniris, INRA, CS40706, 44307, Nantes, France
| | - Bhagat Lal Dutta
- BIOEPAR, Oniris, INRA, CS40706, 44307, Nantes, France.,MaIAGE, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Alain Joly
- Groupement de Défense Sanitaire de Bretagne, 56019, Vannes, France
| | - Elisabeta Vergu
- MaIAGE, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | |
Collapse
|
5
|
Braun U, Hilbe M, Peterhans E, Schweizer M. Border disease in cattle. Vet J 2019; 246:12-20. [PMID: 30902184 DOI: 10.1016/j.tvjl.2019.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 10/27/2022]
Abstract
Within the family Flaviviridae, viruses within the genus Pestivirus, such as Border disease virus (BDV) of sheep, can cause great economic losses in farm animals. Originally, the taxonomic classification of pestiviruses was based on the host species they were isolated from, but today, it is known that many pestiviruses exhibit a broad species tropism. This review provides an overview of BDV infection in cattle. The clinical, hematological and pathological-anatomical findings in bovines that were transiently or persistently infected with BDV largely resemble those in cattle infected with the closely related pestivirus bovine viral diarrhoea virus (BVDV). Accordingly, the diagnosis of BDV infection can be challenging, as it must be differentiated from various pestiviruses in cattle. The latter is very relevant in countries with control programs to eradicate BVDV in Bovidae, as in most circumstances, pestivirus infections in sheep, which act as reservoir for BDV, are not included in the eradication scheme. Interspecies transmission of BDV between sheep and cattle occurs regularly, but BDV in cattle appears to be of minor general importance. Nevertheless, BDV outbreaks at farm or local level can be very costly.
Collapse
Affiliation(s)
- Ueli Braun
- Department of Farm Animals, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| | - Monika Hilbe
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Ernst Peterhans
- Institute for Virology and Immunology, Länggass-Strasse 122, 3001 Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3001 Bern, Switzerland
| | - Matthias Schweizer
- Institute for Virology and Immunology, Länggass-Strasse 122, 3001 Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3001 Bern, Switzerland
| |
Collapse
|
6
|
Evans CA, Pinior B, Larska M, Graham D, Schweizer M, Guidarini C, Decaro N, Ridpath J, Gates MC. Global knowledge gaps in the prevention and control of bovine viral diarrhoea (BVD) virus. Transbound Emerg Dis 2018; 66:640-652. [PMID: 30415496 DOI: 10.1111/tbed.13068] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022]
Abstract
The significant economic impacts of bovine viral diarrhoea (BVD) virus have prompted many countries worldwide to embark on regional or national BVD eradication programmes. Unlike other infectious diseases, BVD control is highly feasible in cattle production systems because the pathogenesis is well understood and there are effective tools to break the disease transmission cycle at the farm and industry levels. Coordinated control approaches typically involve directly testing populations for virus or serological screening of cattle herds to identify those with recent exposure to BVD, testing individual animals within affected herds to identify and eliminate persistently infected (PI) cattle, and implementing biosecurity measures such as double-fencing shared farm boundaries, vaccinating susceptible breeding cattle, improving visitor and equipment hygiene practices, and maintaining closed herds to prevent further disease transmission. As highlighted by the recent DISCONTOOLS review conducted by a panel of internationally recognized experts, knowledge gaps in the control measures are primarily centred around the practical application of existing tools rather than the need for creation of new tools. Further research is required to: (a) determine the most cost effective and socially acceptable means of applying BVD control measures in different cattle production systems; (b) identify the most effective ways to build widespread support for implementing BVD control measures from the bottom-up through farmer engagement and from the top-down through national policy; and (c) to develop strategies to prevent the reintroduction of BVD into disease-free regions by managing the risks associated with the movements of animals, personnel and equipment. Stronger collaboration between epidemiologists, economists and social scientists will be essential for progressing efforts to eradicate BVD from more countries worldwide.
Collapse
Affiliation(s)
- Caitlin A Evans
- EpiCentre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Beate Pinior
- Institute for Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Magdalena Larska
- Department of Virology, National Veterinary Research Institute, Puławy, Poland
| | - David Graham
- Animal Health Ireland, Carrick-on-Shannon, Ireland
| | - Matthias Schweizer
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | | | - M Carolyn Gates
- EpiCentre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
7
|
Patel KK, Stanislawek WL, Burrows E, Heuer C, Asher GW, Wilson PR, Howe L. Investigation of association between bovine viral diarrhoea virus and cervid herpesvirus type-1, and abortion in New Zealand farmed deer. Vet Microbiol 2018; 228:1-6. [PMID: 30593353 DOI: 10.1016/j.vetmic.2018.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/03/2018] [Accepted: 11/05/2018] [Indexed: 11/26/2022]
Abstract
This study tested for association between bovine viral diarrhoea virus (BVDv) and cervid herpesvirus type-1 (CvHV-1) exposure and abortion in New Zealand farmed red deer. Rising two-year-old (R2, n = 22,130) and mixed-age (MA, n = 36,223) hinds from 87 and 71 herds, respectively, throughout New Zealand were pregnancy tested using ultrasound early in gestation (Scan-1) and 55-89 days later (Scan-2) to detect mid-term abortion. Sera from aborted and non-aborted hinds at Scan-2 were tested for BVDv and CvHV-1 using virus neutralisation tests. Available uteri from aborted hinds and from hinds not rearing a calf to weaning were tested by PCR for herpesvirus DNA. In herds with aborted hinds, 10.3% of 639 R2 and 17.2% of 302 MA hinds were sero-positive for BVDv and 18.6% of 613 R2 and 68.5% of 232 MA hinds were sero-positive for CvHV-1. There was no association between BVDv sero-status and abortion at animal level (R2 p = 0.36, MA p = 0.76) whereas CvHV-1 sero-positivity was negatively associated with abortion in MA hinds (p = 0.01) but not in R2 hinds (p = 0.36), MA). Eleven of 108 uteri from aborted R2 hinds but no MA hinds were positive for herpesvirus DNA. Vaginal samples from four R2 and one MA aborted hinds tested were negative for herpesvirus DNA. A Cervid Rhadinovirus type-2 (CRhV-2) was identified in seven PCR positive uteri samples. Findings suggest that BVDv and CvHV-1 may not be associated with abortion in R2 hinds, but association needs to be tested further in MA hinds. The role of CRhV-2 requires clarification.
