1
|
Belter A, Rolle K, Piwecka M, Fedoruk-Wyszomirska A, Naskręt-Barciszewska MZ, Barciszewski J. Inhibition of miR-21 in glioma cells using catalytic nucleic acids. Sci Rep 2016; 6:24516. [PMID: 27079911 PMCID: PMC4832220 DOI: 10.1038/srep24516] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/29/2016] [Indexed: 01/22/2023] Open
Abstract
Despite tremendous efforts worldwide, glioblastoma multiforme (GBM) remains a deadly disease for which no cure is available and prognosis is very bad. Recently, miR-21 has emerged as a key omnipotent player in carcinogenesis, including brain tumors. It is recognized as an indicator of glioma prognosis and a prosperous target for anti-tumor therapy. Here we show that rationally designed hammerhead ribozymes and DNAzymes can target miR-21 and/or its precursors. They decrease miR-21 level, and thus silence this oncomiR functions. We demonstrated that anti-miRNA catalytic nucleic acids show a novel terrific arsenal for specific and effective combat against diseases with elevated cellular miR-21 content, such as brain tumors.
Collapse
Affiliation(s)
- Agnieszka Belter
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Katarzyna Rolle
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Monika Piwecka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | | | | | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
2
|
Generation and selection of ribozyme variants with potential application in protein engineering and synthetic biology. Appl Microbiol Biotechnol 2014; 98:3389-99. [DOI: 10.1007/s00253-014-5528-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 12/22/2022]
|
3
|
Hammerhead ribozyme targeting human hypoxia inducible factor-1α gene effectively attenuates HeLa xenograft tumors. ACTA ACUST UNITED AC 2009; 72 Suppl 1:S8-S16; discussion S16. [DOI: 10.1016/j.surneu.2008.02.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 02/20/2008] [Indexed: 02/03/2023]
|
4
|
Wieland M, Hartig JS. Artificial riboswitches: synthetic mRNA-based regulators of gene expression. Chembiochem 2008; 9:1873-8. [PMID: 18604832 DOI: 10.1002/cbic.200800154] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Markus Wieland
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | | |
Collapse
|
5
|
A structural analysis of in vitro catalytic activities of hammerhead ribozymes. BMC Bioinformatics 2007; 8:469. [PMID: 18053134 PMCID: PMC2238771 DOI: 10.1186/1471-2105-8-469] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 11/30/2007] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Ribozymes are small catalytic RNAs that possess the dual functions of sequence-specific RNA recognition and site-specific cleavage. Trans-cleaving ribozymes can inhibit translation of genes at the messenger RNA (mRNA) level in both eukaryotic and prokaryotic systems and are thus useful tools for studies of gene function. However, identification of target sites for efficient cleavage poses a challenge. Here, we have considered a number of structural and thermodynamic parameters that can affect the efficiency of target cleavage, in an attempt to identify rules for the selection of functional ribozymes. RESULTS We employed the Sfold program for RNA secondary structure prediction, to account for the likely population of target structures that co-exist in dynamic equilibrium for a specific mRNA molecule. We designed and prepared 15 hammerhead ribozymes to target GUC cleavage sites in the mRNA of the breast cancer resistance protein (BCRP). These ribozymes were tested, and their catalytic activities were measured in vitro. We found that target disruption energy owing to the alteration of the local target structure necessary for ribozyme binding, and the total energy change of the ribozyme-target hybridization, are two significant parameters for prediction of ribozyme activity. Importantly, target disruption energy is the major contributor to the predictability of ribozyme activity by the total energy change. Furthermore, for a target-site specific ribozyme, incorrect folding of the catalytic core, or interactions involving the two binding arms and the end sequences of the catalytic core, can have detrimental effects on ribozyme activity. CONCLUSION The findings from this study suggest rules for structure-based rational design of trans-cleaving hammerhead ribozymes in gene knockdown studies. Tools implementing these rules are available from the Sribo module and the Srna module of the Sfold program available through Web server at http://sfold.wadsworth.org.
Collapse
|
6
|
Radhakrishnan R. Coupling of fast and slow modes in the reaction pathway of the minimal hammerhead ribozyme cleavage. Biophys J 2007; 93:2391-9. [PMID: 17545240 PMCID: PMC1965431 DOI: 10.1529/biophysj.107.104661] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
By employing classical molecular dynamics, correlation analysis of coupling between slow and fast dynamical modes, and free energy (umbrella) sampling using classical as well as mixed quantum mechanics molecular mechanics force fields, we uncover a possible pathway for phosphoryl transfer in the self-cleaving reaction of the minimal hammerhead ribozyme. The significance of this pathway is that it initiates from the minimal hammerhead crystal structure and describes the reaction landscape as a conformational rearrangement followed by a covalent transformation. The delineated mechanism is catalyzed by two metal (Mg(2+)) ions, proceeds via an in-line-attack by CYT 17 O2' on the scissile phosphorous (ADE 1.1 P), and is therefore consistent with the experimentally observed inversion configuration. According to the delineated mechanism, the coupling between slow modes involving the hammerhead backbone with fast modes in the cleavage site appears to be crucial for setting up the in-line nucleophilic attack.
