1
|
Zubrova A, Tadrosova M, Semerad J, Cajthaml T, Pajer P, Strejcek M, Suman J, Uhlik O. Differential effect of monoterpenes and flavonoids on the transcription of aromatic ring-hydroxylating dioxygenase genes in Rhodococcus opacus C1 and Rhodococcus sp. WAY2. Microb Genom 2025; 11:001359. [PMID: 40042991 PMCID: PMC11881993 DOI: 10.1099/mgen.0.001359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/15/2025] [Indexed: 05/13/2025] Open
Abstract
Aromatic ring-hydroxylating dioxygenases (ARHDs) play a crucial role in the aerobic biodegradation of both natural and anthropogenic aromatic compounds. Although their ability to process contaminants is not entirely understood, it is thought to have evolved from the transformation of structurally similar secondary plant metabolites (SPMs). Hence, to investigate this connection, we tested a variety of SPMs from the monoterpene and flavonoid classes as carbon sources and transcriptional effectors of several phylogenetically distant ARHD genes involved in the degradation of aromatic pollutants. Specifically, we focused on bphA1, nahA1 and phtA1 in Rhodococcus opacus C1, whose genomic analysis is also presented hereinafter, and bphA1a, nahA1-bphA1b and etbA1ab in Rhodococcus sp. WAY2. Whilst induction was only observed with (R)-carvone for bphA1a and nahA1-bphA1b of strain WAY2, and with p-cymene for nahA1 and nahA1-bphA1b of strains C1 and WAY2, respectively, an extensive inhibition by flavonoids was observed for most of the genes in both strains. To the best of our knowledge, our study is the first to report the effect of flavonoids and monoterpenes on the transcription of nahA1, etbA1 and phtA1 genes. In addition, we show that, in contrast to pseudomonads, many flavonoids inhibit the transcription of the ARHD genes in rhodococci. Thus, our work provides a new perspective on flavonoids as the transcriptional effectors of ARHDs, highlighting the significant variability of these enzymes and the divergent responses that they elicit. Moreover, our results contribute to understanding the complex interactions between microorganisms and SPMs and provide insights into the molecular basis of a number of them.
Collapse
Affiliation(s)
- Andrea Zubrova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Manuela Tadrosova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Jaroslav Semerad
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomas Cajthaml
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Pajer
- Military Health Institute, Ministry of Defence of the Czech Republic, Prague, Czech Republic
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Jachym Suman
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| |
Collapse
|
2
|
Rodrigues AC, Nocchi SR, Luiz JR, do Nascimento VA, Carollo CA. Reevaluating the role of secondary metabolites in cadmium phytoremediation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:306. [PMID: 39961897 DOI: 10.1007/s10661-025-13765-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
This study investigates the role of secondary metabolites in the phytoremediation of cadmium-contaminated water using Pontederia parviflora and Salvinia auriculata. Unlike previous studies, which primarily focus on the physical removal of heavy metals by plants, our research explores the biochemical interactions between these plants secondary metabolites and cadmium ions. We employed liquid chromatography-diode array detector-mass spectrometry (LC-DAD-MS) to analyze the chemical composition of the plant extracts and assessed the impact of these metabolites on cadmium accumulation and removal efficiency. Our findings reveal that the removal of secondary metabolites from plant biomass did not significantly alter the cadmium removal efficiency, challenging the commonly held belief that these metabolites play a central role in heavy metal sequestration. Additionally, our results indicate that cadmium uptake is more closely associated with structural components of plant tissues rather than the presence of specific secondary metabolites. This study provides new insights into the mechanisms of phytoremediation and suggests that the optimization of plant selection for remediation efforts should focus on the structural properties of plant tissues rather than secondary metabolite content.
Collapse
Affiliation(s)
- Augusto César Rodrigues
- Instituto de Biociências, Universidade Federal de Mato Grosso Do Sul, Campo Grande, MS, Brazil
| | - Samara Requena Nocchi
- Instituto de Biociências, Universidade Federal de Mato Grosso Do Sul, Campo Grande, MS, Brazil
| | - Jorge Raposo Luiz
- Instituto de Química, Universidade Federal de Mato Grosso Do Sul, Campo Grande, MS, Brazil
| | | | - Carlos Alexandre Carollo
- Faculdade de Ciências Farmacêuticas, Universidade Federal de Mato Grosso Do Sul, Alimentos E NutriçãoCampo Grande, MS, Brazil.
| |
Collapse
|
3
|
Yan M, Peng T, Zhao L, Li Q, Wu R, Wang Y, Wu Y, Teng Y, Xiang X, Zeng J, Lin X. The roles of organic amendments and plant treatments in soil polychlorinated biphenyl dissipation under oxic and sequential anoxic-oxic conditions. ENVIRONMENTAL RESEARCH 2024; 262:119943. [PMID: 39276835 DOI: 10.1016/j.envres.2024.119943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Understanding polychlorinated biphenyl (PCB) degradation in sequential anaerobic-aerobic remediation is crucial for effective remediation strategies. In this study, microcosm and greenhouse experiments were conducted to dissect the effects of organic amendments (carbon-based) and plant treatments (ryegrass) on soil PCB dissipation under oxic and sequential anoxic-oxic conditions. We analyzed the soil bacterial community in greenhouse experiments using high-throughput sequencing to explore plant-pollutant-microbe interactions. Microcosm results showed that organic amendments alone did not facilitate aerobic PCB removal, but significantly accelerated PCB dechlorination under anoxic conditions altering the profiles of PCB congeners. In standard greenhouses, plant treatments substantially increased PCB dissipation to 50.8 ± 3.9%, while organic amendments aided phytoremediation by promoting plant growth, increasing PCB removal to 65.9 ± 3.2%. In sequential anaerobic-aerobic greenhouses, plant growth was inhibited by flooding treatment while flooding stress was markedly alleviated by organic amendments. Plant treatments alone during sequential treatments did not lead to PCB dissipation; however, dissipation was significantly promoted following organic amendments, achieving a removal of 41.2 ± 5.7%. This PCB removal was primarily due to anaerobic dechlorination during flooding (27.8 ± 0.5% removal), rather than from plant growth stimulation in subsequent planting phase. Co-occurrence network and functional prediction analyses revealed that organic amendments recruited specific bacterial clusters with distinct functions under different conditions, especially stimulating plant-microbe interactions and xenobiotics biodegradation pathways in planted systems. The findings provide valuable guidance for the design of practical remediation strategies under various remedy scenarios, such as in arable or paddy fields.
Collapse
Affiliation(s)
- Meng Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing, 211135, PR China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, PR China
| | - Tingting Peng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing, 211135, PR China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, PR China
| | - Ling Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing, 211135, PR China
| | - Qigang Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing, 211135, PR China
| | - Ruini Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing, 211135, PR China
| | - Yiming Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing, 211135, PR China
| | - Yucheng Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing, 211135, PR China
| | - Ying Teng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing, 211135, PR China
| | - Xingjia Xiang
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, PR China.
| | - Jun Zeng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing, 211135, PR China.
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing, 211135, PR China
| |
Collapse
|
4
|
Chakraborty S, Dwivedi S, Schuster S. Mathematical modeling predicts that endemics by generalist insects are eradicated if nearly all plants produce constitutive defense. Sci Rep 2024; 14:25771. [PMID: 39468088 PMCID: PMC11519633 DOI: 10.1038/s41598-024-74771-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Plants with constitutive defense chemicals exist widely in nature. The phenomenon is backed by abundant data from plant chemical ecology. Sufficient data are also available to conclude that plant defenses act as deterrent and repellent to attacking herbivores, particularly deleterious generalist insects. In the wild, generalist species are usually not endemic, meaning they are not restricted to certain plant species in a region. Therefore, our objective is to inspect theoretically whether evolution of chemical defenses in all plant species eradicate an endemic by any generalist species. The objective is addressed by developing deterministic ordinary differential equations under the following conditions: Plants without constitutive defenses are susceptible to oviposition by generalist insects, while they become defended against generalists by storing chemical defenses. From the models, we explicitly obtain that a generalist-free stable state is only possible if the vast majority of all plant individuals have chemical defenses. The model also allows one to predict the highest possible percentage of undefended plant individuals, which may be considered as free-riders.
Collapse
Affiliation(s)
- Suman Chakraborty
- Department of Bioinformatics, Matthias Schleiden Institute, Friedrich Schiller University Jena, Ernst-Abbe-Pl. 2, Jena, 07743, Thuringia, Germany
- International Max Planck Research School 'Chemical Communication in Ecological Systems', Jena, 07745, Thuringia, Germany
| | - Shalu Dwivedi
- Department of Bioinformatics, Matthias Schleiden Institute, Friedrich Schiller University Jena, Ernst-Abbe-Pl. 2, Jena, 07743, Thuringia, Germany
| | - Stefan Schuster
- Department of Bioinformatics, Matthias Schleiden Institute, Friedrich Schiller University Jena, Ernst-Abbe-Pl. 2, Jena, 07743, Thuringia, Germany.
| |
Collapse
|
5
|
Das S, Kwon M, Kim JY. Enhancement of specialized metabolites using CRISPR/Cas gene editing technology in medicinal plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1279738. [PMID: 38450402 PMCID: PMC10915232 DOI: 10.3389/fpls.2024.1279738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
Plants are the richest source of specialized metabolites. The specialized metabolites offer a variety of physiological benefits and many adaptive evolutionary advantages and frequently linked to plant defense mechanisms. Medicinal plants are a vital source of nutrition and active pharmaceutical agents. The production of valuable specialized metabolites and bioactive compounds has increased with the improvement of transgenic techniques like gene silencing and gene overexpression. These techniques are beneficial for decreasing production costs and increasing nutritional value. Utilizing biotechnological applications to enhance specialized metabolites in medicinal plants needs characterization and identification of genes within an elucidated pathway. The breakthrough and advancement of CRISPR/Cas-based gene editing in improving the production of specific metabolites in medicinal plants have gained significant importance in contemporary times. This article imparts a comprehensive recapitulation of the latest advancements made in the implementation of CRISPR-gene editing techniques for the purpose of augmenting specific metabolites in medicinal plants. We also provide further insights and perspectives for improving metabolic engineering scenarios in medicinal plants.
Collapse
Affiliation(s)
- Swati Das
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Moonhyuk Kwon
- Division of Life Science, Anti-aging Bio Cell Factory Regional Leading Research Center (ABC-RLRC), Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Nulla Bio R&D Center, Nulla Bio Inc., Jinju, Republic of Korea
| |
Collapse
|
6
|
Ghitti E, Rolli E, Vergani L, Borin S. Flavonoids influence key rhizocompetence traits for early root colonization and PCB degradation potential of Paraburkholderia xenovorans LB400. FRONTIERS IN PLANT SCIENCE 2024; 15:1325048. [PMID: 38371405 PMCID: PMC10869545 DOI: 10.3389/fpls.2024.1325048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024]
Abstract
Introduction Flavonoids are among the main plant root exudation components, and, in addition to their role in symbiosis, they can broadly affect the functionality of plant-associated microbes: in polluted environments, for instance, flavonoids can induce the expression of the enzymatic degradative machinery to clean-up soils from xenobiotics like polychlorinated biphenyls (PCBs). However, their involvement in root community recruitment and assembly involving non-symbiotic beneficial interactions remains understudied and may be crucial to sustain the holobiont fitness under PCB stress. Methods By using a set of model pure flavonoid molecules and a natural blend of root exudates (REs) with altered flavonoid composition produced by Arabidopsis mutant lines affected in flavonoid biosynthesis and abundance (null mutant tt4, flavonoid aglycones hyperproducer tt8, and flavonoid conjugates hyperaccumulator ttg), we investigated flavonoid contribution in stimulating rhizocompetence traits and the catabolic potential of the model bacterial strain for PCB degradation Paraburkholderia xenovorans LB400. Results Flavonoids influenced the traits involved in bacterial recruitment in the rhizoplane by improving chemotaxis and motility responses, by increasing biofilm formation and by promoting the growth and activation of the PCB-degradative pathway of strain LB400, being thus potentially exploited as carbon sources, stimulating factors and chemoattractant molecules. Indeed, early rhizoplane colonization was favored in plantlets of the tt8 Arabidopsis mutant and reduced in the ttg line. Bacterial growth was promoted by the REs of mutant lines tt4 and tt8 under control conditions and reduced upon PCB-18 stress, showing no significant differences compared with the WT and ttg, indicating that unidentified plant metabolites could be involved. PCB stress presumably altered the Arabidopsis root exudation profile, although a sudden "cry-for-help" response to recruit strain LB400 was excluded and flavonoids appeared not to be the main determinants. In the in vitro plant-microbe interaction assays, plant growth promotion and PCB resistance promoted by strain LB400 seemed to act through flavonoid-independent mechanisms without altering bacterial colonization efficiency and root adhesion pattern. Discussions This study further contributes to elucidate the vast array of functions provided by flavonoids in orchestrating the early events of PCB-degrading strain LB400 recruitment in the rhizosphere and to support the holobiont fitness by stimulating the catabolic machinery involved in xenobiotics decomposition and removal.