Collapse
Affiliation(s)
- K K Patel
- School of Veterinary Science, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| | - W L Stanislawek
- Animal Health Laboratory, Ministry of Primary Industries, Wallaceville, New Zealand
| | - E Burrows
- School of Veterinary Science, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - C Heuer
- EpiCentre, School of Veterinary Science, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - G W Asher
- AgResearch, Invermay Agricultural Centre, Private Bag 50034, Mosgiel, 9053, New Zealand
| | - P R Wilson
- School of Veterinary Science, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - L Howe
- School of Veterinary Science, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| |
Collapse
|
8
|
Reardon F, Graham D, Clegg TA, Tratalos J, O’Sullivan P, More SJ. Potential infection-control benefit of measures to mitigate the risk posed by Trojan dams in the Irish BVD eradication programme. Prev Vet Med 2018; 157:78-85. [DOI: 10.1016/j.prevetmed.2018.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/23/2018] [Accepted: 06/10/2018] [Indexed: 11/24/2022]
|
9
|
Quantifying the role of Trojan dams in the between-herd spread of bovine viral diarrhoea virus (BVDv) in Ireland. Prev Vet Med 2018; 152:65-73. [DOI: 10.1016/j.prevetmed.2018.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/18/2018] [Accepted: 02/03/2018] [Indexed: 11/19/2022]
|
10
|
Bauermann FV, Falkenberg SM, Ridpath JF. HoBi-Like Virus RNA Detected in Foetuses Following Challenge of Pregnant Cows that had Previously Given Birth to Calves Persistently Infected with Bovine Viral Diarrhoea Virus. Transbound Emerg Dis 2016; 64:1624-1632. [DOI: 10.1111/tbed.12556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Indexed: 11/30/2022]
Affiliation(s)
- F. V. Bauermann
- Ruminant Disease and Immunology Research Unit; National Animal Disease Center; USDA; Agricultural Research Service; Ames IA USA
| | - S. M. Falkenberg
- Ruminant Disease and Immunology Research Unit; National Animal Disease Center; USDA; Agricultural Research Service; Ames IA USA
| | - J. F. Ridpath
- Ruminant Disease and Immunology Research Unit; National Animal Disease Center; USDA; Agricultural Research Service; Ames IA USA
| |
Collapse
|
11
|
Schärrer S, Widgren S, Schwermer H, Lindberg A, Vidondo B, Zinsstag J, Reist M. Evaluation of farm-level parameters derived from animal movements for use in risk-based surveillance programmes of cattle in Switzerland. BMC Vet Res 2015; 11:149. [PMID: 26170195 PMCID: PMC4499910 DOI: 10.1186/s12917-015-0468-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 07/06/2015] [Indexed: 11/25/2022] Open
Abstract
Background This study focused on the descriptive analysis of cattle movements and farm-level parameters derived from cattle movements, which are considered to be generically suitable for risk-based surveillance systems in Switzerland for diseases where animal movements constitute an important risk pathway. Methods A framework was developed to select farms for surveillance based on a risk score summarizing 5 parameters. The proposed framework was validated using data from the bovine viral diarrhoea (BVD) surveillance programme in 2013. Results A cumulative score was calculated per farm, including the following parameters; the maximum monthly ingoing contact chain (in 2012), the average number of animals per incoming movement, use of mixed alpine pastures and the number of weeks in 2012 a farm had movements registered. The final score for the farm depended on the distribution of the parameters. Different cut offs; 50, 90, 95 and 99 %, were explored. The final scores ranged between 0 and 5. Validation of the scores against results from the BVD surveillance programme 2013 gave promising results for setting the cut off for each of the five selected farm level criteria at the 50th percentile. Restricting testing to farms with a score ≥ 2 would have resulted in the same number of detected BVD positive farms as testing all farms, i.e., the outcome of the 2013 surveillance programme could have been reached with a smaller survey. Conclusions The seasonality and time dependency of the activity of single farms in the networks requires a careful assessment of the actual time period included to determine farm level criteria. However, selecting farms in the sample for risk-based surveillance can be optimized with the proposed scoring system. The system was validated using data from the BVD eradication program. The proposed method is a promising framework for the selection of farms according to the risk of infection based on animal movements.
Collapse
Affiliation(s)
- Sara Schärrer
- Veterinary Public Health Institute (VPHI), Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | | | | | - Ann Lindberg
- National Veterinary Institute (SVA), Uppsala, Sweden.
| | - Beatriz Vidondo
- Veterinary Public Health Institute (VPHI), Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Jakob Zinsstag
- Swiss Tropical and Public Health Institute (Swiss TPH), University of Basel, Basel, Switzerland.
| | - Martin Reist
- Federal Food Safety and Veterinary Office (FSVO), Bern, Switzerland.
