1
|
Development and Validation of a New TaqMan Real-Time PCR for the Detection of Ornithobacterium rhinotracheale. Microorganisms 2022; 10:microorganisms10020341. [PMID: 35208796 PMCID: PMC8875355 DOI: 10.3390/microorganisms10020341] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/17/2022] [Accepted: 01/29/2022] [Indexed: 02/01/2023] Open
Abstract
Ornithobacterium rhinotracheale (ORT) has been associated with poultry respiratory disease worldwide. The organism is fastidious and isolation is challenging. One TaqMan real-time PCR (qPCR) assay has been developed for the detection of ORT. However, during validating the ORT qPCR, the assay performance was suboptimal. During the in silico evaluation, deviations from the basic parameters for primers and probes designs (e.g., presence of stable undesirable primer-dimers) were observed. The suboptimal design led to low efficiency and low sensitivity of the assay. Initially, modification on the probe was carried out to improve the performance of the assay. However, the assay’s performance (efficiency and sensitivity) was still suboptimal. In this manuscript, we describe the development of a new qPCR assay and the comparison of its performance with the currently available assay. A highly efficient, sensitive, and specific qPCR assay was developed with approximately 1000-folds reduction in the limit of detection (from 3 × 106 plasmid DNA copies/mL to 1 × 103 plasmid DNA copies/mL). Additionally, the efficiency of the new assay (E = 98.70%) was significantly better than the current assay (E = 73.18%). The newly developed assay is an improved diagnostic tool for the sensitive and efficient diagnosis of ORT from clinical samples.
Collapse
|
2
|
Mills MG, Gallagher EP. A targeted gene expression platform allows for rapid analysis of chemical-induced antioxidant mRNA expression in zebrafish larvae. PLoS One 2017; 12:e0171025. [PMID: 28212397 PMCID: PMC5315391 DOI: 10.1371/journal.pone.0171025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 01/13/2017] [Indexed: 12/11/2022] Open
Abstract
Chemical-induced oxidative stress and the biochemical pathways that protect against oxidative damage are of particular interest in the field of toxicology. To rapidly identify oxidative stress-responsive gene expression changes in zebrafish, we developed a targeted panel of antioxidant genes using the Affymetrix QuantiGene Plex (QGP) platform. The genes contained in our panel include eight putative Nrf2 (Nfe2l2a)-dependent antioxidant genes (hmox1a, gstp1, gclc, nqo1, prdx1, gpx1a, sod1, sod2), a stress response gene (hsp70), an inducible DNA damage repair gene (gadd45bb), and three reference genes (actb1, gapdh, hprt1). We tested this platform on larval zebrafish exposed to tert-butyl hydroperoxide (tBHP) and cadmium (Cd), two model oxidative stressors with different modes of action, and compared our results with those obtained using the more common quantitative PCR (qPCR) method. Both methods showed that exposure to tBHP and Cd induced expression of prdx1, gstp1, and hmox1a (2- to 12-fold increase via QGP), indicative of an activated Nrf2 response in larval zebrafish. Both compounds also elicited a general stress response as reflected by elevation of hsp70 and gadd45bb, with Cd being the more potent inducer. Transient changes were observed in sod2 and gpx1a expression, whereas nqo1, an Nrf2-responsive gene in mammalian cells, was minimally affected by either tBHP or Cd chemical exposures. Developmental expression analysis of the target genes by QGP revealed marked upregulation of sod2 between 0-96hpf, and to a lesser extent, of sod1 and gstp1. Once optimized, QGP analysis of these experiments was accomplished more rapidly, using far less tissue, and at lower total costs than qPCR analysis. In summary, the QGP platform as applied to higher-throughput zebrafish studies provides a reasonable cost-effective alternative to qPCR or more comprehensive transcriptomics approaches to rapidly assess the potential for chemicals to elicit oxidative stress as a mechanism of chemical toxicity.