Collapse
Affiliation(s)
| | - Eleonora Rolli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | | | | |
Collapse
|
7
|
Singha LP, Singha KM, Pandey P. Functionally coherent transcriptional responses of Jatropha curcas and Pseudomonas fragi for rhizosphere mediated degradation of pyrene. Sci Rep 2024; 14:1014. [PMID: 38200308 PMCID: PMC10781960 DOI: 10.1038/s41598-024-51581-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/07/2024] [Indexed: 01/12/2024] Open
Abstract
Pyrene is an extremely hazardous, carcinogenic polycyclic aromatic hydrocarbon (PAH). The plant-microbe interaction between Pseudomonas fragi DBC and Jatropha curcas was employed for biodegradation of pyrene and their transcriptional responses were compared. The genome of P. fragi DBC had genes for PAH degrading enzymes i.e. dioxygenases and dehydrogenases, along with root colonization (trpD, trpG, trpE and trpF), chemotaxis (flhF and flgD), stress adaptation (gshA, nuoHBEKNMG), and detoxification (algU and yfc). The transcriptional expression of catA and yfc that respectively code for catabolic enzyme (catechol-1, 2-dioxygnase) and glutathione-s-transferase for detoxification functions were quantitatively measured by qPCR. The catA was expressed in presence of artificial root exudate with or without pyrene, and glucose confirming the non-selective approach of bacteria, as desired. Pyrene induced 100-fold increase of yfc expression than catA, while there was no expression of yfc in absence of pyrene. The transcriptome of plant roots, in presence of pyrene, with or without P. fragi DBC inoculation was analysed. The P. fragi DBC could upregulate the genes for plant growth, induced the systemic acquired resistance and also ameliorated the stress response in Jatropha roots.
Collapse
Affiliation(s)
- L Paikhomba Singha
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India
- Department of Microbiology, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India
| | - K Malabika Singha
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India.
| |
Collapse
|
8
|
Anjitha KS, Sarath NG, Sameena PP, Janeeshma E, Shackira AM, Puthur JT. Plant response to heavy metal stress toxicity: the role of metabolomics and other omics tools. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:965-982. [PMID: 37995340 DOI: 10.1071/fp23145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
Metabolomic investigations offers a significant foundation for improved comprehension of the adaptability of plants to reconfigure the key metabolic pathways and their response to changing climatic conditions. Their application to ecophysiology and ecotoxicology help to assess potential risks caused by the contaminants, their modes of action and the elucidation of metabolic pathways associated with stress responses. Heavy metal stress is one of the most significant environmental hazards affecting the physiological and biochemical processes in plants. Metabolomic tools have been widely utilised in the massive characterisation of the molecular structure of plants at various stages for understanding the diverse aspects of the cellular functioning underlying heavy metal stress-responsive mechanisms. This review emphasises on the recent progressions in metabolomics in plants subjected to heavy metal stresses. Also, it discusses the possibility of facilitating effective management strategies concerning metabolites for mitigating the negative impacts of heavy metal contaminants on the growth and productivity of plants.
Collapse
Affiliation(s)
- K S Anjitha
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus P.O., Malappuram, Kerala 673635, India
| | - Nair G Sarath
- Department of Botany, Mar Athanasius College, Kothamangalam, Ernakulam, Kerala 686666, India
| | - P P Sameena
- Department of Botany, PSMO College, Tirurangadi, Malappuram, Kerala 676306, India
| | - Edappayil Janeeshma
- Department of Botany, MES KEVEEYAM College, Valanchery, Malappuram, Kerala 676552, India
| | - A M Shackira
- Department of Botany, Sir Syed College, Kannur University, Kannur, Kerala 670142, India
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus P.O., Malappuram, Kerala 673635, India
| |
Collapse
|
9
|
Reis PCJ, Correa-Garcia S, Tremblay J, Beaulieu-Laliberté A, Muench DG, Ahad JME, Yergeau E, Comte J, Martineau C. Microbial degradation of naphthenic acids using constructed wetland treatment systems: metabolic and genomic insights for improved bioremediation of process-affected water. FEMS Microbiol Ecol 2023; 99:fiad153. [PMID: 38012121 PMCID: PMC10710301 DOI: 10.1093/femsec/fiad153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/27/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023] Open
Abstract
Naphthenic acids (NAs) are a complex mixture of organic compounds released during bitumen extraction from mined oil sands that are important contaminants of oil sands process-affected water (OSPW). NAs can be toxic to aquatic organisms and, therefore, are a main target compound for OSPW. The ability of microorganisms to degrade NAs can be exploited for bioremediation of OSPW using constructed wetland treatment systems (CWTS), which represent a possible low energy and low-cost option for scalable in situ NA removal. Recent advances in genomics and analytical chemistry have provided insights into a better understanding of the metabolic pathways and genes involved in NA degradation. Here, we discuss the ecology of microbial NA degradation with a focus on CWTS and summarize the current knowledge related to the metabolic pathways and genes used by microorganisms to degrade NAs. Evidence to date suggests that NAs are mostly degraded aerobically through ring cleavage via the beta-oxidation pathway, which can be combined with other steps such as aromatization, alpha-oxidation, omega-oxidation, or activation as coenzyme A (CoA) thioesters. Anaerobic NA degradation has also been reported via the production of benzoyl-CoA as an intermediate and/or through the involvement of methanogens or nitrate, sulfate, and iron reducers. Furthermore, we discuss how genomic, statistical, and modeling tools can assist in the development of improved bioremediation practices.
Collapse
Affiliation(s)
- Paula C J Reis
- Centre Eau Terre Environnement, Institut national de la recherche scientifique, QC, Canada
| | - Sara Correa-Garcia
- Centre Armand Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Québec city, QC G1K 9A9, Canada
| | - Julien Tremblay
- Centre Armand Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Québec city, QC G1K 9A9, Canada
- Energy, Mining and Environment, National Research Council Canada, Montréal, QC H4P 2R2, Canada
| | - Aurélie Beaulieu-Laliberté
- Centre Eau Terre Environnement, Institut national de la recherche scientifique, QC, Canada
- Groupe de recherche interuniversitaire en limnologie (GRIL), Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Douglas G Muench
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Jason M E Ahad
- Geological Survey of Canada, Natural Resources Canada, Québec city, QC G1K 9A9, Canada
| | - Etienne Yergeau
- Energy, Mining and Environment, National Research Council Canada, Montréal, QC H4P 2R2, Canada
| | - Jérôme Comte
- Centre Eau Terre Environnement, Institut national de la recherche scientifique, QC, Canada
- Groupe de recherche interuniversitaire en limnologie (GRIL), Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Christine Martineau
- Laurentian Forestry Centre, Natural Resources Canada, Québec city, QC G1V 4C7, Canada
| |
Collapse
|
10
|
Zhao X, Li J, Zhang D, Jiang L, Wang Y, Hu B, Wang S, Dai Y, Luo C, Zhang G. Unveiling the novel role of ryegrass rhizospheric metabolites in benzo[a]pyrene biodegradation. ENVIRONMENT INTERNATIONAL 2023; 180:108215. [PMID: 37741005 DOI: 10.1016/j.envint.2023.108215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
Rhizoremediation is a promising remediation technology for the removal of soil persistent organic pollutants (POPs), especially benzo[a]pyrene (BaP). However, our understanding of the associations among rhizospheric soil metabolites, functional microorganisms, and POPs degradation in different plant growth stages is limited. We combined stable-isotope probing (SIP), high-throughput sequencing, and metabolomics to analyze changes in rhizospheric soil metabolites, functional microbes, and BaP biodegradation in the early growth stages (tillering, jointing) and later stage (booting) of ryegrass. Microbial community structures differed significantly among growth stages. Metabolisms such as benzenoids and carboxylic acids tended to be enriched in the early growth stage, while lipids and organic heterocyclic compounds dominated in the later stage. From SIP, eight BaP-degrading microbes were identified, and most of which such as Ilumatobacter and Singulisphaera were first linked with BaP biodegradation. Notably, the relationship between the differential metabolites and BaP degradation efficiency further suggested that BaP-degrading microbes might metabolize BaP directly to produce benzenoid metabolites (3-hydroxybenzo[a]pyrene), or utilize benzenoids (phyllodulcin) to stimulate the co-metabolism of BaP in early growth stage; some lipids and organic acids, e.g. 1-aminocyclopropane-1-carboxylic acid, might provide nutrients for the degraders to promote BaP metabolism in later stage. Accordingly, we determined that certain rhizospheric metabolites might regulate the rhizospheric microbial communities at different growth stages, and shift the composition and diversity of BaP-degrading bacteria, thereby enhancing in situ BaP degradation. Our study sheds light on POPs rhizoremediation mechanisms in petroleum-contaminated soils.
Collapse
Affiliation(s)
- Xuan Zhao
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; College of Architecture and Civil Engineering, Kunming University, Kunming 650214, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Yujie Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Beibei Hu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuang Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yeliang Dai
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
11
|
Okada K, Xu W, Mishina K, Oono Y, Kato T, Namai K, Komatsuda T. Genetic resistance in barley against Japanese soil-borne wheat mosaic virus functions in the roots. FRONTIERS IN PLANT SCIENCE 2023; 14:1149752. [PMID: 36968424 PMCID: PMC10036763 DOI: 10.3389/fpls.2023.1149752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Infection by the Japanese soil-borne wheat mosaic virus (JSBWMV) can lead to substantial losses in the grain yield of barley and wheat crops. While genetically based resistance to this virus has been documented, its mechanistic basis remains obscure. In this study, the deployment of a quantitative PCR assay showed that the resistance acts directly against the virus rather than by inhibiting the colonization of the roots by the virus' fungal vector Polymyxa graminis. In the susceptible barley cultivar (cv.) Tochinoibuki, the JSBWMV titre was maintained at a high level in the roots during the period December-April, and the virus was translocated from the root to the leaf from January onwards. In contrast, in the roots of both cv. Sukai Golden and cv. Haruna Nijo, the titre was retained at a low level, and translocation of the virus to the shoot was strongly suppressed throughout the host's entire life cycle. The roots of wild barley (Hordeum vulgare ssp. spontaneum) accession H602 responded in the early stages of infection similarly to those of the resistant cultivated forms, but the host was unable to suppress the translocation of the virus to the shoot from March onwards. The virus titre in the root was presumed to have been restricted by the action of the gene product of Jmv1 (on chromosome 2H), while the stochastic nature of the infection was suppressed by the action of that of Jmv2 (on chromosome 3H), a gene harbored by cv. Sukai Golden but not by either cv. Haruna Nijo or accession H602.
Collapse
Affiliation(s)
- Kaori Okada
- Tochigi Prefectural Agricultural Experiment Station, Utsunomiya, Tochigi, Japan
| | - Wenjing Xu
- Crop Research Institute, Shandong Academy of Agricultural Sciences (SAAS), Ji’nan, Shandong, China
| | - Kohei Mishina
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Kan-non-dai, Ibaraki, Japan
| | - Youko Oono
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Kan-non-dai, Ibaraki, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Tsuneo Kato
- Tochigi Prefectural Agricultural Experiment Station, Utsunomiya, Tochigi, Japan
| | - Kiyoshi Namai
- Tochigi Prefectural Agricultural Experiment Station, Utsunomiya, Tochigi, Japan
| | - Takao Komatsuda
- Crop Research Institute, Shandong Academy of Agricultural Sciences (SAAS), Ji’nan, Shandong, China
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Kan-non-dai, Ibaraki, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| |
Collapse
|
12
|
Rao MRP, Ghadge I, Kulkarni S, R. Madgulkar A. Importance of Plant Secondary Metabolites in Modern Therapy. REFERENCE SERIES IN PHYTOCHEMISTRY 2023:1-31. [DOI: 10.1007/978-3-031-30037-0_5-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 01/05/2025]
|
13
|
Xiang L, Harindintwali JD, Wang F, Redmile-Gordon M, Chang SX, Fu Y, He C, Muhoza B, Brahushi F, Bolan N, Jiang X, Ok YS, Rinklebe J, Schaeffer A, Zhu YG, Tiedje JM, Xing B. Integrating Biochar, Bacteria, and Plants for Sustainable Remediation of Soils Contaminated with Organic Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16546-16566. [PMID: 36301703 PMCID: PMC9730858 DOI: 10.1021/acs.est.2c02976] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 05/06/2023]
Abstract
The contamination of soil with organic pollutants has been accelerated by agricultural and industrial development and poses a major threat to global ecosystems and human health. Various chemical and physical techniques have been developed to remediate soils contaminated with organic pollutants, but challenges related to cost, efficacy, and toxic byproducts often limit their sustainability. Fortunately, phytoremediation, achieved through the use of plants and associated microbiomes, has shown great promise for tackling environmental pollution; this technology has been tested both in the laboratory and in the field. Plant-microbe interactions further promote the efficacy of phytoremediation, with plant growth-promoting bacteria (PGPB) often used to assist the remediation of organic pollutants. However, the efficiency of microbe-assisted phytoremediation can be impeded by (i) high concentrations of secondary toxins, (ii) the absence of a suitable sink for these toxins, (iii) nutrient limitations, (iv) the lack of continued release of microbial inocula, and (v) the lack of shelter or porous habitats for planktonic organisms. In this regard, biochar affords unparalleled positive attributes that make it a suitable bacterial carrier and soil health enhancer. We propose that several barriers can be overcome by integrating plants, PGPB, and biochar for the remediation of organic pollutants in soil. Here, we explore the mechanisms by which biochar and PGPB can assist plants in the remediation of organic pollutants in soils, and thereby improve soil health. We analyze the cost-effectiveness, feasibility, life cycle, and practicality of this integration for sustainable restoration and management of soil.