| |
Collapse
|
12
|
Foddai A, Enøe C, Stockmarr A, Krogh K, Uttenthal Å. Challenges for bovine viral diarrhoea virus antibody detection in bulk milk by antibody enzyme-linked immunosorbent assays due to changes in milk production levels. Acta Vet Scand 2015; 57:32. [PMID: 26099792 PMCID: PMC4477516 DOI: 10.1186/s13028-015-0125-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 06/17/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bovine viral diarrhoea (BVD) is considered eradicated from Denmark. Currently, very few (if any) Danish cattle herds could be infected with BVD virus (BVDV). The Danish antibody blocking enzyme-linked immunosorbent assay (ELISA) has been successfully used during the Danish BVD eradication program, initiated in 1994. During the last decade, the cattle herd size has increased while the prevalence of BVDV has decreased. In this study, we investigated how these changes could affect the performance of the Danish blocking ELISA and of the SVANOVIR® BVDV-Ab indirect ELISA. The latter has successfully been used to eradicate BVD in Sweden. Data (2003-2010) on changes in median herd size and milk production levels, occurrence of viremic animals and bulk milk surveillance were analysed. Additionally, the Danish blocking ELISA and the SVANOVIR ELISA were compared analyzing milk and serum samples. The prevalence of antibody positive milking cows that could be detected by each test was estimated, by diluting positive individual milk samples and making artificial milk pools. RESULTS During the study period, the median herd size increased from 74 (2003) to 127 cows (2010), while the prevalence of BVDV infected herds decreased from 0.51 to 0.02 %. The daily milk yield contribution of a single seropositive cow to the entire daily bulk milk was reduced from 1.61 % in 2003 to 0.95 % in 2010 due to the increased herd size. It was observed that antibody levels in bulk milk decreased at national level. Moreover, we found that when testing bulk milk, the SVANOVIR® BVDV-Ab can detect a lower prevalence of seropositive lactating cows, compared to the Danish blocking ELISA (0.78 % vs. 50 %). Values in the SVANOVIR® BVDV-Ab better relate to low concentrations of antibody positive milk (R(2) = 94-98 %), than values in the blocking ELISA (R(2) = 23-75 %). For sera, the two ELISAs performed equally well. CONCLUSIONS The SVANOVIR ELISA is recommended for analysis of bulk milk samples in the current Danish situation, since infected dairy herds e.g. due to import of infected cattle can be detected shortly after BVDV introduction, when only few lactating cows have seroconverted. In sera, the two ELISAs can be used interchangeably.
Collapse
|
13
|
Braun U, Hilbe M, Janett F, Hässig M, Zanoni R, Frei S, Schweizer M. Transmission of border disease virus from a persistently infected calf to seronegative heifers in early pregnancy. BMC Vet Res 2015; 11:43. [PMID: 25889936 PMCID: PMC4336514 DOI: 10.1186/s12917-014-0275-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/08/2014] [Indexed: 11/10/2022] Open
Abstract
Background This study describes the transmission of border disease virus (BDV) from a persistently infected calf to seronegative heifers in early pregnancy, resulting in persistently infected fetuses. On day 50 of pregnancy (= day 0 of the infection phase), six heifers were co-housed in a free stall with a bull calf persistently infected with BDV (pi BVD) for 60 days. The heifers underwent daily clinical examination, and blood samples were collected regularly for detection of pestiviral RNA and anti-pestivirus antibodies. After day 60 (= day 110 of pregnancy), the heifers were slaughtered, and the fetuses and placentae underwent post-mortem and immunohistochemical examination and RT-PCR for viral RNA detection. Results Three heifers had mild viraemia from day 8 to day 14, and by day 40 all heifers had pestivirus antibodies identified as anti-BDV antibodies in the serum neutralisation test. The placenta of the three viraemic heifers had histological evidence of inflammation, and fetal organs from these heifers were positive for pestivirus antigen by immunohistochemical examination and for BD viral RNA by RT-PCR and sequencing. Thus, co-housing of heifers in early pregnancy with a pi-BDV calf led to seroconversion in all heifers and persistent fetal infection in three. Conclusions Considering that pi-BDV cattle can infect other cattle and lead to persistent infection of the fetus in pregnant cows, BDV should not be ignored in the context of the mandatory BVDV eradication and monitoring program. This strongly suggests that BDV should be taken into account in BVD eradication and control programs.
Collapse
Affiliation(s)
- Ueli Braun
- Department of Farm Animals, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland.
| | - Monika Hilbe
- Institute of Veterinary Pathology, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland.
| | - Fredi Janett
- Department of Farm Animals, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland.
| | - Michael Hässig
- Department of Farm Animals, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland.
| | - Reto Zanoni
- Institute of Veterinary Virology, Vetsuisse-Faculty, University of Bern, Länggass-Strasse 122, 3001, Bern, Switzerland. .,New Name: Institute of Virology and Immunology, Federal Food Safety and Veterinary Office, University of Bern, Länggass-Strasse 122, CH-3001, Bern, Switzerland.
| | - Sandra Frei
- Department of Farm Animals, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland.
| | - Matthias Schweizer
- Institute of Veterinary Virology, Vetsuisse-Faculty, University of Bern, Länggass-Strasse 122, 3001, Bern, Switzerland. .,New Name: Institute of Virology and Immunology, Federal Food Safety and Veterinary Office, University of Bern, Länggass-Strasse 122, CH-3001, Bern, Switzerland.