Collapse
Affiliation(s)
- Margaret G. Mills
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, United States of America
| | - Evan P. Gallagher
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
3
|
Wadle S, Lehnert M, Rubenwolf S, Zengerle R, von Stetten F. Real-time PCR probe optimization using design of experiments approach. BIOMOLECULAR DETECTION AND QUANTIFICATION 2016; 7:1-8. [PMID: 27077046 PMCID: PMC4827641 DOI: 10.1016/j.bdq.2015.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/16/2015] [Accepted: 12/16/2015] [Indexed: 12/28/2022]
Abstract
Primer and probe sequence designs are among the most critical input factors in real-time polymerase chain reaction (PCR) assay optimization. In this study, we present the use of statistical design of experiments (DOE) approach as a general guideline for probe optimization and more specifically focus on design optimization of label-free hydrolysis probes that are designated as mediator probes (MPs), which are used in reverse transcription MP PCR (RT-MP PCR). The effect of three input factors on assay performance was investigated: distance between primer and mediator probe cleavage site; dimer stability of MP and target sequence (influenza B virus); and dimer stability of the mediator and universal reporter (UR). The results indicated that the latter dimer stability had the greatest influence on assay performance, with RT-MP PCR efficiency increased by up to 10% with changes to this input factor. With an optimal design configuration, a detection limit of 3-14 target copies/10 μl reaction could be achieved. This improved detection limit was confirmed for another UR design and for a second target sequence, human metapneumovirus, with 7-11 copies/10 μl reaction detected in an optimum case. The DOE approach for improving oligonucleotide designs for real-time PCR not only produces excellent results but may also reduce the number of experiments that need to be performed, thus reducing costs and experimental times.
Collapse
Affiliation(s)
- S. Wadle
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Hahn-Schickard Institut für Mikro-und Informationstechnik, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - M. Lehnert
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - S. Rubenwolf
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - R. Zengerle
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Hahn-Schickard Institut für Mikro-und Informationstechnik, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- BIOSS—Centre for Biological Signalling Studies, University of Freiburg, 79110 Freiburg, Germany
| | - F. von Stetten
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Hahn-Schickard Institut für Mikro-und Informationstechnik, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| |
Collapse
|
4
|
Wadle S, Rubenwolf S, Lehnert M, Faltin B, Weidmann M, Hufert F, Zengerle R, von Stetten F. Mediator probe PCR: detection of real-time PCR by label-free probes and a universal fluorogenic reporter. Methods Mol Biol 2014; 1160:55-73. [PMID: 24740221 DOI: 10.1007/978-1-4939-0733-5_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Mediator probe PCR (MP PCR) is a novel detection format for real-time nucleic acid analysis. Label-free mediator probes (MP) and fluorogenic universal reporter (UR) oligonucleotides are combined to accomplish signal generation. Compared to conventional hydrolysis probe PCRs costs can thus be saved by using the same fluorogenic UR for signal generation in different assays. This tutorial provides a practical guideline to MP and UR design. MP design rules are very similar to those of hydrolysis probes. The major difference is in the replacement of the fluorophore and quencher by one UR-specific sequence tag, the mediator. Further protocols for the setup of reactions, to detect either DNA or RNA targets with clinical diagnostic target detection as models, are explained. Ready to use designs for URs are suggested and guidelines for their de novo design are provided as well, including a protocol for UR signal generation characterization.
Collapse
Affiliation(s)
- Simon Wadle
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110, Freiburg, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Faltin B, Zengerle R, von Stetten F. Current methods for fluorescence-based universal sequence-dependent detection of nucleic acids in homogenous assays and clinical applications. Clin Chem 2013; 59:1567-82. [PMID: 23938456 DOI: 10.1373/clinchem.2013.205211] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Specific and sensitive nucleic acid (NA) testing in research and clinical diagnostics is usually performed by use of labeled oligonucleotide probes. However, the use of target-specific fluorogenic probes increases the cost of analysis. Therefore, universal sequence-dependent (USD) NA detection methods have been developed to facilitate cost-effective target detection using standardized reagents. CONTENT We provide a comprehensive review of the current methods for fluorescence-based USD NA detection. Initially, we focus on the emergence of these methods as a means to overcome the shortcomings of common NA detection methods, such as hydrolysis probes and molecular beacons. Thereafter, we provide a critical evaluation of the individual detection methods. These methods include (a) target amplification with bipartite primers introducing a universal detection tag to the amplicon (UniPrimer PCR, universal fluorescence energy transfer probe PCR, attached universal duplex probe PCR, and universal strand displacement amplification) or combined with bipartite probes comprising a universal detection region (mediator probe PCR, universal strand displacement amplification, universal quenching probe PCR) and (b) amplification-independent assays employing either a universal variant of the invader assay or universal NA hybridization sensors. We discuss differences between the methods and review clinical applications. SUMMARY The current methods for USD NA testing are cost-effective and flexible and have concordant analytical performance in comparison with common probe-based techniques. They can detect any target sequence by the simple use of a label-free, low-cost primer or probe combined with a universal fluorogenic reporter. The methods differ in the number of target specificities, capability of multiplexing, and incubation requirements (isothermal/thermocycling). Extensive clinical applications comprise detection of single-nucleotide polymorphisms, study of gene expression, in situ PCR, and quantification of pathogen load.
