1
|
McCoy RM, Widhalm JR, McNickle GG. Allelopathy as an evolutionary game. PLANT DIRECT 2022; 6:e382. [PMID: 35169675 PMCID: PMC8832168 DOI: 10.1002/pld3.382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 05/30/2023]
Abstract
In plants, most competition is resource competition, where one plant simply preempts the resources away from its neighbors. Interference competition, as the name implies, is a form of direct interference to prevent resource access. Interference competition is common among animals that can physically fight, but in plants, one of the main mechanisms of interference competition is allelopathy. Allelopathic plants release cytotoxic chemicals into the environment which can increase their ability to compete with surrounding organisms for limited resources. The circumstances and conditions favoring the development and maintenance of allelochemicals, however, are not well understood. Particularly, despite the obvious benefits of allelopathy, current data suggest it seems to have only rarely evolved. To gain insight into the cost and benefit of allelopathy, we have developed a 2 × 2 matrix game to model the interaction between plants that produce allelochemicals and plants that do not. Production of an allelochemical introduces novel cost associated with both synthesis and detoxifying a toxic chemical but may also convey a competitive advantage. A plant that does not produce an allelochemical will suffer the cost of encountering one. Our model predicts three cases in which the evolutionarily stable strategies are different. In the first, the nonallelopathic plant is a stronger competitor, and not producing allelochemicals is the evolutionarily stable strategy. In the second, the allelopathic plant is the better competitor, and production of allelochemicals is the more beneficial strategy. In the last case, neither is the evolutionarily stable strategy. Instead, there are alternating stable states, depending on whether the allelopathic or nonallelopathic plant arrived first. The generated model reveals circumstances leading to the evolution of allelochemicals and sheds light on utilizing allelochemicals as part of weed management strategies. In particular, the wide region of alternative stable states in most parameterizations, combined with the fact that the absence of allelopathy is likely the ancestral state, provides an elegant answer to the question of why allelopathy seems to rarely evolve despite its obvious benefits. Allelopathic plants can indeed outcompete nonallelopathic plants, but this benefit is simply not great enough to allow them to go to fixation and spread through the population. Thus, most populations would remain purely nonallelopathic.
Collapse
Affiliation(s)
- Rachel M. McCoy
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteINUSA
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteINUSA
| | - Joshua R. Widhalm
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteINUSA
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteINUSA
| | - Gordon G. McNickle
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteINUSA
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteINUSA
| |
Collapse
|
2
|
Pan Z, Bajsa‐Hirschel J, Vaughn JN, Rimando AM, Baerson SR, Duke SO. In vivo assembly of the sorgoleone biosynthetic pathway and its impact on agroinfiltrated leaves of Nicotiana benthamiana. THE NEW PHYTOLOGIST 2021; 230:683-697. [PMID: 33460457 PMCID: PMC8048663 DOI: 10.1111/nph.17213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Sorgoleone, a hydrophobic compound exuded from root hair cells of Sorghum spp., accounts for much of the allelopathic activity of the genus. The enzymes involved in the biosynthesis of this compound have been identified and functionally characterized. Here, we report the successful assembly of the biosynthetic pathway and the significant impact of in vivo synthesized sorgoleone on the heterologous host Nicotiana benthamiana. A multigene DNA construct was prepared for the expression of genes required for sorgoleone biosynthesis in planta and deployed in N. benthamiana leaf tissues via Agrobacterium-mediated transient expression. RNA-sequencing was conducted to investigate the effects of sorgoleone, via expression of its biosynthesis pathway, on host gene expression. The production of sorgoleone in agroinfiltrated leaves as detected by gas chromatography/mass spectrometry (GC/MS) resulted in the formation of necrotic lesions, indicating that the compound caused severe phytotoxicity to these tissues. RNA-sequencing profiling revealed significant changes in gene expression in the leaf tissues expressing the pathway during the formation of sorgoleone-induced necrotic lesions. Transcriptome analysis suggested that the compound produced in vivo impaired the photosynthetic system as a result of downregulated gene expression for the photosynthesis apparatus and elevated expression of proteasomal genes which may play a major role in the phytotoxicity of sorgoleone.