| |
Collapse
|
14
|
Gates MC, Humphry RW, Gunn GJ, Woolhouse MEJ. Not all cows are epidemiologically equal: quantifying the risks of bovine viral diarrhoea virus (BVDV) transmission through cattle movements. Vet Res 2014; 45:110. [PMID: 25323831 PMCID: PMC4206702 DOI: 10.1186/s13567-014-0110-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 10/08/2014] [Indexed: 11/10/2022] Open
Abstract
Many economically important cattle diseases spread between herds through livestock movements. Traditionally, most transmission models have assumed that all purchased cattle carry the same risk of generating outbreaks in the destination herd. Using data on bovine viral diarrhoea virus (BVDV) in Scotland as a case example, this study provides empirical and theoretical evidence that the risk of disease transmission varies substantially based on the animal and herd demographic characteristics at the time of purchase. Multivariable logistic regression analysis revealed that purchasing pregnant heifers and open cows sold with a calf at foot were associated with an increased risk of beef herds being seropositive for BVDV. Based on the results from a dynamic within-herd simulation model, these findings may be partly explained by the age-related probability of animals being persistently infected with BVDV as well as the herd demographic structure at the time of animal introductions. There was also evidence that an epidemiologically important network statistic, "betweenness centrality" (a measure frequently associated with the potential for herds to acquire and transmit disease), was significantly higher for herds that supplied these particular types of replacement beef cattle. The trends for dairy herds were not as clear, although there was some evidence that open heifers and open lactating cows were associated with an increased risk of BVDV. Overall, these findings have important implications for developing simulation models that more accurately reflect the industry-level transmission dynamics of infectious cattle diseases.
Collapse
Affiliation(s)
- M Carolyn Gates
- Epidemiology Group, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Kings Buildings, West Mains Road, Edinburgh, EH9 3JT, UK.
| | - Roger W Humphry
- Epidemiology Research Unit, SRUC, Drummondhill, Stratherrick Road, Inverness, IV2 4JZ, UK.
| | - George J Gunn
- Epidemiology Research Unit, SRUC, Drummondhill, Stratherrick Road, Inverness, IV2 4JZ, UK.
| | - Mark E J Woolhouse
- Epidemiology Group, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Kings Buildings, West Mains Road, Edinburgh, EH9 3JT, UK.
| |
Collapse
|
15
|
Lanyon SR, Reichel MP. Bovine viral diarrhoea virus (‘pestivirus’) in Australia: to control or not to control? Aust Vet J 2014; 92:277-82. [DOI: 10.1111/avj.12208] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2014] [Indexed: 11/30/2022]
Affiliation(s)
- SR Lanyon
- School of Animal and Veterinary Sciences; University of Adelaide, Roseworthy Campus; Roseworthy South Australia 5371 Australia
| | - MP Reichel
- School of Animal and Veterinary Sciences; University of Adelaide, Roseworthy Campus; Roseworthy South Australia 5371 Australia
| |
Collapse
|
16
|
Lanyon SR, Hill FI, Reichel MP, Brownlie J. Bovine viral diarrhoea: Pathogenesis and diagnosis. Vet J 2014; 199:201-9. [DOI: 10.1016/j.tvjl.2013.07.024] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 06/24/2013] [Accepted: 07/19/2013] [Indexed: 11/26/2022]
|
17
|
Gates MC, Woolhouse MEJ, Gunn GJ, Humphry RW. Relative associations of cattle movements, local spread, and biosecurity with bovine viral diarrhoea virus (BVDV) seropositivity in beef and dairy herds. Prev Vet Med 2013; 112:285-95. [PMID: 24012354 DOI: 10.1016/j.prevetmed.2013.07.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 11/19/2022]
Abstract
The success of bovine viral diarrhoea virus (BVDV) eradication campaigns can be undermined by spread through local transmission pathways and poor farmer compliance with biosecurity recommendations. This work combines recent survey data with cattle movement data to explore the issues likely to impact on the success of BVDV control in Scotland. In this analysis, data from 249 beef suckler herds and 185 dairy herds in Scotland were studied retrospectively to determine the relative influence of cattle movements, local spread, and biosecurity on BVDV seropositivity. Multivariable logistic regression models revealed that cattle movement risk factors had approximately 3 times greater explanatory power than risk factors for local spread amongst beef suckler herds, but approximately the same explanatory power as risk factors for local spread amongst dairy herds. These findings are most likely related to differences in cattle husbandry practices and suggest that where financial prioritization is required, focusing on reducing movement-based risk is likely to be of greatest benefit when applied to beef suckler herds. The reported use of biosecurity measures such as purchasing cattle from BVDV accredited herds only, performing diagnostic screening at the time of sale, implementing isolation periods for purchased cattle, and installing double fencing on shared field boundaries had minimal impact on the risk of beef or dairy herds being seropositive for BVDV. Only 28% of beef farmers and 24% of dairy farmers with seropositive herds recognized that their cattle were affected by BVDV and those that did perceive a problem were no less likely to sell animals as replacement breeding stock and no more likely to implement biosecurity measures against local spread than farmers with no perceived problems. In relation to the current legislative framework for BVDV control in Scotland, these findings emphasize the importance of requiring infected herds take appropriate biosecurity measures to prevent further disease transmission and conducting adequate follow-up to ensure that biosecurity measures are being implemented correctly in the field.
Collapse
Affiliation(s)
- M C Gates
- Epidemiology Group, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK.
| | | | | | | |
Collapse
|
18
|
Understanding the Impact and Control of Bovine Viral Diarrhoea in Cattle Populations. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s40362-013-0007-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Kelling CL, Topliff CL. Bovine maternal, fetal and neonatal responses to bovine viral diarrhea virus infections. Biologicals 2013; 41:20-5. [DOI: 10.1016/j.biologicals.2012.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 09/06/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022] Open
|
20
|
Givens MD, Marley MS. Immunology of chronic BVDV infections. Biologicals 2012; 41:26-30. [PMID: 22819267 DOI: 10.1016/j.biologicals.2012.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 06/26/2012] [Indexed: 11/16/2022] Open
Abstract
Bovine viral diarrhea virus can maintain prolonged infections within immunoprivileged sites after an otherwise transient infection of a cow, calf, or bull. Various sites provide unique niches for viral replication which are not susceptible to the complete surveillance commonly provided by the bovine immune system. Evidence indicates that pestiviral infections may be significantly prolonged within ovarian tissue, testicular tissue, central nervous system tissue, and circulating white blood cells. Within avascular portions of the ovarian follicle, granulosa cells and oocytes may maintain BVDV infections which cannot be attacked by cell-mediated immunity. When infections occur within seminiferous tubules in testicular tissue, similar protection from the immune system is provided for BVDV by the blood-testes barrier. Likewise, the blood-brain barrier has been hypothesized to provide protection for BVDV in a case involving neuropathology associated with immunohistochemical detection of BVDV. Furthermore, infections of circulating white blood cells may perturb their stimulation of an adaptive immune response and facilitate chronic infection of these cells. Thus, BVDV has demonstrated an ability to maintain prolonged viral infections in immunoprivileged sites within its natural host. The role of chronic infections in maintaining and disseminating BVDV within the cattle population and heterologous host species remains to be fully understood.