Collapse
|
6
|
Huang X, Hou L, Xu X, Chen H, Ji H, Zhu S. One-PCR-tube approach for in situ DNA isolation and detection. Analyst 2011; 136:4254-9. [PMID: 21879029 DOI: 10.1039/c1an15116a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Traditional real-time polymerase chain reaction (PCR) requires a purified DNA sample for PCR amplification and detection. This requires PCR tests be conducted in clean laboratories, and limits its applications for field tests. This work developed a method that can carry out DNA purification, amplification and detection in a single PCR tube. The polypropylene PCR tube was first treated with chromic acid and peptide nucleic acids (PNA) as DNA-capturer were immobilized on the internal surface of the tube. Cauliflower mosaic virus 35S (CaMV-35S) promoter in the crude extract was hybridized with the PNA on the tube surface, and the inhibitors, interfering agents and irrelevant DNA in the crude extract were effectively removed by rinsing with buffer solutions. The tube that has captured the target DNA can be used for the following real-time PCR (RT-PCR). By using this approach, the detection of less than 2500 copies of 35S plasmids in a complex sample could be completed within 3 hours. Chocolate samples were tested for real sample analysis, and 35S plasmids in genetically modified chocolate samples have been successfully identified with this method in situ. The novel One-PCR-tube method is competitive for commercial kits with the same time and simpler operation procedure. This method may be widely used for identifying food that contains modified DNA and specific pathogens in the field.
Collapse
Affiliation(s)
- Xin Huang
- Institute of Animal and Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100029, People's Republic of China
| | | | | | | | | | | |
Collapse
|
7
|
Electrochemical detection of toxin gene in Listeria monocytogenes. YI CHUAN = HEREDITAS 2010; 32:512-6. [DOI: 10.3724/sp.j.1005.2010.00512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Althaus CF, Gianella S, Rieder P, von Wyl V, Kouyos RD, Niederöst B, Schmid A, Metzner KJ, Joos B, Günthard HF, Fischer M. Rational design of HIV-1 fluorescent hydrolysis probes considering phylogenetic variation and probe performance. J Virol Methods 2010; 165:151-60. [PMID: 20116399 DOI: 10.1016/j.jviromet.2010.01.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 01/13/2010] [Accepted: 01/20/2010] [Indexed: 11/30/2022]
Abstract
Quantitative PCR (qPCR) using fluorescent hydrolysis probes (FH-probes; TaqMan-probes) of variable genomes, such as HIV-1, can result in underestimation of viral copy numbers due to mismatches in the FH-probe's target sequences. Therefore both target conservation and physical properties of FH-probes, such as melting temperature, baseline fluorescence and secondary structure, should be considered in design of FH-probes. Analysis of a database of 1242 near full-length HIV-1 sequences with a novel computational tool revealed that the probability of target and FH-probe identity decreases exponentially with FH-probe length. In addition, this algorithm allowed for identification of continuous sequence stretches of high conservation, from which FH-probes with global HIV-1 clade coverage could be chosen. To revise the prerequisites of physical FH-probe function, properties of 30 DNA and 21 chimeric DNA locked nucleic acid (DLNA) HIV-1 FH-probes were correlated with their performance in qPCR. This identified the presence of stable secondary structures within FH-probes and the base composition and thermal stability of the 5' proximal end as novel predictors of FH-probe performance. Thus, empirically validated novel principles of FH-probe design regarding conservation and qPCR-performance were identified, which complement and extend current rules for FH-probe design.
Collapse
Affiliation(s)
- Claudia F Althaus
- Division of Infectious Diseases, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Molecular Diagnostics and Comparative Genomics in Clinical Microbiology. MOLECULAR DIAGNOSTICS 2010. [PMCID: PMC7150202 DOI: 10.1016/b978-0-12-374537-8.00030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Initially, the availability of molecular diagnostics was considered a panacea, but replacement of conventional tests for detection and identification of microorganisms by molecular procedures eventually gathered momentum. This chapter describes current state-of-the-art molecular diagnostics and comparative genomics in medical microbiology to provide an understanding of infectious disease over the coming years. Nucleic acid-based tests are being introduced with increasing speed into routine clinical microbiology laboratories. Some of the problems remaining to be solved prior to general acceptance of nucleic acid-mediated detection and identification of microbial pathogens are reviewed. Historic objections are slowly being taken apart, and an accelerated introduction of molecular diagnostics is being pursued in many cases. Clear improvement in clinical testing is achieved by introducing molecular tests. Therefore, swift introduction of such tests into clinical practice is important to be pursued. Several PCR tests show increased sensitivity, excellent specificity, and cost effectiveness highlighting the success of the novel applications in the field of bacterial infections. Finally, some of the problems remaining to be solved prior to general acceptation of nucleic acid-mediated detection and identification of microbial pathogens are also reviewed.