Collapse
Affiliation(s)
- Leilei Xiang
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jean Damascene Harindintwali
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Institute
for Environmental Research, RWTH Aachen
University, 52074 Aachen, Germany
| | - Marc Redmile-Gordon
- Department
of Environmental Horticulture, Royal Horticultural
Society, Wisley, Surrey GU23 6QB, U.K.
| | - Scott X. Chang
- Department
of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Yuhao Fu
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao He
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- Zhejiang University, Hangzhou 310058, China
| | - Bertrand Muhoza
- College
of Food Science, Northeast Agricultural
University, Harbin, Heilongjiang 150030, China
| | - Ferdi Brahushi
- Department
of Agroenvironment and Ecology, Agricultural
University of Tirana, Tirana 1029, Albania
| | - Nanthi Bolan
- School of
Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6001, Australia
| | - Xin Jiang
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Sik Ok
- Korea
Biochar Research Center, APRU Sustainable Waste Management Program
& Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic
of Korea
| | - Jörg Rinklebe
- Department
of Soil and Groundwater Management, Bergische
Universität, 42285 Wuppertal, Germany
| | - Andreas Schaeffer
- Institute
for Environmental Research, RWTH Aachen
University, 52074 Aachen, Germany
- School
of the Environment, State Key Laboratory of Pollution Control and
Resource Reuse, Nanjing University, 210023 Nanjing, China
- Key
Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Chongqing University, 400045 Chongqing, China
| | - Yong-guan Zhu
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Key
Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State
Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
| | - James M. Tiedje
- Center
for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, United States
| | - Baoshan Xing
- Stockbridge
School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
14
|
Cao S, Shi L, Shen Y, He L, Meng X. Ecological roles of secondary metabolites of Saposhnikovia divaricata in adaptation to drought stress. PeerJ 2022; 10:e14336. [PMID: 36353606 PMCID: PMC9639429 DOI: 10.7717/peerj.14336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Saposhnikovia divaricata is a traditional Chinese herb that mainly grows in arid grasslands and strongly adapts to various stresses. Drought is not only a major abiotic stress factor but also a typical feature conducive to producing high-quality medicinal material. The present study investigated by treating S. divaricata plants with polyethylene glycol (PEG-6000). Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) identified 146 compounds from the roots of S. divaricata, among which seven primary metabolites and 28 secondary metabolites showed significant changes after drought treatment. UV-Vis spectrophotometer detected the activity of antioxidant enzymes and the content of superoxide anion (O2 -.) and malondialdehyde (MDA). The differential primary metabolites revealed that drought promotes glycolysis, reducing primary metabolism and enhancing secondary metabolism. Meanwhile, the differential secondary metabolites showed an increase in the content of compounds upstream of the secondary metabolic pathway, and other glycosides and increased that of the corresponding aglycones. The activities of antioxidant enzymes and the content of O2 -. and MDA shown different changes duing the drought treatment. These observations indicate that drought promotes the biosynthesis and transformation of the secondary metabolites and activity of antioxidant enzymes, improving plant adaptability. The present study also analyzed a few primary and secondary metabolites of S. divaricata under different degrees and durations of drought and speculated on the metabolic pathways in an arid environment. The findings indicate the biological nature, diversity, and complexity of secondary metabolites and the mechanisms of plant adaptation to ecological stress.
Collapse
Affiliation(s)
- Sisi Cao
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Medical College, Harbin Vocational & Technical College, Harbin, Heilongjiang, China
| | - Lei Shi
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Ying Shen
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Luwen He
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiangcai Meng
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
15
|
Martínez BCS, Benavides LM, Santoyo G, Sánchez-Yáñez JM. Biorecovery of Agricultural Soil Impacted by Waste Motor Oil with Phaseolus vulgaris and Xanthobacter autotrophicus. PLANTS (BASEL, SWITZERLAND) 2022; 11:1419. [PMID: 35684191 PMCID: PMC9182674 DOI: 10.3390/plants11111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/30/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Agricultural soil contamination by waste motor oil (WMO) is a worldwide environmental problem. The phytotoxicity of WMO hydrocarbons limits agricultural production; therefore, Mexican standard NOM-138-SEMARNAT/SSA1-2012 (NOM-138) establishes a maximum permissible limit of 4400 ppm for hydrocarbons in soil. The objectives of this study are to (a) biostimulate, (b) bioaugment, and (c) phytoremediate soil impacted by 60,000 ppm of WMO, to decrease it to a concentration lower than the maximum allowed by NOM-138. Soil contaminated with WMO was biostimulated, bioaugmented, and phytoremediated, and the response variables were WMO concentration, germination, phenology, and biomass of Phaseolus vulgaris. The experimental data were validated by Tukey HSD ANOVA. The maximum decrease in WMO was recorded in the soil biostimulated, bioaugmented, and phytoremediated by P. vulgaris from 60,000 ppm to 190 ppm, which was considerably lower than the maximum allowable limit of 4400 ppm of NOM-138 after five months. Biostimulation of WMO-impacted soil by detergent, mineral solution and bioaugmentation with Xanthobacter autotrophicus accelerated the reduction in WMO concentration, which allowed phytoremediation with P. vulgaris to oxidize aromatic hydrocarbons and recover WMO-impacted agricultural soil faster than other bioremediation strategies.
Collapse
|
16
|
Pongpiachan S. Discrimination of the geographical origins of rice based on polycyclic aromatic hydrocarbons. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:1619-1632. [PMID: 34287730 DOI: 10.1007/s10653-021-01039-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Over the past few decades, several techniques have been applied to identify the geographical origins of rice products. In this study, the chemical characterization of polycyclic aromatic hydrocarbons (PAHs) was carefully conducted by analysing PAHs in rice samples collected from private sector planting areas located in Bali and Yogyakarta, Indonesia (i.e. ID; n = 20), west sides of Malaysia (i.e. MY; n = 20), Mandalay, Legend, Myingyan, Myanmar (i.e. MM; n = 20), northern parts of Lao PDR (i.e. LA; n = 20), central parts of Cambodia (i.e. KH; n = 20), northern parts of Vietnam (i.e. VN; n = 20), and Thailand (i.e. TH; n = 22). Percentage contributions show the exceedingly high abundance of 5-6 ring PAH congeners in rice samples collected from Indonesia, Malaysia, Thailand, Myanmar, Cambodia and Vietnam. Lao PDR rice samples were overwhelmed by 4-ring PAH congeners with the percentage contribution of 46% followed by 5-6 ring PAHs (33%) and 3-ring PAHs (21%). In addition, hierarchical cluster analysis and principal component analysis can successfully categorize some rice samples based on its geographical origins.
Collapse
Affiliation(s)
- Siwatt Pongpiachan
- NIDA Center for Research & Development of Disaster Prevention & Management, School of Social and Environmental Development, National Institute of Development Administration (NIDA), 148 Moo 3, Sereethai Road, Klong-Chan, Bangkapi, 10240, Bangkok, Thailand.
| |
Collapse
|
17
|
Zhao X, Li J, Zhang D, Huang Z, Luo C, Jiang L, Huang D, Zhang G. Mechanism of salicylic acid in promoting the rhizosphere benzo[a]pyrene biodegradation as revealed by DNA-stable isotope probing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152202. [PMID: 34890682 DOI: 10.1016/j.scitotenv.2021.152202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Benzo[a]pyrene (BaP) is a typical high-molecular-weight PAH with carcinogenicity. Rhizoremediation is commonly applied to remove soil BaP, but its mechanism remains unclear. The role of inducers in root exudates in BaP rhizoremediation is rarely studied. Here, to address this problem, we firstly investigated the effect of the inducer salicylic acid on BaP rhizoremediation, rhizosphere BaP degraders, and PAH degradation-related genes by combining DNA-stable-isotope-probing, high-throughput sequencing, and gene function prediction. BaP removal in the rhizosphere was significantly increased by stimulation with salicylic acid, and the rhizosphere BaP-degrading microbial community structure was significantly changed. Fourteen microbes were responsible for the BaP metabolism, and most degraders, e.g. Aeromicrobium and Myceligenerans, were firstly linked with BaP biodegradation. The enrichment of the PAH-ring hydroxylating dioxygenase (PAH-RHD) gene in the heavy fractions of all 13C-treatments further indicated their involvement in the BaP biodegradation, which was also confirmed by the enrichment of dominant PAH degradation-related genes (e.g. PAH dioxygenase and protocatechuate 3,4-dioxygenase genes) based on gene function prediction. Overall, our study demonstrates that salicylic acid can enhance the rhizosphere BaP biodegradation by altering the community structure of rhizosphere BaP-degrading bacteria and the abundance of PAH degradation-related genes, which provides new insights into BaP rhizoremediation mechanisms in petroleum-contaminated sites.
Collapse
Affiliation(s)
- Xuan Zhao
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Zilin Huang
- Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China.
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Deyin Huang
- Guangdong Institute of Eco-environmental and Soil sciences, Guangdong Academy of Sciences, Guangzhou 510650, Guangdong, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
18
|
Rane NR, Tapase S, Kanojia A, Watharkar A, Salama ES, Jang M, Kumar Yadav K, Amin MA, Cabral-Pinto MMS, Jadhav JP, Jeon BH. Molecular insights into plant-microbe interactions for sustainable remediation of contaminated environment. BIORESOURCE TECHNOLOGY 2022; 344:126246. [PMID: 34743992 DOI: 10.1016/j.biortech.2021.126246] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The widespread distribution of organic and inorganic pollutants in water resources have increased due to rapid industrialization. Rhizospheric zone-associated bacteria along with endophytic bacteria show a significant role in remediation of various pollutants. Metaomics technologies are gaining an advantage over traditional methods because of their capability to obtain detailed information on exclusive microbial communities in rhizosphere of the plant including the unculturable microorganisms. Transcriptomics, proteomics, and metabolomics are functional methodologies that help to reveal the mechanisms of plant-microbe interactions and their synergistic roles in remediation of pollutants. Intensive analysis of metaomics data can be useful to understand the interrelationships of various metabolic activities between plants and microbes. This review comprehensively discusses recent advances in omics applications made hitherto to understand the mechanisms of plant-microbe interactions during phytoremediation. It extends the delivery of the insightful information on plant-microbiomes communications with an emphasis on their genetic, biochemical, physical, metabolic, and environmental interactions.
Collapse
Affiliation(s)
- Niraj R Rane
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Savita Tapase
- Department of Biotechnology, Shivaji University, Kolhapur 416004, India
| | - Aakansha Kanojia
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Anuprita Watharkar
- Amity Institute of Biotechnology, Amity University, Bhatan, Panvel, Mumbai, India
| | - El-Sayed Salama
- Occupational and Environmental Health Department, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, People's Republic of China
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Marina M S Cabral-Pinto
- Geobiotec Research Centre, Department of Geoscience, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jyoti P Jadhav
- Department of Biochemistry, Shivaji University, Kolhapur 416004, India
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
19
|
Mierzejewska E, Urbaniak M, Zagibajło K, Vangronsveld J, Thijs S. The Effect of Syringic Acid and Phenoxy Herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) on Soil, Rhizosphere, and Plant Endosphere Microbiome. FRONTIERS IN PLANT SCIENCE 2022; 13:882228. [PMID: 35712561 PMCID: PMC9195007 DOI: 10.3389/fpls.2022.882228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/02/2022] [Indexed: 05/07/2023]
Abstract
The integration of phytoremediation and biostimulation can improve pollutant removal from the environment. Plant secondary metabolites (PSMs), which are structurally related to xenobiotics, can stimulate the presence of microbial community members, exhibiting specialized functions toward detoxifying, and thus mitigating soil toxicity. In this study, we evaluated the effects of enrichment of 4-chloro-2-methylphenoxyacetic acid (MCPA) contaminated soil (unplanted and zucchini-planted) with syringic acid (SA) on the bacterial community structure in soil, the rhizosphere, and zucchini endosphere. Additionally, we measured the concentration of MCPA in soil and fresh biomass of zucchini. The diversity of bacterial communities differed significantly between the studied compartments (i.e., unplanted soil, rhizospheric soil, and plant endosphere: roots or leaves) and between used treatments (MCPA or/and SA application). The highest diversity indices were observed for unplanted soil and rhizosphere. Although the lowest diversity was observed among leaf endophytes, this community was significantly affected by MCPA or SA: the compounds applied separately favored the growth of Actinobacteria (especially Pseudarthrobacter), while their simultaneous addition promoted the growth of Firmicutes (especially Psychrobacillus). The application of MCPA + SA together lead also to enhanced growth of Pseudomonas, Burkholderia, Sphingomonas, and Pandoraea in the rhizosphere, while SA increased the occurrence of Pseudomonas in leaves. In addition, SA appeared to have a positive influence on the degradative potential of the bacterial communities against MCPA: its addition, followed by zucchini planting, significantly increased the removal of the herbicide (50%) from the soil without affecting, neither positively nor negatively, the plant growth.