Collapse
Affiliation(s)
- Zhiqiang Pan
- Natural Products Utilization Research UnitUS Department of Agriculture, Agricultural Research ServiceUniversityMS38677USA
| | - Joanna Bajsa‐Hirschel
- Natural Products Utilization Research UnitUS Department of Agriculture, Agricultural Research ServiceUniversityMS38677USA
| | - Justin N. Vaughn
- Genomics and Bioinformatics Research UnitUSDA, ARSAthensGA30605USA
| | - Agnes M. Rimando
- Natural Products Utilization Research UnitUS Department of Agriculture, Agricultural Research ServiceUniversityMS38677USA
| | - Scott R. Baerson
- Natural Products Utilization Research UnitUS Department of Agriculture, Agricultural Research ServiceUniversityMS38677USA
| | - Stephen O. Duke
- Natural Products Utilization Research UnitUS Department of Agriculture, Agricultural Research ServiceUniversityMS38677USA
| |
Collapse
|
3
|
Pan Z, Baerson SR, Wang M, Bajsa‐Hirschel J, Rimando AM, Wang X, Nanayakkara NPD, Noonan BP, Fromm ME, Dayan FE, Khan IA, Duke SO. A cytochrome P450 CYP71 enzyme expressed in Sorghum bicolor root hair cells participates in the biosynthesis of the benzoquinone allelochemical sorgoleone. THE NEW PHYTOLOGIST 2018; 218:616-629. [PMID: 29461628 PMCID: PMC5887931 DOI: 10.1111/nph.15037] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/08/2018] [Indexed: 05/24/2023]
Abstract
Sorgoleone, a major component of the hydrophobic root exudates of Sorghum spp., is probably responsible for many of the allelopathic properties attributed to members of this genus. Much of the biosynthetic pathway for this compound has been elucidated, with the exception of the enzyme responsible for the catalysis of the addition of two hydroxyl groups to the resorcinol ring. A library prepared from isolated Sorghum bicolor root hair cells was first mined for P450-like sequences, which were then analyzed by quantitative reverse transcription-polymerase chain reaction (RT-qPCR) to identify those preferentially expressed in root hairs. Full-length open reading frames for each candidate were generated, and then analyzed biochemically using both a yeast expression system and transient expression in Nicotiana benthamiana leaves. RNA interference (RNAi)-mediated repression in transgenic S. bicolor was used to confirm the roles of these candidates in the biosynthesis of sorgoleone in planta. A P450 enzyme, designated CYP71AM1, was found to be capable of catalyzing the formation of dihydrosorgoleone using 5-pentadecatrienyl resorcinol-3-methyl ether as substrate, as determined by gas chromatography-mass spectroscopy (GC-MS). RNAi-mediated repression of CYP71AM1 in S. bicolor resulted in decreased sorgoleone contents in multiple independent transformant events. Our results strongly suggest that CYP71AM1 participates in the biosynthetic pathway of the allelochemical sorgoleone.
Collapse
Affiliation(s)
- Zhiqiang Pan
- US Department of AgricultureAgricultural Research ServiceNatural Products Utilization Research UnitUniversityMS 38677USA
| | - Scott R. Baerson
- US Department of AgricultureAgricultural Research ServiceNatural Products Utilization Research UnitUniversityMS 38677USA
| | - Mei Wang
- National Center for Natural Products ResearchSchool of PharmacyUniversity of MississippiUniversityMS 38677USA
| | - Joanna Bajsa‐Hirschel
- US Department of AgricultureAgricultural Research ServiceNatural Products Utilization Research UnitUniversityMS 38677USA
| | - Agnes M. Rimando
- US Department of AgricultureAgricultural Research ServiceNatural Products Utilization Research UnitUniversityMS 38677USA
| | - Xiaoqiang Wang
- Department of Biological SciencesUniversity of North TexasDentonTX 76203USA
| | - N. P. Dhammika Nanayakkara
- National Center for Natural Products ResearchSchool of PharmacyUniversity of MississippiUniversityMS 38677USA
| | - Brice P. Noonan
- Department of BiologyUniversity of MississippiUniversityMS 38677USA
| | - Michael E. Fromm
- Epicrop Technologies Inc.5701 N. 58th Street, Suite 1LincolnNE 68507USA
| | - Franck E. Dayan
- US Department of AgricultureAgricultural Research ServiceNatural Products Utilization Research UnitUniversityMS 38677USA
| | - Ikhlas A. Khan
- National Center for Natural Products ResearchSchool of PharmacyUniversity of MississippiUniversityMS 38677USA
| | - Stephen O. Duke
- US Department of AgricultureAgricultural Research ServiceNatural Products Utilization Research UnitUniversityMS 38677USA