Collapse
|
10
|
Iverson-Cabral SL, Astete SG, Cohen CR, Totten PA. mgpB and mgpC sequence diversity in Mycoplasma genitalium is generated by segmental reciprocal recombination with repetitive chromosomal sequences. Mol Microbiol 2007; 66:55-73. [PMID: 17880423 DOI: 10.1111/j.1365-2958.2007.05898.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycoplasma genitalium is associated with sexually transmitted infections in men and women that, if untreated, can persist, suggesting that mechanism(s) exist to facilitate immune evasion. Approximately 4% of the limited M. genitalium genome contains repeat sequences termed MgPar regions that have homology to mgpB and mgpC, which encode antigenic proteins associated with attachment. We have previously shown that mgpB sequences vary within a single strain of M. genitalium in a pattern consistent with recombination between mgpB and MgPar sequences (Iverson-Cabral et al.). In the current study, we show that mgpC heterogeneity similarly occurs within the type strain, G-37(T), cultured in vitro and among cervical specimens collected from a persistently infected woman. In all cases, alternative mgpC sequences are indicative of recombination with MgPar regions. Additionally, the isolation of single-colony M. genitalium clonal variants containing alternative mgpB or mgpC sequences allowed us to demonstrate that mgpB and mgpC heterogeneity is associated with corresponding changes within donor MgPar regions, consistent with reciprocal recombination. Better-defined systems of antigenic variation are typically mediated by unidirectional gene conversion, so the generation of genetic diversity observed in M. genitalium by the mutual exchange of sequences makes this organism unique among bacterial pathogens.
Collapse
|
11
|
Huang S, Salituro J, Tang N, Luk KC, Hackett J, Swanson P, Cloherty G, Mak WB, Robinson J, Abravaya K. Thermodynamically modulated partially double-stranded linear DNA probe design for homogeneous real-time PCR. Nucleic Acids Res 2007; 35:e101. [PMID: 17693434 PMCID: PMC2018630 DOI: 10.1093/nar/gkm551] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Real-time PCR assays have recently been developed for diagnostic and research purposes. Signal generation in real-time PCR is achieved with probe designs that usually depend on exonuclease activity of DNA polymerase (e.g. TaqMan probe) or oligonucleotide hybridization (e.g. molecular beacon). Probe design often needs to be specifically tailored either to tolerate or to differentiate between sequence variations. The conventional probe technologies offer limited flexibility to meet these diverse requirements. Here, we introduce a novel partially double-stranded linear DNA probe design. It consists of a hybridization probe 5′-labeled with a fluorophore and a shorter quencher oligo of complementary sequence 3′-labeled with a quencher. Fluorescent signal is generated when the hybridization probe preferentially binds to amplified targets during PCR. This novel class of probe can be thermodynamically modulated by adjusting (i) the length of hybridization probe, (ii) the length of quencher oligo, (iii) the molar ratio between the two strands and (iv) signal detection temperature. As a result, pre-amplification signal, signal gain and the extent of mismatch discrimination can be reliably controlled and optimized. The applicability of this design strategy was demonstrated in the Abbott RealTime HIV-1 assay.
Collapse
Affiliation(s)
- Shihai Huang
- Abbott Molecular Inc., Des Plaines, IL, USA and Abbott Diagnostics, AIDS Research and Retrovirus Discovery, Abbott Park, IL, USA
| | - John Salituro
- Abbott Molecular Inc., Des Plaines, IL, USA and Abbott Diagnostics, AIDS Research and Retrovirus Discovery, Abbott Park, IL, USA
| | - Ning Tang
- Abbott Molecular Inc., Des Plaines, IL, USA and Abbott Diagnostics, AIDS Research and Retrovirus Discovery, Abbott Park, IL, USA
| | - Ka-Cheung Luk
- Abbott Molecular Inc., Des Plaines, IL, USA and Abbott Diagnostics, AIDS Research and Retrovirus Discovery, Abbott Park, IL, USA
| | - John Hackett
- Abbott Molecular Inc., Des Plaines, IL, USA and Abbott Diagnostics, AIDS Research and Retrovirus Discovery, Abbott Park, IL, USA
| | - Priscilla Swanson
- Abbott Molecular Inc., Des Plaines, IL, USA and Abbott Diagnostics, AIDS Research and Retrovirus Discovery, Abbott Park, IL, USA
| | - Gavin Cloherty
- Abbott Molecular Inc., Des Plaines, IL, USA and Abbott Diagnostics, AIDS Research and Retrovirus Discovery, Abbott Park, IL, USA
| | - Wai-Bing Mak
- Abbott Molecular Inc., Des Plaines, IL, USA and Abbott Diagnostics, AIDS Research and Retrovirus Discovery, Abbott Park, IL, USA
| | - John Robinson
- Abbott Molecular Inc., Des Plaines, IL, USA and Abbott Diagnostics, AIDS Research and Retrovirus Discovery, Abbott Park, IL, USA
| | - Klara Abravaya