Collapse
Affiliation(s)
- Elżbieta Mierzejewska
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- *Correspondence: Elżbieta Mierzejewska,
| | - Magdalena Urbaniak
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Katarzyna Zagibajło
- Food Safety Laboratory, Research Institute of Horticulture, Skierniewice, Poland
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Sofie Thijs
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| |
Collapse
|
20
|
Chalkos D, Karamanoli K, Vokou D. Monoterpene Enrichments Have Positive Impacts on Soil Bacterial Communities and the Potential of Application in Bioremediation. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112536. [PMID: 34834898 PMCID: PMC8623845 DOI: 10.3390/plants10112536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/06/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
We study here how soil bacterial communities of different ecosystems respond to disturbances caused by enrichments with monoterpenes that are common essential oil constituents. We used fenchone, 1,8-cineol and α-pinene, and soils from phrygana, a typical Mediterranean-type ecosystem where aromatic plants abound, and from another five ecosystem types, focusing on culturable bacteria. Patterns of response were common to all ecosystems, but responses themselves were not always as pronounced in phrygana as in the other ecosystems, suggesting that these enrichments are less of a disturbance there. More specifically, soil respiration and abundance of the bacterial communities increased, becoming from below two up to 16 times as high as in control soils (for both attributes) and remained at high levels as long as these compounds were present. Bacteria that can utilize these three compounds as substrates of growth became dominant members of the bacterial communities in the enriched soils. All changes were readily reversible once monoterpene addition stopped. Bacteria with the ability to utilize these monoterpenes as carbon sources were found in soils from all ecosystems, 15 strains in total, suggesting a rather universal presence; of these, six could also utilize the organic pollutants toluene or p-xylene. These results suggest also potential novel applications of monoterpenes in combating soil pollution.
Collapse
Affiliation(s)
- Dimitris Chalkos
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Katerina Karamanoli
- Laboratory of Agricultural Chemistry, School of Agriculture, Faculty of Agriculture Forestry and Natural Environment, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Despoina Vokou
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| |
Collapse
|
21
|
Suman J, Strejcek M, Zubrova A, Capek J, Wald J, Michalikova K, Hradilova M, Sredlova K, Semerad J, Cajthaml T, Uhlik O. Predominant Biphenyl Dioxygenase From Legacy Polychlorinated Biphenyl (PCB)-Contaminated Soil Is a Part of Unusual Gene Cluster and Transforms Flavone and Flavanone. Front Microbiol 2021; 12:644708. [PMID: 34721309 PMCID: PMC8552027 DOI: 10.3389/fmicb.2021.644708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, the diversity of bphA genes was assessed in a 13C-enriched metagenome upon stable isotope probing (SIP) of microbial populations in legacy PCB-contaminated soil with 13C-biphenyl (BP). In total, 13 bphA sequence variants (SVs) were identified in the final amplicon dataset. Of these, one SV comprised 59% of all sequences, and when it was translated into a protein sequence, it exhibited 87, 77.4, and 76.7% identity to its homologs from Pseudomonas furukawaii KF707, Cupriavidus sp. WS, and Pseudomonas alcaliphila B-367, respectively. This same BphA sequence also contained unusual amino acid residues, Alanine, Valine, and Serine in region III, which had been reported to be crucial for the substrate specificity of the corresponding biphenyl dioxygenase (BPDO), and was accordingly designated BphA_AVS. The DNA locus of 18 kbp containing the BphA_AVS-coding sequence retrieved from the metagenome was comprised of 16 ORFs and was most likely borne by Paraburkholderia sp. The BPDO corresponding to bphAE_AVS was cloned and heterologously expressed in E. coli, and its substrate specificity toward PCBs and a spectrum of flavonoids was assessed. Although depleting a rather narrow spectrum of PCB congeners, the efficient transformation of flavone and flavanone was demonstrated through dihydroxylation of the B-ring of the molecules. The homology-based functional assignment of the putative proteins encoded by the rest of ORFs in the AVS region suggests their potential involvement in the transformation of aromatic compounds, such as flavonoids. In conclusion, this study contributes to the body of information on the involvement of soil-borne BPDOs in the metabolism of flavonoid compounds, and our paper provides a more advanced context for understanding the interactions between plants, microbes and anthropogenic compounds in the soil.
Collapse
Affiliation(s)
- Jachym Suman
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Andrea Zubrova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Jan Capek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Jiri Wald
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Klara Michalikova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Miluse Hradilova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Kamila Sredlova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Jaroslav Semerad
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia.,Faculty of Science, Institute for Environmental Studies, Charles University, Prague, Czechia
| | - Tomas Cajthaml
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia.,Faculty of Science, Institute for Environmental Studies, Charles University, Prague, Czechia
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| |
Collapse
|
22
|
Solá MZS, Prado C, Rosa M, Aráoz MVC, Benimeli CS, Polti MA, Alvarez A. Assessment of the Streptomyces-plant system to mitigate the impact of Cr(VI) and lindane in experimental soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51217-51231. [PMID: 33982258 DOI: 10.1007/s11356-021-14295-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Phytoremediation techniques have been proposed as ecological methods to clean up contaminated sites. This study is aimed to evaluate the effect of the Streptomyces sp. Waksman & Henrici and Zea mays L. plant system on the dissipation of Cr(VI) and/or lindane from a co-contaminated soil, being 2 mg kg-1 of lindane and 150 mg kg-1 of chromium used. Lindane dissipation was improved in the presence of plant-microorganism association; however, Cr(VI) removal was higher when plants or the microorganism were separately. In co-contaminated systems, chromium content in plant tissues was lower than metal content in plants grown only with Cr(VI), suggesting that lindane could interfere with metal accumulation in the plant. The high malondialdehyde (MDA) concentration detected in non-inoculated plants grown with chromium could be consequence of high metal concentration in plant tissues. Interestingly, plants inoculated with Streptomyces sp. Z38 growing with Cr(VI) showed decrease in MDA concentration, indicating that the bacterium could activate defense mechanisms in the plant. Also, inoculated plants showed the highest value of superoxide dismutase activity. Lettuce plants used as bioindicators grew better in biologically treated soils compared with lettuce grown on non-treated soil. The results presented in this work provide the basis that will allow the optimization of future trials on a larger scale.
Collapse
Affiliation(s)
- María Zoleica Simón Solá
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
| | - Carolina Prado
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV), CONICET-UNT, Miguel Lillo 205, 4000, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Mariana Rosa
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV), CONICET-UNT, Miguel Lillo 205, 4000, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, 4000, Tucumán, Argentina
| | - María Victoria Coll Aráoz
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Claudia Susana Benimeli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Belgrano 300, 4700, Catamarca, Argentina
| | - Marta Alejandra Polti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Analia Alvarez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina.
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, 4000, Tucumán, Argentina.
| |
Collapse
|
23
|
Hassan M, Israr M, Mansoor S, Hussain SA, Basheer F, Azizullah A, Ur Rehman S. Acclimation of cadmium-induced genotoxicity and oxidative stress in mung bean seedlings by priming effect of phytohormones and proline. PLoS One 2021; 16:e0257924. [PMID: 34587203 PMCID: PMC8480768 DOI: 10.1371/journal.pone.0257924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/13/2021] [Indexed: 01/24/2023] Open
Abstract
In this research, eight local mung bean (Vigna radiata) varieties were analyzed for their performance against two levels of CdCl2 solution (0.3 and 0.5 mM) alone and priming with gibberellic acid (GA3) (100 μM), salicylic acid (SA) (50 μM) and proline (5 mM) solution prior to Cd exposure. Mung bean seedlings were analyzed for disturbance in cytological, morphological, biochemical and enzymatic parameters under cadmium stress. For cytological studies, 48 h grown mung bean seedlings root tips were used to prepare slides and studied for percent mitotic index (MI%) and to calculate percent C-mitosis, laggard, sticky and fragmented chromosomes, pictures were captured by a Nikon camera (DS-Fi 1 Japan) attached with a microscope. One-week grown mung seedlings were studied for growth traits, malondialdehyde (MDA), protein, proline and antioxidant enzymes. ANOVA and DMR test of this research revealed that all the tested mung bean varieties and treatments were significantly different regarding mitotic index and number of chromosomal aberrations. Both the Cd treatments exhibited increased total chromosomal aberrations with different types and a maximum decrease in MI%. In pretreated samples, GA3, SA and proline serve as mitigating agents that reduce mutagenic effects of Cd in mung bean by increasing MI% and decreasing chromosomal aberrations as compared to non-pretreated samples. Both the Cd treatments showed a decrease in all growth traits. Total proteins were also found to be significantly reduced in a dose-dependent manner in all genotypes. Cd treatment increased the activities of all antioxidant enzymes tested. Cd caused oxidative damage as indicated by elevated levels of MDA content in treated samples in comparison to control. Proline content levels were also high in Cd treated seedlings indicating stress. Results demonstrated that pretreatment with phytohormones and proline before Cd were found to improve all morphological parameters, by altering antioxidant enzymes activities along with a decrease in MDA and proline contents as well. It was further noticed that the performance of GA3 was better at 0.3 mM Cd treatment while SA was found to be a good mitigating agent at 0.5 mM Cd stress in all tested mung bean varieties. This research concluded less deleterious effects of Cd on AZRI-2006 while more sensitivity to NM-51 towards Cd. Priming with phytohormones and proline is a user-friendly, economical, and simple mitigation strategy to reduce Cd toxicity in plants and get better yield from contaminated lands.
Collapse
Affiliation(s)
- Meher Hassan
- Department of Genetics, University of Karachi, Sindh, Pakistan
| | - Muhammad Israr
- Department of Biology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, PR China
| | - Simeen Mansoor
- Department of Genetics, University of Karachi, Sindh, Pakistan
| | - Syeda Amna Hussain
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Faiza Basheer
- Department of Zoology, Women University Mardan, Mardan, Khyber Pakhtunkhwa Pakistan
| | - Azizullah Azizullah
- Department of Biology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Shafiq Ur Rehman
- Department of Biology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
24
|
Pu ZJ, Zhang S, Tang YP, Shi XQ, Tao HJ, Yan H, Chen JQ, Yue SJ, Chen YY, Zhu ZH, Zhou GS, Su SL, Duan JA. Study on changes in pigment composition during the blooming period of safflower based on plant metabolomics and semi-quantitative analysis. J Sep Sci 2021; 44:4082-4091. [PMID: 34514725 DOI: 10.1002/jssc.202100439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 11/11/2022]
Abstract
Red and yellow pigments are the major ingredients of safflower, often used to color food and cosmetics. Carthamin was the main component of red pigment and hydroxysafflor yellow A and anhydrosafflower yellow B were representative components of yellow pigment. Plant metabolomics and semi-quantitative analysis were used to analyze the changes of pigment composition during the blooming period, especially these characteristic components. Carthamin, hydroxysafflor yellow A, anhydrosafflower yellow B, and other components were screened out as differential metabolites based on plant metabolomics. Then semi-quantitative analysis was used to quantify these three representative components of pigments. Experimental results showed that the content of pigments has dynamic changes along with flowering, in the early blooming period, yellow pigment accumulated much and red pigment was low in content. In the middle period, the accumulation rate of the yellow pigment slowed down and content was stabilized. In the next step, the content of yellow pigments gradually decreased, and the content of red pigments gradually increased. Later, the level of yellow pigment decreased significantly, and the accumulation rate of red pigment increased significantly. Last, the appearance color of safflower was red, with yellow parts barely visible, and accumulation of red pigment was the highest and of the yellow pigment was the lowest in content.
Collapse
Affiliation(s)
- Zong-Jin Pu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, P. R. China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Shuo Zhang
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, P. R. China
| | - Xu-Qin Shi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Hui-Juan Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Jia-Qian Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, P. R. China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, P. R. China
| | - Zhen-Hua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Gui-Sheng Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Shu-Lan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| |
Collapse
|
25
|
Movahedi A, Almasi Zadeh Yaghuti A, Wei H, Rutland P, Sun W, Mousavi M, Li D, Zhuge Q. Plant Secondary Metabolites with an Overview of Populus. Int J Mol Sci 2021; 22:ijms22136890. [PMID: 34206964 PMCID: PMC8268465 DOI: 10.3390/ijms22136890] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022] Open
Abstract
Populus trees meet continuous difficulties from the environment through their life cycle. To warrant their durability and generation, Populus trees exhibit various types of defenses, including the production of secondary metabolites. Syntheses derived from the shikimate-phenylpropanoid pathway are a varied and plentiful class of secondary metabolites manufactured in Populus. Amongst other main classes of secondary metabolites in Populus are fatty acid and terpenoid-derivatives. Many of the secondary metabolites made by Populus trees have been functionally described. Any others have been associated with particular ecological or biological processes, such as resistance against pests and microbial pathogens or acclimatization to abiotic stresses. Still, the functions of many Populus secondary metabolites are incompletely understood. Furthermore, many secondary metabolites have therapeutic effects, leading to more studies of secondary metabolites and their biosynthesis. This paper reviews the biosynthetic pathways and therapeutic impacts of secondary metabolites in Populus using a genomics approach. Compared with bacteria, fewer known pathways produce secondary metabolites in Populus despite P. trichocarpa having had its genome sequenced.