| |
Collapse
|
4
|
Desalew T, Wondmeneh E, Mekonnen G, Tadelle D. Comparative study on some egg quality traits of exotic chickens in different production systems in East Shewa, Ethiopia. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajar2014.9373] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Singh HP, Singh BP. Genetic Engineering of Field, Industrial and Pharmaceutical Crops. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ajps.2014.526416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Duke SO, Owens DK, Dayan FE. The Growing Need for Biochemical Bioherbicides. BIOPESTICIDES: STATE OF THE ART AND FUTURE OPPORTUNITIES 2014. [DOI: 10.1021/bk-2014-1172.ch003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Stephen O. Duke
- Natural Products Utilization Research Unit, Agricultural Research Service, United States Department of Agriculture, Cochran Research Center, University, Mississippi 38677, United States
| | - Daniel K. Owens
- Natural Products Utilization Research Unit, Agricultural Research Service, United States Department of Agriculture, Cochran Research Center, University, Mississippi 38677, United States
| | - Franck E. Dayan
- Natural Products Utilization Research Unit, Agricultural Research Service, United States Department of Agriculture, Cochran Research Center, University, Mississippi 38677, United States
| |
Collapse
|
7
|
Uddin MR, Thwe AA, Kim YB, Park WT, Chae SC, Park SU. Effects of jasmonates on sorgoleone accumulation and expression of genes for sorgoleone biosynthesis in sorghum roots. J Chem Ecol 2013; 39:712-22. [PMID: 23702703 PMCID: PMC3669516 DOI: 10.1007/s10886-013-0299-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/23/2013] [Accepted: 05/04/2013] [Indexed: 11/28/2022]
Abstract
This study investigated the roles of jasmonates in the regulation of sorgoleone accumulation and the expression of genes involved in sorgoleone biosynthesis in sorghum roots. Both methyl jasmonate (MeJa) and jasmonic acid (JA) substantially promoted root hair formation, secondary root development, root weight, and sorgoleone accumulation in sorghum roots. Sorgoleone content varied widely depending on the concentration of JA or MeJa and the duration of their application. Root weight and sorgoleone accumulation were highest after the application of JA or MeJa at a concentration of 5.0 μM, and then declined with increasing concentrations of jasmonates. At 5.0 μM, JA and MeJa increased sorgoleone content by 4.1 and 3.4-fold, respectively. Transcript accumulation was apparent for all genes, particularly for the O-methyltransferase 3 gene, which increased in expression levels up to 8.1-fold after a 36-h exposure to MeJa and 3.5-fold after a 48-h exposure to JA. The results of this study pave the way for more effective biosynthesis of sorgoleone, an important and useful allelochemical obtained from a variety of plant species.
Collapse
Affiliation(s)
- Md Romij Uddin
- Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 305-764, Republic of Korea
| | | | | | | | | | | |
Collapse
|
8
|
Uddin MR, Park WT, Kim YK, Pyon JY, Park SU. Effects of auxins on sorgoleone accumulation and genes for sorgoleone biosynthesis in sorghum roots. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:12948-12953. [PMID: 22087851 DOI: 10.1021/jf2024402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Sorgoleone is a major component of the hydrophobic root exudate of Sorghum bicolor and is of particular interest to plant chemical ecology as well as agriculture. Sorgoleone was evaluated in this study to observe the expression levels of genes involved in its biosynthesis in response to auxins. Sorgoleone content varied widely according to the duration of application and the concentrations of the auxins. When the application time was increased, the sorgoleone content increased accordingly for all concentrations of IBA (1, 3, and 5 mg/L) and at 1 mg/L for both IAA and NAA. In this study, five different sorgoleone biosynthetic genes were observed, namely DES2, DES3, ARS1, ARS2, and OMT3, which are upregulated in response to IAA, IBA, and NAA. Transcript accumulation was apparent for all genes, but particularly for DES2, which increased up to 475-fold and 180-fold following 72 h exposure to NAA and IBA, respectively, compared to no treatment.