- Abbott Molecular Inc., Des Plaines, IL, USA and Abbott Diagnostics, AIDS Research and Retrovirus Discovery, Abbott Park, IL, USA
- *To whom correspondence should be addressed. +1 224 361 7310+1 224 361 7507
| |
Collapse
|
12
|
Ward LN, Bej AK. Detection of Vibrio parahaemolyticus in shellfish by use of multiplexed real-time PCR with TaqMan fluorescent probes. Appl Environ Microbiol 2006; 72:2031-42. [PMID: 16517652 PMCID: PMC1393209 DOI: 10.1128/aem.72.3.2031-2042.2006] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We developed a multiplexed real-time PCR assay using four sets of gene-specific oligonucleotide primers and four TaqMan probes labeled with four different fluorophores in a single reaction for detection of total and pathogenic Vibrio parahaemolyticus, including the pandemic O3:K6 serotype in oysters. V. parahaemolyticus has been associated with outbreaks of food-borne gastroenteritis caused by the consumption of raw or undercooked seafood and therefore is a concern to the seafood industry and consumers. We selected specific primers and probes targeting the thermostable direct hemolysin gene (tdh) and tdh-related hemolysin gene (trh) that have been reported to be associated with pathogenesis in this organism. In addition, we targeted open reading frame 8 of phage f237 (ORF8), which is associated with a newly emerged virulent pandemic serotype of V. parahameolyticus O3:K6. Total V. parahaemolyticus was targeted using the thermolabile hemolysin gene (tlh). The sensitivity of the combined four-locus multiplexed TaqMan PCR was found to be 200 pg of purified genomic DNA and 10(4) CFU per ml for pure cultures. Detection of an initial inoculum of 1 CFU V. parahaemolyticus per g of oyster tissue homogenate was possible after overnight enrichment, which resulted in a concentration of 3.3x10(9) CFU per ml. Use of this method with natural oysters resulted in 17/33 samples that were positive for tlh and 4/33 samples that were positive for tdh. This assay specifically and sensitively detected total and pathogenic V. parahaemolyticus and is expected to provide a rapid and reliable alternative to conventional detection methods by reducing the analysis time and obviating the need for multiple assays.
Collapse
Affiliation(s)
- Linda N Ward
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294-1170, USA
| | | |
Collapse
|
13
|
Abstract
The polymerase chain reaction (PCR) has become one of the most important tools in molecular diagnostics, providing exquisite sensitivity and specificity for detection of nucleic acid targets. Real-time monitoring of PCR has simplified and accelerated PCR laboratory procedures and has increased information obtained from specimens including routine quantification and differentiation of amplification products. Clinical diagnostic applications and uses of real-time PCR are growing exponentially, real-time PCR is rapidly replacing traditional PCR, and new diagnostic uses likely will emerge. This review analyzes the scope of present and potential future clinical diagnostic applications of this powerful technique. Critical discussions focus on basic concepts, variations, data analysis, instrument platforms, signal detection formats, sample collection, assay design, and execution of real-time PCR.
Collapse
Affiliation(s)
- Bernhard Kaltenboeck
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | | |
Collapse
|
14
|
Battelli C, Nikopoulos GN, Mitchell JG, Verdi JM. The RNA-binding protein Musashi-1 regulates neural development through the translational repression of p21WAF-1. Mol Cell Neurosci 2006; 31:85-96. [PMID: 16214366 DOI: 10.1016/j.mcn.2005.09.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 08/26/2005] [Accepted: 09/06/2005] [Indexed: 11/30/2022] Open
Abstract
RNA-binding proteins regulate cell fate decisions during nervous system development. The Msi family of RNA-binding proteins is expressed in multipotential neural progenitors, and is required for maintaining cells in a proliferative state. We demonstrate that Msi-1's ability to regulate progenitor maintenance is through the translational inhibition of the cyclin-dependent kinase inhibitor p21WAF-1. Msi-1 ectopic expression increases the proliferation rate and the capacity to regulate p21WAF-1 protein expression, independent of p53. The 3' untranslated region (UTR) of the native p21(WAF-1) mRNA contains a Msi-1 consensus-binding site that permits Msi-1 to directly repress the translation of p21WAF-1 protein. Reduction of Msi-1 through antisense leads to aberrant p21WAF-1 expression, which significantly impairs neural differentiation. A double knockdown for p21WAF-1 and Msi-1 rescues the production of mature MAP+ neurons. Our results further elucidate the symbiotic relationship between cell cycle withdrawal and the onset of differentiation in the developing nervous system, as well as increasing the understanding of the influence that RNA-binding proteins serve in regulating these processes.