Collapse
Affiliation(s)
- M Daniel Givens
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, USA.
| | | |
Collapse
|
21
|
Cernicchiaro N, Pearl DL, McEwen SA, LeJeune JT. Assessment of diagnostic tools for identifying cattle shedding and super-shedding Escherichia coli O157:H7 in a longitudinal study of naturally infected feedlot steers in Ohio. Foodborne Pathog Dis 2010; 8:239-48. [PMID: 21034264 DOI: 10.1089/fpd.2010.0666] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objectives of this study were to compare the performance of different diagnostic protocols (rectoanal mucosal swabs and immunomagnetic separation [RAMS-IMS], fecal samples and IMS [fecal-IMS], and direct plating) to determine the prevalence of Escherichia coli O157:H7 and to evaluate the pattern of E. coli O157:H7 shedding and super-shedding (defined as having a direct plating count equal to or >10(4) colony forming units of E. coli O157:H7 per gram of feces) in a longitudinal study of naturally infected feedlot steers. RAMS and fecal grab samples were obtained at 14-day intervals from 168 Angus-cross beef steers over a period of 22 weeks. Fecal samples were assessed by direct plating and IMS, whereas RAMS were tested only by enrichment followed by IMS to recover E. coli O157:H7. The period prevalence for shedding was high (62%) among feedlot steers and super-shedding was higher (23%) than anticipated. Although direct plating was the least sensitive method to detect E. coli O157:H7-positive samples, over 20% of high bacterial load samples were not detected by RAMS-IMS and/or fecal-IMS. The sensitivity of RAMS-IMS, fecal-IMS, and direct plating protocols was estimated using simple and multilevel mixed-effects logistic regression models, in which the dependent variable was the dichotomous results of each test and gold standard (i.e., parallel interpretation of the three protocols)-positive individuals were included as an independent variable along with other factors such as dietary supplements, time of sampling, and being exposed to a super-shedding pen-mate. The associations between these factors and the sensitivity of the diagnostic protocols were not statistically significant. In conclusion, differences in the reported impact of diet and probiotics on the shedding of E. coli O157:H7 in previous studies using RAMS-IMS or fecal-IMS were unlikely due to their impact on test performance.
Collapse
Affiliation(s)
- Natalia Cernicchiaro
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Canada.
| | | | | | | |
Collapse
|
22
|
Courcoul A, Ezanno P. Modelling the spread of Bovine Viral Diarrhoea Virus (BVDV) in a managed metapopulation of cattle herds. Vet Microbiol 2009; 142:119-28. [PMID: 19875250 DOI: 10.1016/j.vetmic.2009.09.052] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In numerous epidemiological models developed within a metapopulation framework, it is assumed that a single infected individual introduced into a patch infects the whole patch and that the proportion of infected individuals into infected patches is consistent over time and among patches. If this approach is relevant for rapidly spreading pathogens, it is less appropriate for moderately spreading pathogens, like the Bovine Viral Diarrhoea Virus (BVDV), characterized by a variability in within-patch prevalence. Our objective is to study the respective influence of neighbouring relationships and animal movements on the spread of BVDV in a managed metapopulation of 100 cattle herds. Infection dynamics is represented by two coupled stochastic compartmental models in discrete-time: a within-herd and a between-herd models. Animal movements are mechanistically modelled. They largely influence the BVDV persistence, the prevalence in infected herds and the epidemic size. Neighbouring relationships only influence epidemic size. Whatever the neighbouring relationships, the infection does not persist in the metapopulation without animal movement between herds. The proposed model can be easily adapted for different herd contact structures.
Collapse
Affiliation(s)
- Aurélie Courcoul
- INRA, UMR1300 Bio-agression, Epidémiologie et Analyse de Risque, BP 40706, F-44307 Nantes, France.
| | | |
Collapse
|
23
|
Ezanno P, Fourichon C, Seegers H. Influence of herd structure and type of virus introduction on the spread of bovine viral diarrhoea virus (BVDV) within a dairy herd. Vet Res 2008; 39:39. [PMID: 18346451 DOI: 10.1051/vetres:2008016] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 03/14/2008] [Indexed: 11/14/2022] Open
Abstract
A herd is a population structured into groups not all equally in contact, which may influence within-herd spread of pathogens. Herd structure varies among cattle herds. However, published models of the spread of bovine viral diarrhoea virus (BVDV) assume no herd structure or a unique structure chosen as a representative. Our objective was to identify--for different index cases introduced into an initially BVDV--free dairy herd - risky (favourable) herd structures, which increased (decreased) BVDV spread and persistence compared to a reference structure. Classically, dairy herds are divided into calves, young heifers, bred heifers, lactating cows and dry cows. In the reference scenario, groups are all equally in contact. We evaluated the effect of isolating or merging groups. Three index cases were tested: an open persistently-infected (PI) heifer, an open transiently-infected heifer, an immune heifer carrying a PI foetus. Merging all groups and merging calves and lactating cows were risky scenarios. Isolating each group, isolating lactating cows from other groups, and merging calves and young heifers were favourable scenarios. In most structures, the most risky index cases were the following: first, the entry of a PI heifer; second, the birth of a PI calf; last, the entry of a transiently-infected heifer. Recommendations for dairy herds are to raise young animals together before breeding and to isolate lactating cows from others as much as possible. These recommendations will be less efficient if a PI adult enters into the herd.