Collapse
Affiliation(s)
- Md Romij Uddin
- Department of Crop Science, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, Korea
| | | | | | | | | |
Collapse
|
9
|
Baerson SR, Schröder J, Cook D, Rimando AM, Pan Z, Dayan FE, Noonan BP, Duke SO. Alkylresorcinol biosynthesis in plants: new insights from an ancient enzyme family? PLANT SIGNALING & BEHAVIOR 2010; 5:1286-9. [PMID: 20861691 PMCID: PMC3115369 DOI: 10.4161/psb.5.10.13062] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Alkylresorcinols are members of an extensive family of bioactive compounds referred to as phenolic lipids, which occur primarily in plants, fungi, and bacteria. In plants, alkylresorcinols and their derivatives are thought to serve important roles as phytoanticipins and allelochemicals, although direct evidence for this is still somewhat lacking. Specialized type III polyketide synthases (referred to as 'alkylresorcinol synthases'), which catalyze the formation of 5-alkylresorcinols using fatty acyl-CoA starter units and malonyl-CoA extender units, have been characterized from several microbial species, however until very recently little has been known concerning their plant counterparts. Through the use of sorghum and rice EST and genomic data sets, significant inroads have now been made in this regard. Here we provide additional information concerning our recent report on the identification and characterization of alkylresorcinol synthases from Sorghum bicolor and Oryza sativa, as well as a brief consideration of the emergence of this intriguing subfamily of enzymes.
Collapse
Affiliation(s)
- Scott R Baerson
- United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, MS, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Cook D, Rimando AM, Clemente TE, Schröder J, Dayan FE, Nanayakkara ND, Pan Z, Noonan BP, Fishbein M, Abe I, Duke SO, Baerson SR. Alkylresorcinol synthases expressed in Sorghum bicolor root hairs play an essential role in the biosynthesis of the allelopathic benzoquinone sorgoleone. THE PLANT CELL 2010; 22:867-87. [PMID: 20348430 PMCID: PMC2861460 DOI: 10.1105/tpc.109.072397] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Sorghum bicolor is considered to be an allelopathic crop species, producing phytotoxins such as the lipid benzoquinone sorgoleone, which likely accounts for many of the allelopathic properties of Sorghum spp. Current evidence suggests that sorgoleone biosynthesis occurs exclusively in root hair cells and involves the production of an alkylresorcinolic intermediate (5-[(Z,Z)-8',11',14'-pentadecatrienyl]resorcinol) derived from an unusual 16:3Delta(9,12,15) fatty acyl-CoA starter unit. This led to the suggestion of the involvement of one or more alkylresorcinol synthases (ARSs), type III polyketide synthases (PKSs) that produce 5-alkylresorcinols using medium to long-chain fatty acyl-CoA starter units via iterative condensations with malonyl-CoA. In an effort to characterize the enzymes responsible for the biosynthesis of the pentadecyl resorcinol intermediate, a previously described expressed sequence tag database prepared from isolated S. bicolor (genotype BTx623) root hairs was first mined for all PKS-like sequences. Quantitative real-time RT-PCR analyses revealed that three of these sequences were preferentially expressed in root hairs, two of which (designated ARS1 and ARS2) were found to encode ARS enzymes capable of accepting a variety of fatty acyl-CoA starter units in recombinant enzyme studies. Furthermore, RNA interference experiments directed against ARS1 and ARS2 resulted in the generation of multiple independent transformant events exhibiting dramatically reduced sorgoleone levels. Thus, both ARS1 and ARS2 are likely to participate in the biosynthesis of sorgoleone in planta. The sequences of ARS1 and ARS2 were also used to identify several rice (Oryza sativa) genes encoding ARSs, which are likely involved in the production of defense-related alkylresorcinols.