Collapse
Affiliation(s)
- Chiara Battelli
- The Center for Regenerative Medicine, Maine Medical Center Research Institute, 81 Research Drive Scarborough, ME 04074, USA
| | | | | | | |
Collapse
|
15
|
Garcia EP, Dowding LA, Stanton LW, Slepnev VI. Scalable transcriptional analysis routine--multiplexed quantitative real-time polymerase chain reaction platform for gene expression analysis and molecular diagnostics. J Mol Diagn 2005; 7:444-54. [PMID: 16237214 PMCID: PMC1888488 DOI: 10.1016/s1525-1578(10)60575-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We report the development of a new technology for simultaneous quantitative detection of multiple targets in a single sample. Scalable transcriptional analysis routine (STAR) represents a novel integration of reverse transcriptase-polymerase chain reaction and capillary electrophoresis that allows detection of dozens of gene transcripts in a multiplexed format using amplicon size as an identifier for each target. STAR demonstrated similar or better sensitivity and precision compared to two commonly used methods, SYBR Green-based and TaqMan probe-based real-time reverse transcriptase-polymerase chain reaction. STAR can be used as a flexible platform for building a variety of applications to monitor gene expression, from single gene assays to assays analyzing the expression level of multiple genes. Using severe acute respiratory syndrome (SARS) corona virus as a model system, STAR technology detected single copies of the viral genome in a two-gene multiplex. Blinded studies using RNA extracted from various tissues of a SARS-infected individual showed that STAR correctly identified all samples containing SARS virus and yielded negative results for non-SARS control samples. Using alternate priming strategies, STAR technology can be adapted to transcriptional profiling studies without requiring a priori sequence information. Thus, STAR technology offers a flexible platform for development of highly multiplexed assays in gene expression analysis and molecular diagnostics.
Collapse
|
16
|
Churchill RLT, Lee H, Hall JC. Detection of Listeria monocytogenes and the toxin listeriolysin O in food. J Microbiol Methods 2005; 64:141-70. [PMID: 16310269 DOI: 10.1016/j.mimet.2005.10.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 10/14/2005] [Accepted: 10/14/2005] [Indexed: 10/25/2022]
Abstract
Listeria monocytogenes is an emerging bacterial foodborne pathogen responsible for listeriosis, an illness characterized by meningitis, encephalitis, and septicaemia. Less commonly, infection can result in cutaneous lesions and flu-like symptoms. In pregnant women, the pathogen can cause bacteraemia, and stillbirth or premature birth of the fetus. The mortality rate for those contracting listeriosis is approximately 20%. Currently, the United States has a zero tolerance policy regarding the presence of L. monocytogenes in food, while Canada allows only 100 cfu/g of food. As such, it is essential to be able to detect the pathogen in low numbers in food samples. One of the best ways to detect and confirm the pathogen is through the detection of one of the virulence factors, listeriolysin O (LLO) produced by the microorganism. The LLO-encoding gene (hlyA) is present only in virulent strains of the species and is required for virulence. LLO is a secreted protein toxin that can be detected easily with the use of blood agar or haemolysis assays and it is well characterized and understood. This paper focuses on some of the common methods used to detect the pathogen and the LLO toxin in food products and comments on some of the potential uses and drawbacks for the food industry.
Collapse
Affiliation(s)
- Robin L T Churchill
- Department of Environmental Biology, University of Guelph, Guelph, ON, Canada
| | | | | |
Collapse
|
17
|
Abstract
In recent years, real-time polymerase chain reaction (PCR) has emerged as a robust and widely used methodology for biological investigation because it can detect and quantify very small amounts of specific nucleic acid sequences. As a research tool, a major application of this technology is the rapid and accurate assessment of changes in gene expression as a result of physiology, pathophysiology, or development. This method can be applied to model systems to measure responses to experimental stimuli and to gain insight into potential changes in protein level and function. Thus physiology can be correlated with molecular events to gain a better understanding of biological processes. For clinical molecular diagnostics, real-time PCR can be used to measure viral or bacterial loads or evaluate cancer status. Here, we discuss the basic concepts, chemistries, and instrumentation of real-time PCR and include present applications and future perspectives for this technology in biomedical sciences and in life science education.