Collapse
Affiliation(s)
- Pauline Ezanno
- INRA, UMR1300, Bio-agression, Epidémiologie et Analyse de Risques, BP 40706, 44307 Nantes, France.
| | | | | |
Collapse
|
24
|
Viet AF, Fourichon C, Seegers H. Simulation study to assess the efficiency of a test-and-cull scheme to control the spread of the bovine viral-diarrhoea virus in a dairy herd. Prev Vet Med 2006; 76:151-66. [PMID: 16774794 DOI: 10.1016/j.prevetmed.2006.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 04/10/2006] [Accepted: 04/25/2006] [Indexed: 11/25/2022]
Abstract
To control the spread of bovine viral-diarrhoea virus (BVDV), test-and-cull schemes have been used in Scandinavian countries, with success, when combined with strict control of new animal introductions into herds. In situations where BVDV reintroduction is likely to occur, it is necessary to assess precisely the expected efficiency of test-and-cull schemes. The objective of this study was to compare, by simulation, the persistence and consequences of BVDV infection in a fully susceptible dairy herd with either a test-and-cull scheme or no control action. We used a stochastic individual-based model representing the herd structure as groups of animals, herd dynamics, the contact structure within the herd and virus transmission. After an initial introduction of the virus into a fully susceptible herd, the frequency of purchases of animals that introduced the virus was simulated as high, intermediate or null. Virus persistence and epidemic size (total number of animals infected) were simulated over 10 years. The test-and-cull reduced the epidemic size and the number of days the virus was present except in herds with complete prevention of contact between groups of animals. Where no virus was reintroduced, virus persistence did not exceed 6 years with a test-and-cull scheme, whereas the virus was still present 10 years after the virus introduction in some replications with no control action (<2%). Where frequent purchases were made that led to virus introduction (6 within 10 years), with an intermediate virus transmission between groups, the probability of virus persistence 10 years after the first virus introduction fell from 31% to 8% with the test-and-cull scheme (compared to the do-nothing strategy). Within the newly infected herd, the test-and-cull scheme had no effect, on inspection, on the number of PI births, embryonic deaths or abortions over 10 years. Given this, the economic efficiency of the test-and-cull scheme should be further investigated.
Collapse
Affiliation(s)
- A-F Viet
- Unit of Animal Health Management, Veterinary School & INRA, BP 40706, 44307 Nantes Cedex 03, France.
| | | | | |
Collapse
|
25
|
Lindberg A, Houe H. Characteristics in the epidemiology of bovine viral diarrhea virus (BVDV) of relevance to control. Prev Vet Med 2005; 72:55-73; discussion 215-9. [PMID: 16214248 DOI: 10.1016/j.prevetmed.2005.07.018] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 07/05/2005] [Accepted: 07/12/2005] [Indexed: 10/25/2022]
Abstract
An understanding of the driving forces of BVDV transmission can be gained by considering the reproductive rate, between individuals and between herds. The former determines the prospects for eliminating the infection from herds, and the latter is the key to persistence at the population level. In this paper, the relation between these two characteristics, their underlying parameters and measures and priorities for BVDV control are discussed. A general model for BVDV control is outlined, with bio-security, virus elimination and monitoring as three necessary consecutive elements, and with immunization as an optional step. A distinction is made between systematic and non-systematic approaches to BVDV control (where the former refers to a monitored and goal-oriented reduction in the incidence and prevalence of BVDV infection and the latter to where measures are implemented on a herd-to-herd decision basis and without systematic monitoring in place). Predictors of progress for systematic control approaches in general are discussed in terms of the abilities: to prevent new infections, to rapidly detect new cases of infection, to take action in infected herds and to gain acceptance by stakeholders. We conclude that an understanding not only of the biology, but also of the social factors - human behavior, the motives that makes stakeholders follow advice and the cultural differences in this respect - are important factors in forming recommendations on alternative strategies for BVDV control.
Collapse
Affiliation(s)
- A Lindberg
- Swedish Dairy Association, Research and Development, P.O. Box 7054, SE-750 07 Uppsala, Sweden.
| | | |
Collapse
|
26
|
Abstract
Since bovine virus diarrhoea (BVD) was recognised as a unique disease complex, many different diagnostic methods have been used to detect the BVD virus (BVDV) itself, or immunity to BVDV. Of those that have evolved along with the current demands for accurate diagnostic tests, two categories are of interest for BVD control programmes. As reference assays, virus isolation and detection of virus neutralising antibodies are both carried out using cell cultures, which are time, resource and skill demanding. Enzyme immuno-assays are better suited for screening of large series of samples, and several variants of these have been developed for detection of both antibodies and viral antigens. Of other methods adapted for rapid diagnostic use are immunohistochemistry, flow cytometry and the reverse transcription-polymerase chain reaction. Basic properties of these and other methods are reviewed, with emphasis on the need for diagnostic assays in control programmes for BVD.