Collapse
Affiliation(s)
- Daniel Cook
- U.S. Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi 38677
| | - Agnes M. Rimando
- U.S. Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi 38677
| | - Thomas E. Clemente
- Center for Biotechnology, University of Nebraska, Lincoln, Nebraska 68588
| | - Joachim Schröder
- Universität Freiburg, Institut für Biologie II, D-79104 Freiburg, Germany
| | - Franck E. Dayan
- U.S. Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi 38677
| | - N.P. Dhammika Nanayakkara
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677
| | - Zhiqiang Pan
- U.S. Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi 38677
| | - Brice P. Noonan
- Department of Biology, University of Mississippi, University, Mississippi 38677
| | - Mark Fishbein
- Department of Botany, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Stephen O. Duke
- U.S. Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi 38677
| | - Scott R. Baerson
- U.S. Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi 38677
- Address correspondence to
| |
Collapse
|
11
|
Duke SO, Dayan FE, Bajsa J, Meepagala KM, Hufbauer RA, Blair AC. The case against (-)-catechin involvement in allelopathy of Centaurea stoebe (spotted knapweed). PLANT SIGNALING & BEHAVIOR 2009; 4:422-424. [PMID: 19816095 PMCID: PMC2676754 DOI: 10.4161/psb.4.5.8273] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 02/25/2009] [Indexed: 05/28/2023]
Abstract
Proving allelopathic chemical interference is a daunting endeavor, in that production and movement of a phytotoxin from a donor plant to a receiving plant must be demonstrated in the substrate in which the plants grow, which is usually a complex soil matrix. The soil levels or soil flux levels of the compound generated by the donor must be proven to be sufficient to adversely affect the receiving plant. Reports of (-)-catechin to be the novel weapon used by Centaurea stoebe (spotted knapweed) to invade new territories are not supported by the paper featured in this Addendum, nor by papers produced by two other laboratories. These papers find that (-)-catechin levels in soil in which C. stoebe grows are orders of magnitude below levels that cause only minor growth effects on reported sensitive species. Furthermore, the claim that (-)-catechin acts as a phytotoxin through causing oxidative damage is refuted by the fact that the molecule is a strong antioxidant and is quickly degraded by extracellular root enzymes.
Collapse
Affiliation(s)
- Stephen O Duke
- Natural Products Utilization Research Unit, Agricultural Research Service, United States Department of Agriculture, Oxford, MI, USA.
| | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Baerson SR, Rimando AM, Pan Z. Probing allelochemical biosynthesis in sorghum root hairs. PLANT SIGNALING & BEHAVIOR 2008; 3:667-70. [PMID: 19704820 PMCID: PMC2634551 DOI: 10.4161/psb.3.9.5779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 02/25/2008] [Indexed: 05/08/2023]
Abstract
Allelopathic interaction between plants is thought to involve the release of phytotoxic allelochemicals by one species, thus inhibiting the growth of neighboring species in competition for limited resources. Sorgoleone represents one of the more potent allelochemicals characterized to date, and its prolific production in root hair cells of Sorghum spp. has made the investigation of its biosynthetic pathway ideally-suited for functional genomics investigations. Through the use of a recently-released EST data set generated from isolated Sorghum bicolor root hair cells, significant inroads have been made toward the identification of genes and the corresponding enzymes involved in the biosynthesis of this compound in root hairs. Here we provide additional information concerning our recent report on the identification of a 5-n-alk(en) ylresorcinol utilizing O-methyltransferase, as well as other key enzymes likely to participate in the biosynthesis of this important allelochemical.