Collapse
Affiliation(s)
- Mark A Valasek
- Department of Physiology Touchstone Center for Diabetes Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8854, USA
| | | |
Collapse
|
18
|
Crane BL, Hogan NC, Sudo H, Thilly WG, Hunter IW. Real-Time PCR Measurement by Fluorescence Anisotropy. Anal Chem 2005; 77:5129-34. [PMID: 16097749 DOI: 10.1021/ac050323j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have developed an instrument for monitoring real-time PCR using fluorescence anisotropy, enabling an assay chemistry in which the fluorescence from a labeled primer elucidates amplification. The instrument holds the sample temperature constant to within +/-0.03 degrees C during measurement in the extension phase of each PCR cycle and achieves 0.116 mP FA resolution. Primer conjugation with Alexa-Fluor 488, when compared with other fluorophores, is shown to provide the greatest FA range between primer and product. Comparable reproducibility and linearity of the crossing point for a range of target copy numbers is observed between the FA-based assay run in our instrument and the SYBR green assay run in commercial instrumentation. Reproducibility is also consistent with Poisson-distributed experimental error in aliquoting starting copies, a theoretical limit to instrument/assay performance.
Collapse
Affiliation(s)
- Bryan L Crane
- BioInstrumentation Laboratory, Department of Mechanical Engineering, and Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | | | |
Collapse
|
19
|
Taha MK, Olcén P. Molecular genetic methods in diagnosis and direct characterization of acute bacterial central nervous system infections. APMIS 2005; 112:753-70. [PMID: 15688522 DOI: 10.1111/j.1600-0463.2004.apm11211-1204.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acute bacterial infection of the central nervous system requires rapid and adequate management. Etiological diagnosis is hence crucial. Moreover, the epidemic threat of certain bacteria necessitates a reliable characterization of the involved bacterial strains to follow the spread of epidemic strains. Conventional identification and characterization of etiological agents are basically based on culture and identification of bacterial markers most frequently by serological assays. Molecular identification and characterization of bacteria have been employed. They provide more reliable analysis of bacterial isolates. Molecular methods for non-culture diagnosis of bacterial infections have recently been developed. In many cases, the molecular assays have decreased the identification time of positive cultures and rescued detection of pathogens in culture-negative clinical samples.
Collapse
Affiliation(s)
- Muhamed-Kheir Taha
- Neisseria Unit and National Reference Center for Meningococci, Institut Pasteur, Paris, France.
| | | |
Collapse
|
20
|
Mackay IM, Arden KE, Nitsche A. Real-time Fluorescent PCR Techniques to Study Microbial-Host Interactions. METHODS IN MICROBIOLOGY 2004; 34:255-330. [PMID: 38620210 PMCID: PMC7148886 DOI: 10.1016/s0580-9517(04)34010-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This chapter describes how real-time polymerase chain reaction (PCR) performs and how it may be used to detect microbial pathogens and the relationship they form with their host. Research and diagnostic microbiology laboratories contain a mix of traditional and leading-edge, in-house and commercial assays for the detection of microbes and the effects they impart upon target tissues, organs, and systems. The PCR has undergone significant change over the last decade, to the extent that only a small proportion of scientists have been able or willing to keep abreast of the latest offerings. The chapter reviews these changes. It discusses the second-generation of PCR technology-kinetic or real-time PCR, a tool gaining widespread acceptance in many scientific disciplines but especially in the microbiology laboratory.
Collapse
Affiliation(s)
- Ian M Mackay
- Clinical Virology Research Unit, Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Brisbane, Qld, Australia
- Clinical Medical Virology Centre, University of Queensland, Brisbane, Qld, Australia
| | - Katherine E Arden
- Clinical Virology Research Unit, Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Brisbane, Qld, Australia
| | | |
Collapse
|
21
|
Abstract
Use of PCR in the field of molecular diagnostics has increased to the point where it is now accepted as the standard method for detecting nucleic acids from a number of sample and microbial types. However, conventional PCR was already an essential tool in the research laboratory. Real-time PCR has catalysed wider acceptance of PCR because it is more rapid, sensitive and reproducible, while the risk of carryover contamination is minimised. There is an increasing number of chemistries which are used to detect PCR products as they accumulate within a closed reaction vessel during real-time PCR. These include the non-specific DNA-binding fluorophores and the specific, fluorophore-labelled oligonucleotide probes, some of which will be discussed in detail. It is not only the technology that has changed with the introduction of real-time PCR. Accompanying changes have occurred in the traditional terminology of PCR, and these changes will be highlighted as they occur. Factors that have restricted the development of multiplex real-time PCR, as well as the role of real-time PCR in the quantitation and genotyping of the microbial causes of infectious disease, will also be discussed. Because the amplification hardware and the fluorogenic detection chemistries have evolved rapidly, this review aims to update the scientist on the current state of the art. Additionally, the advantages, limitations and general background of real-time PCR technology will be reviewed in the context of the microbiology laboratory.