Collapse
Affiliation(s)
- Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.A.Z.Y.); (H.W.); (W.S.); (M.M.); (D.L.); (Q.Z.)
- Correspondence: ; Fax: +86-25-8542-8701
| | - Amir Almasi Zadeh Yaghuti
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.A.Z.Y.); (H.W.); (W.S.); (M.M.); (D.L.); (Q.Z.)
| | - Hui Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.A.Z.Y.); (H.W.); (W.S.); (M.M.); (D.L.); (Q.Z.)
| | - Paul Rutland
- Clinical and Molecular Genetics Units, Institute of Child Health, London WC1N 1EH, UK;
| | - Weibo Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.A.Z.Y.); (H.W.); (W.S.); (M.M.); (D.L.); (Q.Z.)
| | - Mohaddeseh Mousavi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.A.Z.Y.); (H.W.); (W.S.); (M.M.); (D.L.); (Q.Z.)
| | - Dawei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.A.Z.Y.); (H.W.); (W.S.); (M.M.); (D.L.); (Q.Z.)
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.A.Z.Y.); (H.W.); (W.S.); (M.M.); (D.L.); (Q.Z.)
| |
Collapse
|
26
|
De Vargas JPR, Bastos MC, Al Badany M, Gonzalez R, Wolff D, Santos DRD, Labanowski J. Pharmaceutical compound removal efficiency by a small constructed wetland located in south Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:30955-30974. [PMID: 33594565 DOI: 10.1007/s11356-021-12845-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
The fate of pharmaceuticals during the treatment of effluents is of major concern since they are not completely degraded and because of their persistence and mobility in environment. Indeed, even at low concentrations, they represent a risk to aquatic life and human health. In this work, fourteen pharmaceuticals were monitored in a constructed wetland wastewater treatment plants (WWTP) assessed in both influent and effluent samples. The basic water quality parameters were evaluated, and the removal efficiency of pharmaceutical, potential for bioaccumulation, and the impact of WWTP were assessed using Polar Organic Chemical Integrative Sampler (POCIS) and biofilms. The pharmaceutical compounds were quantified by High Performance Liquid chromatography coupled to mass spectrometry. The sampling campaign was carried out during winter (July/2018) and summer (January/2019). The WWTP performed well regarding the removal of TSS, COD, and BOD5 and succeeded to eliminate a significant part of the organic and inorganic pollution present in domestic wastewater but has low efficiency regarding the removal of pharmaceutical compounds. Biofilms were shown to interact with pharmaceuticals and were reported to play a role in their capture from water. The antibiotics were reported to display a high risk for aquatic organisms.
Collapse
Affiliation(s)
- Jocelina Paranhos Rosa De Vargas
- Centro de Ciências Rurais, Departamento de Solos, Universidade Federal de Santa Maria, Av. Roraima n° 1000, Cidade Universitária, Bairro Camobi, Santa Maria, Rio Grande do Sul, 97105-900, Brazil.
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France.
| | - Marília Camotti Bastos
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France
| | - Maha Al Badany
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France
| | - Rolando Gonzalez
- Departamento de Engenharia Ambiental, Centro de Tecnologia, Universidade Federal de Santa Maria, Av. Roraima n° 1000, Cidade Universitária, Bairro Camobi, Santa Maria, 97105-900, Rio Grande do Sul, Brazil
| | - Delmira Wolff
- Departamento de Engenharia Ambiental, Centro de Tecnologia, Universidade Federal de Santa Maria, Av. Roraima n° 1000, Cidade Universitária, Bairro Camobi, Santa Maria, 97105-900, Rio Grande do Sul, Brazil
| | - Danilo Rheinheimer Dos Santos
- Centro de Ciências Rurais, Departamento de Solos, Universidade Federal de Santa Maria, Av. Roraima n° 1000, Cidade Universitária, Bairro Camobi, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Jérôme Labanowski
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France
| |
Collapse
|
27
|
Zubrova A, Michalikova K, Semerad J, Strejcek M, Cajthaml T, Suman J, Uhlik O. Biphenyl 2,3-Dioxygenase in Pseudomonas alcaliphila JAB1 Is Both Induced by Phenolics and Monoterpenes and Involved in Their Transformation. Front Microbiol 2021; 12:657311. [PMID: 33995321 PMCID: PMC8119895 DOI: 10.3389/fmicb.2021.657311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/29/2021] [Indexed: 01/09/2023] Open
Abstract
The involvement of bacterial aromatic ring-hydroxylating dioxygenases (ARHDs) in the degradation of aromatic pollutants, such as polychlorinated biphenyls (PCBs), has been well studied. However, there is considerable speculation as to the origin of this ability. One hypothesis is centered on a connection between the ability to degrade aromatic pollutants and the necessity of soil bacteria to cope with and/or utilize secondary plant metabolites (SPMs). To investigate this connection, we researched the involvement of biphenyl 2,3-dioxygenase (BPDO), an ARHD essential for the degradation of PCBs, in the metabolism of SPMs in the soil bacterium Pseudomonas alcaliphila JAB1, a versatile degrader of PCBs. We demonstrated the ability of the strain JAB1 to transform a variety of SPMs, namely the flavonoids apigenin, flavone, flavanone, naringenin, fisetin, quercetin, morin, and catechin, caffeic acid, trans-cinnamic acid, and the monoterpenes (S)-limonene and (R)-carvone. Of those, the transformation of flavone, flavanone, and (S)-limonene was conditioned by the activity of JAB1-borne BPDO and thus was researched in more detail, and we found evidence for the limonene monooxygenase activity of the BPDO. Furthermore, the bphA gene in the strain JAB1 was demonstrated to be induced by a wide range of SPMs, with monoterpenes being the strongest inducers of the SPMs tested. Thus, our findings contribute to the growing body of evidence that ARHDs not only play a role in the catabolism of aromatic pollutants, but also of natural plant-derived aromatics, and this study supports the hypothesis that ARHDs participate in ecological processes mediated by SPMs.
Collapse
Affiliation(s)
- Andrea Zubrova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Klara Michalikova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Jaroslav Semerad
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Tomas Cajthaml
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia.,Faculty of Science, Institute for Environmental Studies, Charles University, Prague, Czechia
| | - Jachym Suman
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| |
Collapse
|
28
|
Cavé-Radet A, Correa-Garcia S, Monard C, El Amrani A, Salmon A, Ainouche M, Yergeau É. Phenanthrene contamination and ploidy level affect the rhizosphere bacterial communities of Spartina spp. FEMS Microbiol Ecol 2021; 96:5895320. [PMID: 32821911 DOI: 10.1093/femsec/fiaa156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/18/2020] [Indexed: 11/13/2022] Open
Abstract
Spartina spp. are widely distributed salt marsh plants that have a recent history of hybridization and polyploidization. These events have resulted in a heightened tolerance to hydrocarbon contaminants, but the effects of this phenomenon on the rhizosphere microbial communities are unknown. Here, we grew two parental Spartina species, their hybrid and the resulting allopolyploid in salt marsh sediments that were contaminated or not with phenanthrene. The DNA from the rhizosphere soil was extracted and the bacterial 16S rRNA gene was amplified and sequenced, whereas the abundances of the genes encoding for the PAH (polycyclic aromatic hydrocarbon) ring-hydroxylating dioxygenase (RHD) of Gram-negative and Gram-positive bacteria were quantified by real-time PCR. Both the contamination and the plant genotype significantly affected the bacterial communities. In particular, the allopolyploid S. anglica harbored a more diverse bacterial community in its rhizosphere. The interspecific hybrid and the allopolyploid also harbored significantly more copies of the PAH-RHD gene of Gram-negative bacteria in their rhizosphere than the parental species, irrespective of the contamination treatments. Overall, our results are showing that the recent polyploidization events in the Spartina affected its rhizosphere bacterial communities, both under normal and contaminated conditions, possibly increasing its phytoremediation potential.
Collapse
Affiliation(s)
- Armand Cavé-Radet
- University of Rennes 1, CNRS/UMR 6553/OSUR, Ecosystems - Biodiversity - Evolution, 35042 Rennes Cedex, France
| | - Sara Correa-Garcia
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Cécile Monard
- University of Rennes 1, CNRS/UMR 6553/OSUR, Ecosystems - Biodiversity - Evolution, 35042 Rennes Cedex, France
| | - Abdelhak El Amrani
- University of Rennes 1, CNRS/UMR 6553/OSUR, Ecosystems - Biodiversity - Evolution, 35042 Rennes Cedex, France
| | - Armel Salmon
- University of Rennes 1, CNRS/UMR 6553/OSUR, Ecosystems - Biodiversity - Evolution, 35042 Rennes Cedex, France
| | - Malika Ainouche
- University of Rennes 1, CNRS/UMR 6553/OSUR, Ecosystems - Biodiversity - Evolution, 35042 Rennes Cedex, France
| | - Étienne Yergeau
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| |
Collapse
|
29
|
Singha LP, Pandey P. Rhizosphere assisted bioengineering approaches for the mitigation of petroleum hydrocarbons contamination in soil. Crit Rev Biotechnol 2021; 41:749-766. [PMID: 33626996 DOI: 10.1080/07388551.2021.1888066] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The high demand for petroleum oil has led to hydrocarbon contamination in soil, including agricultural lands, and many other ecosystems across the globe. Physical and chemical treatments are effective strategies for the removal of high contamination levels and are useful for small areas, although with concerns of cost-effectiveness. Alternatively, several bacteria belonging to the Phylum: Proteobacteria, Bacteroidetes, Actinobacteria, Nocardioides, or Firmicutes are used for biodegradation of different hydrocarbons - aliphatic, polyaromatic hydrocarbons (PAH), and asphaltenes in the oil-contaminated soil. The rhizoremediation strategy with plant-microbe interactions has prospects to achieve the desired result in the field conditions. However, adequate biostimulation, and bioaugmentation with the suitable plant-microbe combination, and efficiency under a toxic environment needs to be evaluated. Modifying the microbiomes to achieve better biodegradation of contaminants is an upcoming strategy popularly known as microbiome engineering. In this review, rhizoremediation for the successful removal of the hydrocarbons have been critically discussed, with challenges for making it a feasible technology.HIGHLIGHTSPetroleum hydrocarbon contamination has increased around the globe.Rhizoremediation has the potential for the mitigation of pollutants from the contaminated sites.An accurate and detailed analysis of the physio-chemical and climatic conditions of the contaminated sites must be focused on.The suitable plant and bacteria, with other major considerations, may be employed for in-situ remediation.The appropriate data should be obtained using the omics approach to help toward the success of the rhizoremediation strategy.
Collapse
Affiliation(s)
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, India
| |
Collapse
|
30
|
Abd Rashed A, Abd Rahman AZ, Rathi DNG. Essential Oils as a Potential Neuroprotective Remedy for Age-Related Neurodegenerative Diseases: A Review. Molecules 2021; 26:1107. [PMID: 33669787 PMCID: PMC7922935 DOI: 10.3390/molecules26041107] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the improvements in life expectancy, neurodegenerative conditions have arguably become the most dreaded maladies of older people. The neuroprotective and anti-ageing potentials of essential oils (EOs) are widely evaluated around the globe. The objective of this review is to analyse the effectiveness of EOs as neuroprotective remedies among the four common age-related neurodegenerative diseases. The literature was extracted from three databases (PubMed, Web of Science and Google Scholar) between the years of 2010 to 2020 using the medical subject heading (MeSH) terms "essential oil", crossed with "Alzheimer's disease (AD)", "Huntington's disease (HD)", "Parkinson's disease (PD)" or "amyotrophic lateral sclerosis (ALS)". Eighty three percent (83%) of the studies were focused on AD, while another 12% focused on PD. No classifiable study was recorded on HD or ALS. EO from Salvia officinalis has been recorded as one of the most effective acetylcholinesterase and butyrylcholinesterase inhibitors. However, only Cinnamomum sp. has been assessed for its effectiveness in both AD and PD. Our review provided useful evidence on EOs as potential neuroprotective remedies for age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Aswir Abd Rashed
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia;
| | - Ahmad Zuhairi Abd Rahman
- Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia;
| | - Devi Nair Gunasegavan Rathi
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia;
| |
Collapse
|
31
|
Jiang L, Luo C, Zhang D, Song M, Mei W, Sun Y, Zhang G. Shifts in a Phenanthrene-Degrading Microbial Community are Driven by Carbohydrate Metabolism Selection in a Ryegrass Rhizosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:962-973. [PMID: 33371686 DOI: 10.1021/acs.est.0c04951] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plants usually promote pollutant bioremediation by several mechanisms including modifying the diversity of functional microbial species. However, conflicting results are reported that root exudates have no effects or negative effects on organic pollutant degradation. In this study, we investigated the roles of ryegrass in phenanthrene degradation in soils using DNA stable isotope probing (SIP) and metagenomics to reveal a potential explanation for conflicting results among phytoremediation studies. Phenanthrene biodegradation efficiency was improved by 8% after 14 days of cultivation. Twelve and ten operational taxonomic units (OTUs) were identified as active phenanthrene degraders in non-rhizosphere and rhizosphere soils, respectively. The active phenanthrene degraders exhibited higher average phylogenetic distances in rhizosphere soils (0.33) than non-rhizosphere soils (0.26). The Ka/Ks values (the ratio of nonsynonymous to synonymous substitutions) were about 10.37% higher in the rhizosphere treatment among >90% of all key carbohydrate metabolism-related genes, implying that ryegrass may be an important driver of microbial community variation in the rhizosphere by relieving the carbohydrate metabolism pressure and improving the survival ability of r-strategy microbes. Most Ka/Ks values of root-exudate-related metabolism genes exhibited little change, except for fumarate hydratase that increased 13-fold in the rhizosphere compared to that in the non-rhizosphere treatment. The Ka/Ks values of less than 50% phenanthrene-degradation-related genes were affected, 30% of which increased and 70% behaved oppositely. Genes with altered Ka/Ks values had a low percentage and followed an inconsistent changing tendency, indicating that phenanthrene and its metabolites are not major factors influencing the active degraders. These results suggested the importance of carbohydrate metabolism, especially fumaric acid, in rhizosphere community shift, and hinted at a new hypothesis that the rhizosphere effect on phenanthrene degradation efficiency depends on the existence of active degraders that have competitive advantages in carbohydrate and fumaric acid metabolism.