Collapse
Affiliation(s)
- Scott R Baerson
- Natural Products Utilization Research Unit; United States Department of Agriculture-Agricultural Research Service; University, Mississippi USA
| | | | | |
Collapse
|
14
|
Baerson SR, Dayan FE, Rimando AM, Nanayakkara NPD, Liu CJ, Schröder J, Fishbein M, Pan Z, Kagan IA, Pratt LH, Cordonnier-Pratt MM, Duke SO. A functional genomics investigation of allelochemical biosynthesis in Sorghum bicolor root hairs. J Biol Chem 2007; 283:3231-3247. [PMID: 17998204 DOI: 10.1074/jbc.m706587200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sorghum is considered to be one of the more allelopathic crop species, producing phytotoxins such as the potent benzoquinone sorgoleone (2-hydroxy-5-methoxy-3-[(Z,Z)-8',11',14'-pentadecatriene]-p-benzoquinone) and its analogs. Sorgoleone likely accounts for much of the allelopathy of Sorghum spp., typically representing the predominant constituent of Sorghum bicolor root exudates. Previous and ongoing studies suggest that the biosynthetic pathway for this plant growth inhibitor occurs in root hair cells, involving a polyketide synthase activity that utilizes an atypical 16:3 fatty acyl-CoA starter unit, resulting in the formation of a pentadecatrienyl resorcinol intermediate. Subsequent modifications of this resorcinolic intermediate are likely to be mediated by S-adenosylmethionine-dependent O-methyltransferases and dihydroxylation by cytochrome P450 monooxygenases, although the precise sequence of reactions has not been determined previously. Analyses performed by gas chromatography-mass spectrometry with sorghum root extracts identified a 3-methyl ether derivative of the likely pentadecatrienyl resorcinol intermediate, indicating that dihydroxylation of the resorcinol ring is preceded by O-methylation at the 3'-position by a novel 5-n-alk(en)ylresorcinol-utilizing O-methyltransferase activity. An expressed sequence tag data set consisting of 5,468 sequences selected at random from an S. bicolor root hair-specific cDNA library was generated to identify candidate sequences potentially encoding enzymes involved in the sorgoleone biosynthetic pathway. Quantitative real time reverse transcription-PCR and recombinant enzyme studies with putative O-methyltransferase sequences obtained from the expressed sequence tag data set have led to the identification of a novel O-methyltransferase highly and predominantly expressed in root hairs (designated SbOMT3), which preferentially utilizes alk(en)ylresorcinols among a panel of benzene-derivative substrates tested. SbOMT3 is therefore proposed to be involved in the biosynthesis of the allelochemical sorgoleone.
Collapse
Affiliation(s)
- Scott R Baerson
- United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi 38677.
| | - Franck E Dayan
- United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi 38677
| | - Agnes M Rimando
- United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi 38677
| | - N P Dhammika Nanayakkara
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677
| | - Chang-Jun Liu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Joachim Schröder
- Universität Freiburg, Institut für Biologie II, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | - Mark Fishbein
- Department of Biology, Portland State University, Portland, Oregon 97207
| | - Zhiqiang Pan
- United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi 38677
| | - Isabelle A Kagan
- United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi 38677
| | - Lee H Pratt
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| | | | - Stephen O Duke
- United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi 38677
| |
Collapse
|
15
|
Affiliation(s)
- Stephen O. Duke
- Natural Products Utilization Research Unit, Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 8048, University, MS 38677
| |
Collapse
|
16
|
Macías FA, Molinillo JMG, Varela RM, Galindo JCG. Allelopathy--a natural alternative for weed control. PEST MANAGEMENT SCIENCE 2007; 63:327-48. [PMID: 17348068 DOI: 10.1002/ps.1342] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Allelopathy studies the interactions among plants, fungi, algae and bacteria with the organisms living in a certain ecosystem, interactions that are mediated by the secondary metabolites produced and exuded into the environment. Consequently, allelopathy is a multidisciplinary science where ecologists, chemists, soil scientists, agronomists, biologists, plant physiologists and molecular biologists offer their skills to give an overall view of the complex interactions occurring in a certain ecosystem. As a result of these studies, applications in weed and pest management are expected in such different fields as development of new agrochemicals, cultural methods, developing of allelopathic crops with increased weed resistance, etc. The present paper will focus on the chemical aspects of allelopathy, pointing out the most recent advances in the chemicals disclosed, their mode of action and their fate in the ecosystem. Also, attention will be paid to achievements in genomics and proteomics, two emerging fields in allelopathy. Rather than being exhaustive, this paper is intended to reflect a critical vision of the current state of allelopathy and to point to future lines of research where in the authors' opinion the main advances and applications could and should be expected.
Collapse
Affiliation(s)
- Francisco A Macías
- Grupo de Alelopatía, Department of Organic Chemistry, University of Cadiz, c/República Saharaui s/n, Apdo. 40, 11510-Puerto Real, Cadiz, Spain.