Collapse
Affiliation(s)
- I M Mackay
- Clinical Virology Research Unit, Sir Albert Sakzewski Virus Research Centre and Department of Paediatrics, Royal Children's Hospital, Brisbane, Queensland, Australia.
| |
Collapse
|
22
|
McKillip JL, Drake M. Real-time nucleic acid-based detection methods for pathogenic bacteria in food. J Food Prot 2004; 67:823-32. [PMID: 15083739 DOI: 10.4315/0362-028x-67.4.823] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Quality assurance in the food industry in recent years has involved the acceptance and implementation of a variety of nucleic acid-based methods for rapid and sensitive detection of food-associated pathogenic bacteria. Techniques such as polymerase chain reaction have greatly expedited the process of pathogen detection and have in some cases replaced traditional methods for bacterial enumeration in food. Conventional PCR, albeit sensitive and specific under optimized conditions, obligates the user to employ agarose gel electrophoresis as the means for endpoint analysis following sample processing. For the last few years, a variety of real-time PCR chemistries and detection instruments have appeared on the market, and many of these lend themselves to applications in food microbiology. These approaches afford a user the ability to amplify DNA or RNA, as well as detect and confirm target sequence identity in a closed-tube format with the use of a variety of fluorophores, labeled probes, or both, without the need to run gels. Such real-time chemistries also offer greater sensitivity than traditional gel visualization and can be semiquantitative and multiplexed depending on the specific experimental objectives. This review emphasizes the current systems available for real-time PCR-based pathogen detection, the basic mechanisms and requirements for each, and the prospects for development over the next few years in the food industry.
Collapse
Affiliation(s)
- John L McKillip
- Department of Biology, Ball State University, Muncie, Indiana 47306, USA
| | | |
Collapse
|
23
|
Abstract
Real-time PCR is the state-of-the-art technique to quantify nucleic acids for mutation detection, genotyping and chimerism analysis. Since its development in the 1990s, many different assay formats have been developed and the number of real-time PCR machines of different design is continuously increasing. This review provides a survey of the instruments and assay formats available and discusses the pros and cons of each. The principles of quantitative real-time PCR and melting curve analysis are explained. The quantification algorithms with internal and external standardization are derived mathematically, and potential pitfalls for the data analysis are discussed. Finally, examples of applications of this extremely versatile technique are given that demonstrate the enormous impact of real-time PCR on life sciences and molecular medicine.
Collapse
Affiliation(s)
- Jochen Wilhelm
- Institut für Pathologie, Klinikum der Justus-Liebig-Universität Giessen, Langhansstrasse 10, 35392 Giessen, Germany.
| | | |
Collapse
|
24
|
Gaunt TR, Hinks LJ, Rassoulian H, Day INM. Manual 768 or 384 well microplate gel 'dry' electrophoresis for PCR checking and SNP genotyping. Nucleic Acids Res 2003; 31:e48. [PMID: 12711693 PMCID: PMC154236 DOI: 10.1093/nar/gng048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Electrophoresis continues to be a mainstay in molecular genetic laboratories for checking, sizing and separating both PCR products, nucleic acids derived from in vivo or in vitro sources and nucleic acid-protein complexes. Many genomic and genetic applications demand high throughput, such as the checking of amplification products from many loci, from many clones, from many cell lines or from many individuals at once. These applications include microarray resource development and expression analysis, genome mapping, library and DNA bank screening, mutagenesis experiments and single nucleotide polymorphism (SNP) genotyping. PCR hardware compatible with industry standard 96 and 384 well microplates is commonplace. We have previously described a simple system for submerged horizontal 96 and 192 well polyacrylamide or agarose microplate array diagonal gel electrophoresis (MADGE) which is microplate compatible and suitable for PCR checking, SNP typing (restriction fragment length polymorphism or amplification refractory mutation system), microsatellite sizing and identification of unknown mutations. By substantial redesign of format and operations, we have derived an efficient 'dry' gel system that enables direct 96 pin manual transfer from PCR or other reactions in microplates, into 768 or 384 well gels. Combined with direct electrode contact in clamshell electrophoresis boxes which plug directly to contacts in a powered stacking frame and using 5-10 min electrophoresis times, it would be possible (given a sufficient supply of PCRs for examination) for 1 million gel tracks to be run per day for a minimal hardware investment and at minimal reagent costs. Applications of this system for PCR checking and SNP genotyping are illustrated.
Collapse
Affiliation(s)
- Tom R Gaunt
- Human Genetics Division, Duthie Building (Mp808), School of Medicine, Southampton University Hospital, Tremona Road, Southampton SO16 6YD, UK
| | | | | | | |
Collapse
|