Collapse
Affiliation(s)
- Longfei Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Mengke Song
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Weiping Mei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yingtao Sun
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
32
|
Hoang SA, Lamb D, Seshadri B, Sarkar B, Choppala G, Kirkham MB, Bolan NS. Rhizoremediation as a green technology for the remediation of petroleum hydrocarbon-contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123282. [PMID: 32634659 DOI: 10.1016/j.jhazmat.2020.123282] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 05/22/2023]
Abstract
Rhizoremediation is increasingly becoming a green and sustainable alternative to physico-chemical methods for remediation of contaminated environments through the utilization of symbiotic relationship between plants and their associated soil microorganisms in the root zone. The overall efficiency can be enhanced by identifying suitable plant-microbe combinations for specific contaminants and supporting the process with the application of appropriate soil amendments. This approach not only involves promoting the existing activity of plants and soil microbes, but also introduces an adequate number of microorganisms with specific catabolic activity. Here, we reviewed recent literature on the main mechanisms and key factors in the rhizoremediation process with a particular focus on soils contaminated with total petroleum hydrocarbon (TPH). We then discuss the potential of different soil amendments to accelerate the remediation efficiency based on biostimulation and bioaugmentation processes. Notwithstanding some successes in well-controlled environments, rhizoremediation of TPH under field conditions is still not widespread and considered less attractive than physico-chemical methods. We catalogued the major pitfalls of this remediation approach at the field scale in TPH-contaminated sites and, provide some applicable situations for the future successful use of in situ rhizoremediation of TPH-contaminated soils.
Collapse
Affiliation(s)
- Son A Hoang
- Global Centre for Environmental Remediation (GCER), Advanced Technology Centre (ATC) Building, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Division of Urban Infrastructural Engineering, Mien Trung University of Civil Engineering, Phu Yen 56000, Viet Nam
| | - Dane Lamb
- Global Centre for Environmental Remediation (GCER), Advanced Technology Centre (ATC) Building, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Balaji Seshadri
- Global Centre for Environmental Remediation (GCER), Advanced Technology Centre (ATC) Building, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Girish Choppala
- Global Centre for Environmental Remediation (GCER), Advanced Technology Centre (ATC) Building, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Nanthi S Bolan
- Global Centre for Environmental Remediation (GCER), Advanced Technology Centre (ATC) Building, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| |
Collapse
|
33
|
Soil Characteristics Constrain the Response of Microbial Communities and Associated Hydrocarbon Degradation Genes during Phytoremediation. Appl Environ Microbiol 2021; 87:AEM.02170-20. [PMID: 33097512 DOI: 10.1128/aem.02170-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/18/2020] [Indexed: 12/21/2022] Open
Abstract
Rhizodegradation is a promising cleanup technology where microorganisms degrade soil contaminants in the rhizosphere. A symbiotic relationship is expected to occur between plant roots and soil microorganisms in contaminated soils that enhances natural microbial degradation. However, little is known about how different initial microbiotas influence the rhizodegradation outcome. Recent studies have hinted that soil initial diversity has a determining effect on the outcome of contaminant degradation. To test this, we either planted (P) or not (NP) balsam poplars (Populus balsamifera) in two soils of contrasting diversity (agricultural and forest) that were contaminated or not with 50 mg kg-1 of phenanthrene (PHE). The DNA from the rhizosphere of the P and the bulk soil of the NP pots was extracted and the bacterial genes encoding the 16S rRNA, the PAH ring-hydroxylating dioxygenase alpha subunits (PAH-RHDα) of Gram-positive and Gram-negative bacteria, and the fungal ITS region were sequenced to characterize the microbial communities. The abundances of the PAH-RHDα genes were quantified by real-time quantitative PCR. Plant presence had a significant effect on PHE degradation only in the forest soil, whereas both NP and P agricultural soils degraded the same amount of PHE. Fungal communities were mainly affected by plant presence, whereas bacterial communities were principally affected by the soil type, and upon contamination the dominant PAH-degrading community was similarly constrained by soil type. Our results highlight the crucial importance of soil microbial and physicochemical characteristics in the outcome of rhizoremediation.IMPORTANCE Polycyclic aromatic hydrocarbons (PAH) are a group of organic contaminants that pose a risk to ecosystems' health. Phytoremediation is a promising biotechnology with the potential to restore PAH-contaminated soils. However, some limitations prevent it from becoming the remediation technology of reference, despite being environmentally friendlier than mainstream physicochemical alternatives. Recent reports suggest that the original soil microbial diversity is the key to harnessing the potential of phytoremediation. Therefore, this study focused on determining the effect of two different soil types in the fate of phenanthrene (a polycyclic aromatic hydrocarbon) under balsam poplar remediation. Poplar increased the degradation of phenanthrene in forest, but not in agricultural soil. The fungi were affected by poplars, whereas total bacteria and specific PAH-degrading bacteria were constrained by soil type, leading to different degradation patterns between soils. These results highlight the importance of performing preliminary microbiological studies of contaminated soils to determine whether plant presence could improve remediation rates or not.
Collapse
|
34
|
Ait Elallem K, Sobeh M, Boularbah A, Yasri A. Chemically degraded soil rehabilitation process using medicinal and aromatic plants: review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:73-93. [PMID: 33051844 DOI: 10.1007/s11356-020-10742-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
In recent decades, the increasing number of degraded lands worldwide makes their rehabilitation essential and crucial. Various techniques have emerged to fulfill these needs but most of them are expensive and difficult to be applied. Revegetation is a cost effective, environmental friendly, and aesthetically pleasing approach suitable for degraded areas. However, the use of edible crops, especially for areas with heavy metals (HM) contamination, is not ecologically suitable because the HM may enter the food chain. Alternatively, non-edible, fast-growing, deep-rooting, and metal-stabilizing plants with high biomass, which can produce high-value products hold a great potential and have been regarded as potential candidates of edible crops. This current review presents the benefits of using aromatic and medicinal plants (AMPs) and their associated microorganisms for revegetation of degraded sites as they are high-value economic crops. We discussed the effect of various stress on productivity of secondary metabolites in AMPs in addition to the potential health risk with human consumption of these plants and their products. A focus was also given to the effect of HM stress on the essential oil (EO) content of certain AMPs. Reported data showed that AMPs growing on HM-contaminated soils are safe products to use as they are not significantly contaminated themselves by HM.
Collapse
Affiliation(s)
- Khadija Ait Elallem
- AgroBioSciences Program, University Mohammed VI Polytechnic, Lot 660, Hay Moulay Rachid, 43150, Benguerir, Morocco
- Faculté des Sciences et Techniques, Laboratoire Bioressources et sécurité Sanitaire des Aliments, Université Cadi Ayyad, Boulevard Abdelkrim Khattabi, BP 549, 40000, Marrakech, Morocco
| | - Mansour Sobeh
- AgroBioSciences Program, University Mohammed VI Polytechnic, Lot 660, Hay Moulay Rachid, 43150, Benguerir, Morocco
| | - Ali Boularbah
- AgroBioSciences Program, University Mohammed VI Polytechnic, Lot 660, Hay Moulay Rachid, 43150, Benguerir, Morocco.
- Faculté des Sciences et Techniques, Laboratoire Bioressources et sécurité Sanitaire des Aliments, Université Cadi Ayyad, Boulevard Abdelkrim Khattabi, BP 549, 40000, Marrakech, Morocco.
| | - Abdelaziz Yasri
- AgroBioSciences Program, University Mohammed VI Polytechnic, Lot 660, Hay Moulay Rachid, 43150, Benguerir, Morocco.
| |
Collapse
|
35
|
Prieto I, Klimm A, Roldán F, Vetter W, Arbeli Z. Evidence for cometabolic transformation of weathered toxaphene under aerobic conditions using camphor as a co-substrate. J Appl Microbiol 2020; 131:221-235. [PMID: 33305511 DOI: 10.1111/jam.14963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/29/2020] [Accepted: 12/04/2020] [Indexed: 11/30/2022]
Abstract
AIMS Toxaphene is a persistent organic pollutant, composed of approximately 1000 highly chlorinated bicyclic terpenes. The purpose of this study was to evaluate if camphor, a structural analogue of toxaphene, could stimulate aerobic biotransformation of weathered toxaphene. METHODS AND RESULTS Two enrichment cultures that degrade camphor as the sole carbon source were established from contaminated soil and biosolids. These cultures were used to evaluate aerobic transformation of weathered toxaphene. Only the biosolids culture could transform compounds of technical toxaphene (CTTs) in the presence of camphor, while no transformation was observed in the presence of glucose or with toxaphene as a sole carbon source. The transformed toxaphene had lower concentration of CTTs with longer retention times, and higher concentration of compounds with lower retention times. Gas chromatography with electron capture negative ion mass spectrometry (GC/ECNI-MS) showed that aerobic biotransformation mainly occurred with Cl8 - and Cl9 -CTTs compounds. The patterns of Cl6 - and Cl7 -CTTs were also simplified albeit to a much lesser extent. Seven camphor-degrading bacteria were isolated from the enrichment culture but none of them could degrade toxaphene. CONCLUSION Camphor degrading culture can aerobically transform CCTs via reductive pathway probably by co-metabolism using camphor as a co-substrate. SIGNIFICANCE AND IMPACT OF THE STUDY Since camphor is naturally produced by different plants, this study suggests that stimulation of aerobic transformation of toxaphene may occur in nature. Moreover plants, which produce camphor or similar compounds, might be used in bioremediation of contaminated soils.
Collapse
Affiliation(s)
- I Prieto
- Departamento de Biología, Facultad de Ciencias, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - A Klimm
- Institute of Food Chemistry, University of Hohenheim, Stuttgart, Germany
| | - F Roldán
- Departamento de Biología, Facultad de Ciencias, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - W Vetter
- Institute of Food Chemistry, University of Hohenheim, Stuttgart, Germany
| | - Z Arbeli
- Departamento de Biología, Facultad de Ciencias, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| |
Collapse
|
36
|
Growth dynamics of galls and chemical defence response of Pinus thunbergii Parl. to the pine needle gall midge, Thecodiplosis japonensis Uchida & Inouye (Diptera: Cecidomyiidae). Sci Rep 2020; 10:12289. [PMID: 32703997 PMCID: PMC7378844 DOI: 10.1038/s41598-020-69231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/01/2020] [Indexed: 11/12/2022] Open
Abstract
The pine needle gall midge, Thecodiplosis japonensis Uchida et Inouye, is a newly invasive pest in China that mainly harms Pinus thunbergii and P. densiflora. The occurrence and damage caused by T. japonensis in pure stands of P. thunbergii were investigated, and the needle growth and needle compound content were measured. Based on the above steps, the growth dynamics of galls and chemical defense response of P. thunbergii to attack by the gall midge were revealed. The results showed that the adults of T. japonensis in Qingdao city, China, emerged from the end of May to late July, with a peak in mid-June. Needles of P. thunbergii began to differentiate in late June and stopped growing in mid-September. The length of infested needles was 60.17% less than that of healthy needles. On average, there were 9 ± 4 larvae in each gall, 22 at most and 1 at least. The number of larvae within a gall had no significant effect on the size of the gall or larvae. Compared with that in the ungalled tissues, the content of amino acids in the galled pine needle tissues increased by 40.83%, while the content of total polyphenols, tannins, carotenoids, total triterpenes, total alkaloids and other secondary substances decreased to varying degrees, which was favourable for the growth and development of the T. japonensis larvae.