| | | | | | | |
Collapse
|
17
|
Pan Z, Rimando AM, Baerson SR, Fishbein M, Duke SO. Functional characterization of desaturases involved in the formation of the terminal double bond of an unusual 16:3Delta(9,12,150) fatty acid isolated from Sorghum bicolor root hairs. J Biol Chem 2006; 282:4326-4335. [PMID: 17178719 DOI: 10.1074/jbc.m606343200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sorgoleone, produced in root hair cells of sorghum (Sorghum bicolor), is likely responsible for much of the allelopathic properties of sorghum root exudates against broadleaf and grass weeds. Previous studies suggest that the biosynthetic pathway of this compound initiates with the synthesis of an unusual 16:3 fatty acid possessing a terminal double bond. The corresponding fatty acyl-CoA serves as a starter unit for polyketide synthases, resulting in the formation of 5-pentadecatrienyl resorcinol. This resorcinolic intermediate is then methylated by an S-adenosylmethionine-dependent O-methyltransferase and subsequently dihydroxylated, yielding the reduced (hydroquinone) form of sorgoleone. To characterize the corresponding enzymes responsible for the biosynthesis of the 16:3 fatty acyl-CoA precursor, we identified and cloned three putative fatty acid desaturases, designated SbDES1, SbDES2, and SbDES3, from an expressed sequence tag (EST) data base prepared from isolated root hairs. Quantitative real-time RT-PCR analyses revealed that these three genes were preferentially expressed in sorghum root hairs where the 16:2 and 16:3 fatty acids were exclusively localized. Heterologous expression of the cDNAs in Saccharomyces cerevisiae revealed that recombinant SbDES2 converted palmitoleic acid (16:1Delta(9)) to hexadecadienoic acid (16:2Delta(9,12)), and that recombinant SbDES3 was capable of converting hexadecadienoic acid into hexadecatrienoic acid (16:3Delta(9,12,15)). Unlike other desaturases reported to date, the double bond introduced by SbDES3 occurred between carbons 15 and 16 resulting in a terminal double bond aliphatic chain. Collectively, the present results strongly suggest that these fatty acid desaturases represent key enzymes involved in the biosynthesis of the allelochemical sorgoleone.
Collapse
Affiliation(s)
- Zhiqiang Pan
- United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University of Mississippi, University, Mississippi 38677 and the.
| | - Agnes M Rimando
- United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University of Mississippi, University, Mississippi 38677 and the
| | - Scott R Baerson
- United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University of Mississippi, University, Mississippi 38677 and the
| | - Mark Fishbein
- Department of Biology, Portland State University, Portland, Oregon 97207
| | - Stephen O Duke
- United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University of Mississippi, University, Mississippi 38677 and the
| |
Collapse
|
18
|
Duke SO. Taking stock of herbicide-resistant crops ten years after introduction. PEST MANAGEMENT SCIENCE 2005; 61:211-8. [PMID: 15660452 DOI: 10.1002/ps.1024] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Since transgenic, bromoxynil-resistant cotton and glufosinate-resistant canola were introduced in 1995, planting of transgenic herbicide-resistant crops has grown substantially, revolutionizing weed management where they have been available. Before 1995, several commercial herbicide-resistant crops were produced by biotechnology through selection for resistance in tissue culture. However, non-transgenic herbicide-resistant crops have had less commercial impact. Since the introduction of glyphosate-resistant soybean in 1996, and the subsequent introduction of other glyphosate-resistant crops, where available, they have taken a commanding share of the herbicide-resistant crop market, especially in soybean, cotton and canola. The high level of adoption of glyphosate-resistant crops by North American farmers has helped to significantly reduce the value of the remaining herbicide market. This has resulted in reduced investment in herbicide discovery, which may be problematic for addressing future weed-management problems. Introduction of herbicide-resistant crops that can be used with selective herbicides has apparently been hindered by the great success of glyphosate-resistant crops. Evolution of glyphosate-resistant weeds and movement of naturally resistant weed species into glyphosate-resistant crop fields will require increases in the use of other herbicides, but the speed with which these processes compromise the use of glyphosate alone is uncertain. The future of herbicide-resistant crops will be influenced by many factors, including alternative technologies, public opinion and weed resistance. Considering the relatively few recent approvals for field testing new herbicide-resistant crops and recent decisions not to grow glyphosate-resistant sugarbeet and wheat, the introduction and adoption of herbicide-resistant crops during the next 10 years is not likely to be as dramatic as in the past 10 years.
Collapse
Affiliation(s)
- Stephen O Duke
- Natural Products Utilization Research, Agricultural Research Service, United States Department of Agriculture, PO Box 8048, University, Mississippi 38677, USA.
| |
Collapse
|