Collapse
Affiliation(s)
- Torstein Sandvik
- Virology Department, VLA Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK.
| |
Collapse
|
27
|
Thobokwe G, Heuer C, Hayes DP. Validation of a bulk tank milk antibody ELISA to detect dairy herds likely infected with bovine viral diarrhoea virus in New Zealand. N Z Vet J 2004; 52:394-400. [PMID: 15768141 DOI: 10.1080/00480169.2004.36457] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AIMS To assess the sensitivity and specificity of a bulk tank milk (BTM) antibody enzyme-linked immunosorbent assay (ELISA) to detect likely infection of a dairy herd with bovine viral diarrhoea virus (BVDV). The ELISA was subsequently used to estimate the prevalence of likely infected herds in parts of the North Island of New Zealand. METHODS BTM samples from 724 randomly selected dairy herds in the Waikato, Bay of Plenty and Northland regions of New Zealand were tested for BVDV antibodies. From this group, 20 herds were again randomly selected from each of the quartiles of the ELISA percentage inhibition (%INH) result. From each participant herd, serum from 15 randomly selected calves aged 6-18 months and 15 cows was collected and tested using an indirect blocking ELISA for BVDV antibodies. RESULTS Among serum results from calves from 50 herds available for analysis, 34 (68%) herds were classified as likely non-infected (0-3 seropositive among 15 calves) and 16 (32%) as likely infected (5-15 seropositive among 15 calves). Receiver-operator characteristic (ROC) analysis identified an optimal cut-off for BTM of 80%INH associated with 81% sensitivity and 91% specificity for likely herd infection. The prevalence of BVDV antibodies in cows within herds and %INH for BVDV in bulk milk were positively correlated (p<0.01). The association between bulk milk %INH and the prevalence of BVDV antibodies in calves was stronger than the same association in cows. Based on the threshold of 80%INH, the 95% confidence interval (CI) for prevalence of likely infection in the 724 herds in the Waikato, Bay of Plenty and Northland regions of New Zealand was 12-17%. Vaccination against BVDV was not significantly associated with the likely infection status of the herd based on prevalence of BVDV antibodies among calves. CONCLUSION An ELISA test result for BVDV antibodies in BTM >/=80%INH can be used as a threshold to indicate the presence of likely infection with BVDV in dairy herds in New Zealand, with 81% sensitivity and 91% specificity.
Collapse
Affiliation(s)
- G Thobokwe
- Epicentre, Institute of Veterinary Animal and Biomedical Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | | | |
Collapse
|
28
|
Lindberg A, Stokstad M, Løken T, Alenius S, Niskanen R. Indirect transmission of bovine viral diarrhoea virus at calving and during the postparturient period. Vet Rec 2004; 154:463-7. [PMID: 15119730 DOI: 10.1136/vr.154.15.463] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Two trials were designed to investigate whether bovine viral diarrhoea virus (BVDV) could be transmitted after the birth of persistently infected calves, even if they were removed immediately after birth. In trial 1, 11 calves were actively exposed to fetal fluids and uterine lochia collected from cows that had delivered calves persistently infected with type 1 BVDV. One calf that was exposed to a sample taken on the day of calving seroconverted. In trial 2, six calves were housed in stables where persistently infected calves were being born and then removed immediately from their dams and from the stable unit within two to three hours. One of four calves in close contact with the cows after delivery seroconverted and one of two calves housed within the same stable unit became infected.
Collapse
Affiliation(s)
- A Lindberg
- Swedish Dairy Association, Research and Development, S-75007 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
29
|
Smith DR, Grotelueschen DM. Biosecurity and biocontainment of bovine viral diarrhea virus. Vet Clin North Am Food Anim Pract 2004; 20:131-49. [PMID: 15062479 DOI: 10.1016/j.cvfa.2003.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Infection of cattle with BVDV results in a variety of clinical illnesses costly to the cattle industry worldwide. The reservoir and primary source of transmission is cattle born PI with BVDV after transplacental infection in early gestation. It is a challenge to determine with certainty whether or not BVDV is circulating among a herd of cattle. If the virus is present in a herd,then biocontainment strategies are used to eliminate the virus by testing to removing PI cattle, preventing exposure of pregnant cattle to the virus, and increasing resistance to infection using vaccination. If it is clear that the virus is not present in a herd then, biosecurity actions must be taken to prevent introducing the virus into the herd.
Collapse
Affiliation(s)
- David R Smith
- Department of Veterinary and Biomedical Sciences, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, P.O. Box 830907, 124 VDC, Fair St. and E. Campus Loop, Lincoln, NE 68583-0907, USA.