Collapse
|
37
|
Pantigoso HA, Yuan J, He Y, Guo Q, Vollmer C, Vivanco JM. Role of root exudates on assimilation of phosphorus in young and old Arabidopsis thaliana plants. PLoS One 2020; 15:e0234216. [PMID: 32492072 PMCID: PMC7269232 DOI: 10.1371/journal.pone.0234216] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/20/2020] [Indexed: 11/18/2022] Open
Abstract
The role of root exudates has long been recognized for its potential to improve nutrient use efficiency in cropping systems. However, studies addressing the variability of root exudates involved in phosphorus solubilization across plant developmental stages remain scarce. Here, we grew Arabidopsis thaliana seedlings in sterile liquid culture with a low, medium, or high concentration of phosphate and measured the composition of the root exudate at seedling, vegetative, and bolting stages. The exudates changed in response to the incremental addition of phosphorus, starting from the vegetative stage. Specific metabolites decreased in relation to phosphate concentration supplementation at specific stages of development. Some of those metabolites were tested for their phosphate solubilizing activity, and 3-hydroxypropionic acid, malic acid, and nicotinic acid were able to solubilize calcium phosphate from both solid and liquid media. In summary, our data suggest that plants can release distinct compounds to deal with phosphorus deficiency needs influenced by the phosphorus nutritional status at varying developmental stages.
Collapse
Affiliation(s)
- Hugo A. Pantigoso
- Department of Horticulture and Landscape Architecture, Center for Rhizosphere Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jun Yuan
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yanhui He
- Department of Horticulture and Landscape Architecture, Center for Rhizosphere Biology, Colorado State University, Fort Collins, Colorado, United States of America
- Key laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Qinggang Guo
- Department of Horticulture and Landscape Architecture, Center for Rhizosphere Biology, Colorado State University, Fort Collins, Colorado, United States of America
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Science, Baoding, China
| | - Charlie Vollmer
- Department of Statistics, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jorge M. Vivanco
- Department of Horticulture and Landscape Architecture, Center for Rhizosphere Biology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
38
|
Waigi MG, Wang J, Yang B, Gudda FO, Ling W, Liu J, Gao Y. Endophytic Bacteria in in planta Organopollutant Detoxification in Crops. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 252:1-50. [PMID: 31451946 DOI: 10.1007/398_2019_33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microbe-assisted organopollutant removal, or in planta crop decontamination, is based on an interactive system between organopollutant-degrading endophytic bacteria (DEBOP) and crops in alleviating organic toxins in plants. This script focuses on the fast-growing body of literature that has recently bloomed in organopollutant control in agricultural plants. The various facets of DEBOP under study include their colonization, distribution, plant growth-promoting mechanisms, and modes of action in the detoxification process in plants. Also, an assessment of the biotechnological advances, advantages, and bottlenecks in accelerating the implementation of this decontamination strategy will be undertaken. The highlighted key research directions from this review will shape the future of agro-environmental sustainability and preservation of human health.
Collapse
Affiliation(s)
- Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Bing Yang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Juan Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
39
|
Yamashiro T, Shiraishi A, Satake H, Nakayama K. Draft genome of Tanacetum cinerariifolium, the natural source of mosquito coil. Sci Rep 2019; 9:18249. [PMID: 31796833 PMCID: PMC6890757 DOI: 10.1038/s41598-019-54815-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/20/2019] [Indexed: 11/09/2022] Open
Abstract
Pyrethrum (Tanacetum cinerariifolium), which is a perennial Asteraceae plant with white daisy-like flowers, is the original source of mosquito coils and is known for the biosynthesis of the pyrethrin class of natural insecticides. However, the molecular basis of the production of pyrethrins by T. cinerariifolium has yet to be fully elucidated. Here, we present the 7.1-Gb draft genome of T. cinerariifolium, consisting of 2,016,451 scaffolds and 60,080 genes predicted with high confidence. Notably, analyses of transposable elements (TEs) indicated that TEs occupy 33.84% of the genome sequence. Furthermore, TEs of the sire and oryco clades were found to be enriched in the T. cinerariifolium-specific evolutionary lineage, occupying a total of 13% of the genome sequence, a proportion approximately 8-fold higher than that in other plants. InterProScan analysis demonstrated that biodefense-related toxic proteins (e.g., ribosome inactivating proteins), signal transduction-related proteins (e.g., histidine kinases), and metabolic enzymes (e.g., lipoxygenases, acyl-CoA dehydrogenases/oxygenases, and P450s) are also highly enriched in the T. cinerariifolium genome. Molecular phylogenetic analysis detected a variety of enzymes with genus-specific multiplication, including both common enzymes and others that appear to be specific to pyrethrin biosynthesis. Together, these data identify possible novel components of the pyrethrin biosynthesis pathway and provide new insights into the unique genomic features of T. cinerariifolium.
Collapse
Affiliation(s)
- Takanori Yamashiro
- Dainihon Jochugiku Co., Ltd., 1-1-11 Daikoku-cho, Toyonaka, Osaka, 561-0827, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, 619-0284, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, 619-0284, Japan.
| | - Koji Nakayama
- Dainihon Jochugiku Co., Ltd., 1-1-11 Daikoku-cho, Toyonaka, Osaka, 561-0827, Japan.
| |
Collapse
|
40
|
Microcosm Experiment to Assess the Capacity of a Poplar Clone to Grow in a PCB-Contaminated Soil. WATER 2019. [DOI: 10.3390/w11112220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polychlorinated byphenyls (PCBs) are a class of Persistent Organic Pollutants extremely hard to remove from soil. The use of plants to promote the degradation of PCBs, thanks to synergic interactions between roots and the natural soil microorganisms in the rhizosphere, has been proved to constitute an effective and environmentally friendly remediation technique. Preliminary microcosm experiments were conducted in a greenhouse for 12 months to evaluate the capacity of the Monviso hybrid poplar clone, a model plant for phytoremediation, to grow in a low quality and PCB-contaminated soil in order to assess if this clone could be subsequently used in a field experiment. For this purpose, three different soil conditions (Microbiologically Active, Pre-sterilized and Hypoxic soils) were set up in order to assess the capacity of this clone to grow in the polluted soil in these different conditions and support the soil microbial community activity. The growth and physiology (chlorophyll content, chlorophyll fluorescence, ascorbate, phenolic compounds and flavonoid contents) of the poplar were determined. Moreover, chemical analyses were performed to assess the concentrations of PCB indicators in soil and plant roots. Finally, the microbial community was evaluated in terms of total abundance and activity under the different experimental conditions. Results showed that the poplar clone was able to grow efficiently in the contaminated soil and to promote microbial transformations of PCBs. Plants grown in the hypoxic condition promoted the formation of a higher number of higher-chlorinated PCBs and accumulated lower PCBs in their roots. However, plants in this condition showed a higher stress level than the other microcosms, producing higher amounts of phenolic, flavonoid and ascorbate contents, as a defence mechanism.
Collapse
|
41
|
The Origin, Succession, and Predicted Metabolism of Bacterial Communities Associated with Leaf Decomposition. mBio 2019; 10:mBio.01703-19. [PMID: 31481384 PMCID: PMC6722416 DOI: 10.1128/mbio.01703-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Community ecologists have traditionally treated individuals within a species as uniform, with individual-level biodiversity rarely considered as a regulator of community and ecosystem function. In our study system, we have documented clear evidence of within-species variation causing local ecosystem adaptation to fluxes across ecosystem boundaries. In this striking pattern of a “home-field advantage,” leaves from individual trees tend to decompose most rapidly when immediately adjacent to their parent tree. Here, we merge community ecology experiments with microbiome approaches to describe how bacterial communities adjust to within-species variation in leaves over spatial scales of less than a kilometer. The results show that bacterial community compositional changes facilitate rapid ecosystem responses to environmental change, effectively maintaining high rates of carbon and nutrient cycling through ecosystems. Intraspecific variation in plant nutrient and defensive traits can regulate ecosystem-level processes, such as decomposition and transformation of plant carbon and nutrients. Understanding the regulatory mechanisms of ecosystem functions at local scales may facilitate predictions of the resistance and resilience of these functions to change. We evaluated how riverine bacterial community assembly and predicted gene content corresponded to decomposition rates of green leaf inputs from red alder trees into rivers of Washington State, USA. Previously, we documented accelerated decomposition rates for leaves originating from trees growing adjacent to the site of decomposition versus more distant locales, suggesting that microbes have a “home-field advantage” in decomposing local leaves. Here, we identified repeatable stages of bacterial succession, each defined by dominant taxa with predicted gene content associated with metabolic pathways relevant to the leaf characteristics and course of decomposition. “Home” leaves contained bacterial communities with distinct functional capacities to degrade aromatic compounds. Given known spatial variation of alder aromatics, this finding helps explain locally accelerated decomposition. Bacterial decomposer communities adjust to intraspecific variation in leaves at spatial scales of less than a kilometer, providing a mechanism for rapid response to changes in resources such as range shifts among plant genotypes. Such rapid responses among bacterial communities in turn may maintain high rates of carbon and nutrient cycling through aquatic ecosystems.
Collapse
|
42
|
Garrido-Sanz D, Redondo-Nieto M, Guirado M, Pindado Jiménez O, Millán R, Martin M, Rivilla R. Metagenomic Insights into the Bacterial Functions of a Diesel-Degrading Consortium for the Rhizoremediation of Diesel-Polluted Soil. Genes (Basel) 2019; 10:E456. [PMID: 31207997 PMCID: PMC6627497 DOI: 10.3390/genes10060456] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 02/05/2023] Open
Abstract
Diesel is a complex pollutant composed of a mixture of aliphatic and aromatic hydrocarbons. Because of this complexity, diesel bioremediation requires multiple microorganisms, which harbor the catabolic pathways to degrade the mixture. By enrichment cultivation of rhizospheric soil from a diesel-polluted site, we have isolated a bacterial consortium that can grow aerobically with diesel and different alkanes and polycyclic aromatic hydrocarbons (PAHs) as the sole carbon and energy source. Microbiome diversity analyses based on 16S rRNA gene showed that the diesel-degrading consortium consists of 76 amplicon sequence variants (ASVs) and it is dominated by Pseudomonas, Aquabacterium, Chryseobacterium, and Sphingomonadaceae. Changes in microbiome composition were observed when growing on specific hydrocarbons, reflecting that different populations degrade different hydrocarbons. Shotgun metagenome sequence analysis of the consortium growing on diesel has identified redundant genes encoding enzymes implicated in the initial oxidation of alkanes (AlkB, LadA, CYP450) and a variety of hydroxylating and ring-cleavage dioxygenases involved in aromatic and polyaromatic hydrocarbon degradation. The phylogenetic assignment of these enzymes to specific genera allowed us to model the role of specific populations in the diesel-degrading consortium. Rhizoremediation of diesel-polluted soil microcosms using the consortium, resulted in an important enhancement in the reduction of total petroleum hydrocarbons (TPHs), making it suited for rhizoremediation applications.
Collapse
Affiliation(s)
- Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain.
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain.
| | - María Guirado
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Avenida Complutense 40, 28040 Madrid, Spain.
| | - Oscar Pindado Jiménez
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Avenida Complutense 40, 28040 Madrid, Spain.
| | - Rocío Millán
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Avenida Complutense 40, 28040 Madrid, Spain.
| | - Marta Martin
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain.
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain.
| |
Collapse
|
43
|
Kallscheuer N, Classen T, Drepper T, Marienhagen J. Production of plant metabolites with applications in the food industry using engineered microorganisms. Curr Opin Biotechnol 2019; 56:7-17. [DOI: 10.1016/j.copbio.2018.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
|
44
|
Cavé-Radet A, Salmon A, Lima O, Ainouche ML, El Amrani A. Increased tolerance to organic xenobiotics following recent allopolyploidy in Spartina (Poaceae). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:143-154. [PMID: 30823992 DOI: 10.1016/j.plantsci.2018.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 10/28/2018] [Accepted: 11/10/2018] [Indexed: 06/09/2023]
Abstract
Genome doubling or polyploidy is a widespread phenomenon in plants where it has important evolutionary consequences affecting the species distribution and ecology. PAHs are ubiquitous organic pollutants, which represent a major environmental concern. Recent data showed that tolerance to organic xenobiotics involve specific signaling pathways, and detoxifying gene sets referred as 'the xenome'. However, no data are available about how polyploidy impacts tolerance to organic xenobiotics. In the present paper, we investigated PAH tolerance following allopolyploidization in Spartina alterniflora, S. maritima and their derived allopolyploid species S. anglica. We performed comparative analyses of cellular compartmentalization, photosynthetic indices, and oxidative stress markers under phenanthrene-induced stress, and found that S. anglica exhibit increased tolerance compared to its parents. Based on 52 genes potentially involved in phenanthrene detoxification previously identified in A. thaliana, we investigated the Spartina xenome using genomic and transcriptomic available resources. Subsequently, we focused on GSTs, a ubiquitous enzymes class involved in organic xenobiotic detoxification. We examined expression profiles of selected genes by RT-qPCR, and revealed various patterns of parental expression alteration in the allopolyploid. The impacts of allopolyploidization on phenanthrene-induced stress and their potential ecological implications are discussed. The neo-allopolyploid S. anglica appears as a potential candidate for phytoremediation in PAH-polluted marshes.
Collapse
Affiliation(s)
- Armand Cavé-Radet
- Université de Rennes 1, OSUR/CNRS-UMR 6553, Ecosystèmes-Biodiversité-Evolution, Campus de Beaulieu, Bâtiment 14A, 35042 Rennes Cedex, France
| | - Armel Salmon
- Université de Rennes 1, OSUR/CNRS-UMR 6553, Ecosystèmes-Biodiversité-Evolution, Campus de Beaulieu, Bâtiment 14A, 35042 Rennes Cedex, France
| | - Oscar Lima
- Université de Rennes 1, OSUR/CNRS-UMR 6553, Ecosystèmes-Biodiversité-Evolution, Campus de Beaulieu, Bâtiment 14A, 35042 Rennes Cedex, France
| | - Malika L Ainouche
- Université de Rennes 1, OSUR/CNRS-UMR 6553, Ecosystèmes-Biodiversité-Evolution, Campus de Beaulieu, Bâtiment 14A, 35042 Rennes Cedex, France
| | - Abdelhak El Amrani
- Université de Rennes 1, OSUR/CNRS-UMR 6553, Ecosystèmes-Biodiversité-Evolution, Campus de Beaulieu, Bâtiment 14A, 35042 Rennes Cedex, France.
| |
Collapse
|
45
|
Zhang Y, Virjamo V, Sobuj N, Du W, Yin Y, Nybakken L, Guo H, Julkunen-Tiitto R. Elevated temperature and CO 2 affect responses of European aspen (Populus tremula) to soil pyrene contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:150-157. [PMID: 29627537 DOI: 10.1016/j.scitotenv.2018.03.344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
High northern latitudes are climatic sensitive areas, and are also regions to which polycyclic aromatic hydrocarbons (PAHs) easily transport and accumulate with potential risk to natural ecosystems. However, the effect of PAHs on northern woody plant growth and defense under climate change is very little studied. Here, we conducted a unique experiment in greenhouses to investigate sex-related responses of the dioecious Populus tremula to pyrene (50mgkg-1) and residue of pyrene in soils under ambient and elevated temperature (+1.8°C on average) and CO2 (740ppm). Pyrene decreased stem biomass and leaf area by 9% and 6%, respectively under ambient conditions, and the reduction of leaf area was more severe under elevated temperature (38%), elevated CO2 (37%), and combined T+CO2 (42%). Other growth parameters were unchanged by pyrene. Pyrene did not affect the concentration of leaf total phenolics under ambient conditions, but increased it by 16%, 1%, and 20% compared to controls under elevated temperature, elevated CO2, and T+CO2, respectively. Pyrene had only minor sex-specific effects on plant growth and phenolics. The concentration of residual pyrene in pyrene-spiked soils was higher under elevated CO2 than under ambient, elevated temperature, and combined T+CO2. The results suggest that both sexes of P. tremula have the capacity to regulate growth and metabolism to adjust to the stress of the tested pyrene contamination under elevated temperature and CO2, but potential risk of pyrene to plants still exists in the future changing climate.
Collapse
Affiliation(s)
- Yaodan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Nanjing, China; Department of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland
| | - Virpi Virjamo
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland
| | - Norul Sobuj
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland
| | - Wenchao Du
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Nanjing, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Nanjing, China
| | - Line Nybakken
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Nanjing, China.
| | - Riitta Julkunen-Tiitto
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland
| |
Collapse
|
46
|
Correa‐García S, Pande P, Séguin A, St‐Arnaud M, Yergeau E. Rhizoremediation of petroleum hydrocarbons: a model system for plant microbiome manipulation. Microb Biotechnol 2018; 11:819-832. [PMID: 30066464 PMCID: PMC6116750 DOI: 10.1111/1751-7915.13303] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
Phytoremediation is a green and sustainable alternative to physico-chemical methods for contaminated soil remediation. One of the flavours of phytoremediation is rhizoremediation, where plant roots stimulate soil microbes to degrade organic contaminants. This approach is particularly interesting as it takes advantage of naturally evolved interaction mechanisms between plant and microorganisms and often results in a complete mineralization of the contaminants (i.e. transformation to water and CO2 ). However, many biotic and abiotic factors influence the outcome of this interaction, resulting in variable efficiency of the remediation process. The difficulty to predict precisely the timeframe associated with rhizoremediation leads to low adoption rates of this green technology. Here, we review recent literature related to rhizoremediation, with a particular focus on soil organisms. We then expand on the potential of rhizoremediation to be a model plant-microbe interaction system for microbiome manipulation studies.
Collapse
Affiliation(s)
- Sara Correa‐García
- Centre INRS‐Institut Armand‐FrappierInstitut national de la recherche scientifiqueUniversité du QuébecLavalQCCanada
- Laurentian Forest CenterNatural Ressources CanadaQuébec CityQCCanada
| | - Pranav Pande
- Centre INRS‐Institut Armand‐FrappierInstitut national de la recherche scientifiqueUniversité du QuébecLavalQCCanada
- Institut de recherche en biologie végétaleUniversité de Montréal and Jardin Botanique de MontréalMontréalQCCanada
| | - Armand Séguin
- Laurentian Forest CenterNatural Ressources CanadaQuébec CityQCCanada
| | - Marc St‐Arnaud
- Institut de recherche en biologie végétaleUniversité de Montréal and Jardin Botanique de MontréalMontréalQCCanada
| | - Etienne Yergeau
- Centre INRS‐Institut Armand‐FrappierInstitut national de la recherche scientifiqueUniversité du QuébecLavalQCCanada
| |
Collapse
|
47
|
Kotoky R, Rajkumari J, Pandey P. The rhizosphere microbiome: Significance in rhizoremediation of polyaromatic hydrocarbon contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:858-870. [PMID: 29660711 DOI: 10.1016/j.jenvman.2018.04.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/22/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Microbial communities are an essential part of plant rhizosphere and participate in the functioning of plants, including rhizoremediation of petroleum contaminants. Rhizoremediation is a promising technology for removal of polyaromatic hydrocarbons based on interactions between plants and microbiome in the rhizosphere. Root exudation in the rhizosphere provides better nutrient uptake for rhizosphere microbiome, and therefore it is considered to be one of the major factors of microbial community function in the rhizosphere that plays a key role in the enhanced PAH biodegradation. Although the importance of the rhizosphere microbiome for plant growth has been widely recognized, the interactions between microbiome and plant roots in the process of rhizosphere mediated remediation of PAH still needs attention. Most of the current researches target PAH degradation by plant or single microorganism, separately, whereas the interactions between plants and whole microbiome are overlooked and its role has been ignored. This review summarizes recent knowledge of PAH degradation in the rhizosphere in the process of plant-microbiome interactions based on emerging omics approaches such as metagenomics, metatranscriptomics, metabolomics and metaproteomics. These omics approaches with combinations to bioinformatics tools provide us a better understanding in integrated activity patterns between plants and rhizosphere microbes, and insight into the biochemical and molecular modification of the meta-organisms (plant-microbiome) to maximize rhizoremediation activity. Moreover, a better understanding of the interactions could lead to the development of techniques to engineer rhizosphere microbiome for better hydrocarbon degradation.
Collapse
Affiliation(s)
- Rhitu Kotoky
- Department of Microbiology, Assam University, Silchar, 788011, India
| | - Jina Rajkumari
- Department of Microbiology, Assam University, Silchar, 788011, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, 788011, India.
| |
Collapse
|
48
|
Alkorta I, Epelde L, Garbisu C. Environmental parameters altered by climate change affect the activity of soil microorganisms involved in bioremediation. FEMS Microbiol Lett 2018; 364:4159367. [PMID: 28961781 DOI: 10.1093/femsle/fnx200] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/14/2017] [Indexed: 11/14/2022] Open
Abstract
Bioremediation, based on the use of microorganisms to break down pollutants, can be very effective at reducing soil pollution. But the climate change we are now experiencing is bound to have an impact on bioremediation performance, since the activity and degrading abilities of soil microorganisms are dependent on a series of environmental parameters that are themselves being altered by climate change, such as soil temperature, moisture, amount of root exudates, etc. Many climate-induced effects on soil microorganisms occur indirectly through changes in plant growth and physiology derived from increased atmospheric CO2 concentrations and temperatures, the alteration of precipitation patterns, etc., with a concomitant effect on rhizoremediation performance (i.e. the plant-assisted microbial degradation of pollutants in the rhizosphere). But these effects are extremely complex and mediated by processes such as acclimation and adaptation. Besides, soil microorganisms form complex networks of interactions with a myriad of organisms from many taxonomic groups that will also be affected by climate change, further complicating data interpretation.
Collapse
Affiliation(s)
- Itziar Alkorta
- Instituto BIOFISIKA (UPV/EHU-CSIC), Department of Biochemistry and Molecular Biology, University of the Basque Country, PO Box 644, 48080 Bilbao, Spain
| | - Lur Epelde
- Department of Conservation of Natural Resources, Soil Microbial Ecology Group, NEIKER-Tecnalia, Berreaga 1, 48160 Derio, Spain
| | - Carlos Garbisu
- Department of Conservation of Natural Resources, Soil Microbial Ecology Group, NEIKER-Tecnalia, Berreaga 1, 48160 Derio, Spain
| |
Collapse
|
49
|
Gaylor MO, Juntunen HL, Hazelwood D, Videau P. Assessment of Multiple Solvents for Extraction and Direct GC-MS Determination of the Phytochemical Inventory of Sansevieria Extrafoliar Nectar Droplets. J Chromatogr Sci 2018; 56:293-299. [PMID: 29425265 DOI: 10.1093/chromsci/bmy008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 01/12/2018] [Indexed: 11/13/2022]
Abstract
Considerable effort has been devoted to analytical determinations of sugar and amino acid constituents of plant nectars, with the primary aim of understanding their ecological roles, yet few studies have reported more exhaustive organic compound inventories of plant nectars or extrafoliar nectars. This work evaluated the efficacy of four solvents (ethyl acetate, dichloromethane, toluene and hexane) to extract the greatest number of organic compound classes and unique compounds from extrafoliar nectar drops produced by Sansevieria spp. Aggregation of the results from each solvent revealed that 240 unique compounds were extracted in total, with 42.5% of those detected in multiple extracts. Aliphatic hydrocarbons dominated in all but the ethyl acetate extracts, with 44 unique aliphatic hydrocarbons detected in dichloromethane (DCM) extracts, followed by 41, 19 and 8 in hexane, toluene and ethyl acetate extracts, respectively. Hexane extracted the most unique compounds (79), followed by DCM (73), ethyl acetate (56) and toluene (32). Integrated total ion chromatographic peak areas of extracted compound classes were positively correlated with numbers of unique compounds detected within those classes. In addition to demonstrating that multi-solvent extraction with direct GC-MS detection is a suitable analytical approach for determining secondary nectar constituents, to the best of our knowledge, this study also represents: (i) the first attempt to inventory the secondary phytochemical constituents of Sansevieria spp. extrafoliar nectar secretions and (ii) the largest organic solvent extractable compound inventory reported for any plant matrix to date.
Collapse
Affiliation(s)
- Michael O Gaylor
- Department of Chemistry, College of Arts and Sciences, Dakota State University, Madison, SD 57042, USA
| | - Hope L Juntunen
- Department of Chemistry, College of Arts and Sciences, Dakota State University, Madison, SD 57042, USA.,Department of Biology, College of Arts and Sciences, Dakota State University, Madison, SD 57042, USA
| | - Donna Hazelwood
- Department of Biology, College of Arts and Sciences, Dakota State University, Madison, SD 57042, USA
| | - Patrick Videau
- Department of Biology, College of Arts and Sciences, Dakota State University, Madison, SD 57042, USA
| |
Collapse
|
50
|
Pistelli L, Bandeira Reidel RV, Parri F, Morelli E, Pistelli L. Chemical composition of essential oil from plants of abandoned mining site of Elba island. Nat Prod Res 2018; 33:143-147. [DOI: 10.1080/14786419.2018.1437430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Laura Pistelli
- Dipartimento di Scienze Agrarie, Alimentari ed Agriambientali, Università di Pisa, Pisa, Italy
- Centro Interdipartimentale di Ricerca “Nutraceutica e Alimentazione per la Salute”, Università di Pisa, Pisa, Italy
| | | | - Federico Parri
- Stazione Carabinieri “Parco” Marciana Marina, Marciana, Italy
| | | | - Luisa Pistelli
- Dipartimento di Scienze Agrarie, Alimentari ed Agriambientali, Università di Pisa, Pisa, Italy
- Centro Interdipartimentale di Ricerca “Nutraceutica e Alimentazione per la Salute”, Università di Pisa, Pisa, Italy
| |
Collapse
|