| | | |
Collapse
|
30
|
Stokstad M, Niskanen R, Lindberg A, Thorén P, Belák S, Alenius S, Løken T. Experimental Infection of Cows with Bovine Viral Diarrhoea Virus in Early Pregnancy - Findings in Serum and Foetal Fluids. ACTA ACUST UNITED AC 2003; 50:424-9. [PMID: 14633195 DOI: 10.1046/j.0931-1793.2003.00699.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nineteen pregnant cows were experimentally infected with bovine viral diarrhoea virus (BVDV) between day 74 and 81 of pregnancy. All cows became infected and developed serum antibodies. Sixteen of the cows delivered persistently infected (PI) offspring, whereas the remaining three gave birth to calves with detectable serum antibodies and free from BVDV. The 16 cows with PI foetuses developed higher levels of antibodies in serum during pregnancy than did their three peers carrying non-PI calves. Multivariate analysis showed that the antibody levels in these two groups of cows were significantly different from day 135 of pregnancy. Foetal fluid was successfully collected from 18 of the 19 infected cows and from five uninfected control cows between 10 and 24 days before delivery by use of a percutaneous, blind puncture technique. No negative effects were observed in the cows or their offspring. BVDV was isolated and detected with an immunoperoxidase test in foetal fluid from 13 of the 16 cows carrying PI foetuses, and from 15 of the cows when a quantitative fluorescent polymerase chain reaction (PCR) technique was used. The negative sample in the PCR assay was positive for BVDV antibodies. The number of viral copies per microlitre in foetal fluids varied between 103 and 1080 in the positive samples. All samples taken from the cows carrying non-PI foetuses were negative for BVDV in both assays. In this experiment, examination of either serum or foetal fluids could identify the cows carrying a PI foetus. Examination of serum for BVDV antibodies was a reliable indicator of a PI foetus if the serum was collected during the last 2 months of pregnancy. For examination of foetal fluids, both viral and serological analyses should be performed. For viral analysis, PCR should be the test of choice. High levels of BVDV antibodies in conjunction with a negative result in the PCR may be indicative of a false-negative virus result. Further experience with the method of collection of foetal fluids is necessary for evaluation of its safety. Investigation of pregnant cows in order to discover a PI offspring before it is born could be a useful tool in control and eradication of BVDV.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/analysis
- Antibodies, Viral/blood
- Bovine Virus Diarrhea-Mucosal Disease/diagnosis
- Bovine Virus Diarrhea-Mucosal Disease/transmission
- Cattle
- DNA, Viral/analysis
- DNA, Viral/blood
- Diarrhea Viruses, Bovine Viral/genetics
- Diarrhea Viruses, Bovine Viral/immunology
- Diarrhea Viruses, Bovine Viral/isolation & purification
- Diarrhea Viruses, Bovine Viral/pathogenicity
- Enzyme-Linked Immunosorbent Assay/veterinary
- Female
- Fetus/virology
- Infectious Disease Transmission, Vertical/veterinary
- Polymerase Chain Reaction/veterinary
- Predictive Value of Tests
- Pregnancy
- Pregnancy Complications, Infectious/diagnosis
- Pregnancy Complications, Infectious/veterinary
Collapse
Affiliation(s)
- M Stokstad
- Norwegian School of Veterinary Science, Department of Production Animal Clinical Sciences, PO Box 8146 Dep, N-0033 Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Infections with bovine viral diarrhoea virus continue to plague the cattle industry worldwide. The wish to control the negative effects of the virus has lead to the development of numerous vaccines, but also of eradication schemes. In this paper, a comprehensive overview on BVDV is given: the virus and its clinical manifestations, its occurrence and economic impact, the different routes of transmission, as well as diagnostic methods and objectives. Furthermore, the two major options for BVDV control--eradication and vaccination--are discussed as well as the risk for reintroduction of BVDV after eradication.
Collapse
|
32
|
Muñoz-Zanzi CA, Hietala SK, Thurmond MC, Johnson WO. Quantification, risk factors, and health impact of natural congenital infection with bovine viral diarrhea virus in dairy calves. Am J Vet Res 2003; 64:358-65. [PMID: 12661878 DOI: 10.2460/ajvr.2003.64.358] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVES To estimate risk and identify risk factors for congenital infection with bovine viral diarrhea virus (BVDV) not resulting in persistent infection and examine effect of congenital infection on health of dairy calves. ANIMALS 466 calves. PROCEDURES Calves from 2 intensively managed drylot dairies with different vaccination programs and endemic BVDV infection were sampled before ingesting colostrum and tested with their dams for BVDV and BVDV serum-neutralizing antibodies. Records of treatments and death up to 10 months of age were obtained from calf ranch or dairy personnel. Risk factors for congenital infection, including dam parity and BVDV titer, were examined by use of logistic regression analysis. Effect of congenital infection on morbidity and mortality rates was examined by use of survival analysis methods. RESULTS Fetal infection was identified in 10.1% of calves, of which 0.5% had persistent infection and 9.6% had congenital infection. Although dependent on herd, congenital infection was associated with high BVDV type 2 titers in dams at calving and with multiparous dams. Calves with congenital infection had 2-fold higher risk of a severe illness, compared with calves without congenital infection. CONCLUSIONS AND CLINICAL RELEVANCE The unexpectedly high proportion of apparently healthy calves found to be congenitally infected provided an estimate of the amount of fetal infection via exposure of dams and thus virus transmission in the herds. Findings indicate that congenital infection with BVDV may have a negative impact on calf health, with subsequent impact on herd health.
Collapse
Affiliation(s)
- Claudia A Muñoz-Zanzi
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
33
|
Ståhl K, Rivera H, Vågsholm I, Moreno-López J. Bulk milk testing for antibody seroprevalences to BVDV and BHV-1 in a rural region of Peru. Prev Vet Med 2002; 56:193-202. [PMID: 12441235 DOI: 10.1016/s0167-5877(02)00161-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bulk milk from 60 herds of dairy cattle in a rural region in the central highlands of Peru was tested for antibodies to bovine viral-diarrhoea virus (BVDV) and bovine herpesvirus type 1 (BHV-1). None of the herds had been vaccinated against BVDV or BHV-1. Commercially available indirect ELISA-kits were used for antibody detection. True prevalences of BVDV and BHV-1 antibody-positive herds were 96 and 51%, respectively. A relatively low proportion of strongly positive herds suggests, however, a low prevalence of active BVDV infection. BVDV optical densities (ODs) in bulk milk increased with herd size--indicating a higher within-herd prevalence in the larger herds (probably, in part a consequence of a higher rate of animal movement into these herds). For BHV-1, this pattern was not found; a relatively high proportion of the herds was free from BHV-1 infection in each size category. This could indicate a low rate of reactivation of latent BHV-1 infection.
Collapse
Affiliation(s)
- K Ståhl
- Department of Veterinary Microbiology, Section of Virology SLU, Biomedical Centre, Box 585, S-751 23 Uppsala, Sweden.
| | | | | | | |
Collapse
|
34
|
Lindberg A, Niskanen R, Gustafsson H, Bengtsson B, Baule C, Belák S, Alenius S. Prenatal diagnosis of persistent bovine viral diarrhoea virus (BVDV) infection by detection of viral RNA in fetal fluids. Vet J 2002; 164:151-5. [PMID: 12359471 DOI: 10.1053/tvjl.2002.0730] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- A Lindberg
- Swedish Dairy Association, Research and Development, S-75007, Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|