Collapse
Affiliation(s)
- Ravi Radhakrishnan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
7
|
Ivanova G, Reigadas S, Ittig D, Arzumanov A, Andreola ML, Leumann C, Toulmé JJ, Gait MJ. Tricyclo-DNA containing oligonucleotides as steric block inhibitors of human immunodeficiency virus type 1 tat-dependent trans-activation and HIV-1 infectivity. Oligonucleotides 2007; 17:54-65. [PMID: 17461763 DOI: 10.1089/oli.2006.0046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Replication of human immunodeficiency virus type 1 (HIV-1) is controlled by a variety of viral and host proteins. The viral protein Tat acts in concert with host cellular factors to stimulate transcriptional elongation from the viral long terminal repeat (LTR) through a specific interaction with a 59-residue stem-loop RNA known as the trans-activation responsive element (TAR). Inhibitors of Tat-TAR recognition are expected to block transcription and suppress HIV-1 replication. In previous studies, we showed that 2'-O-methyl (OMe) oligonucleotide mixmers containing locked nucleic acid (LNA) residues are powerful steric block inhibitors of Tat-dependent trans-activation in a HeLa cell reporter system. Here we compare OMe/LNA mixmer oligonucleotides with oligonucleotides containing tricyclo-DNAs and their mixmers with OMe residues in four different assays: (1) binding to the target TAR RNA, (2) Tat-dependent in vitro transcription from an HIV-1 DNA template directed by HeLa cell nuclear extract, (3) trans-activation inhibition in HeLa cells containing a stably integrated firefly luciferase reporter gene under HIV-1 LTR control, and (4) an anti-HIV beta-galactosidase reporter assay of viral infection. Although tricyclo-DNA oligonucleotides bound TAR RNA more weakly, they were as good as OMe/LNA oligonucleotides in suppressing in vitro transcription and trans-activation in HeLa cells when delivered by cationic lipid. No inhibition of in vitro transcription and trans-activation in HeLa cells was observed for tricyclo-DNA/OMe mixmers, even though their affinities to TAR RNA were strong and their cell distributions did not differ from oligonucleotides containing all or predominantly tricyclo-DNA residues. Tricyclo-DNA 16-mer showed sequence-specific inhibition of beta-galactosidase expression in an anti-HIV HeLa cell reporter assay.
Collapse
Affiliation(s)
- Gabriela Ivanova
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 2QH, UK
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Boonanuntanasarn S, Takeuchi T, Yoshizaki G. High-efficiency gene knockdown using chimeric ribozymes in fish embryos. Biochem Biophys Res Commun 2005; 336:438-43. [PMID: 16153606 DOI: 10.1016/j.bbrc.2005.08.113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 08/10/2005] [Indexed: 11/24/2022]
Abstract
We report an effective gene knockdown technique in rainbow trout embryos using additional RNA components combined with ribozymes (R(z)s). Chimeric R(z)s (tR(z)Cs) containing tRNA(Val), R(z) against GFP, and a constitutive transport element were microinjected into transgenic embryos. tR(z)Cs induced greater gene interference than R(z)s alone. Control tR(z)Cs did not affect unpaired bases of target RNA, and the tR(z)C did not interfere with non-relevant gene expression, suggesting that the tR(z)C-mediated gene-interference effects were sequence-specific. Furthermore, the tR(z)C-containing expression vector specifically suppressed target GFP expression in transgenic trout. tR(z)Cs enhance R(z) cleavage and could therefore be powerful tools for studying unknown gene function in vertebrates.
Collapse
Affiliation(s)
- Surintorn Boonanuntanasarn
- School of Animal Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand
| | | | | |
Collapse
|
9
|
Famulok M, Mayer G. Intramers and aptamers: applications in protein-function analyses and potential for drug screening. Chembiochem 2005; 6:19-26. [PMID: 15637667 DOI: 10.1002/cbic.200400299] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Michael Famulok
- Rheinische Friedrich-Wilhelms Universität Bonn, Kekulé-Institut für Organische Chemie und Biochemie, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | | |
Collapse
|
10
|
Boero M, Tateno M, Terakura K, Oshiyama A. Double-Metal-Ion/Single-Metal-Ion Mechanisms of the Cleavage Reaction of Ribozymes: First-Principles Molecular Dynamics Simulations of a Fully Hydrated Model System. J Chem Theory Comput 2005; 1:925-34. [DOI: 10.1021/ct050066q] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mauro Boero
- Institute of Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan, Center for Biological Resources and Informatics, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan, Division of Frontier Research, Creative Research Initiative “Sousei”, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan, and Research Institute for Computational Sciences, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono,
| | - Masaru Tateno
- Institute of Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan, Center for Biological Resources and Informatics, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan, Division of Frontier Research, Creative Research Initiative “Sousei”, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan, and Research Institute for Computational Sciences, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono,
| | - Kiyoyuki Terakura
- Institute of Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan, Center for Biological Resources and Informatics, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan, Division of Frontier Research, Creative Research Initiative “Sousei”, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan, and Research Institute for Computational Sciences, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono,
| | - Atsushi Oshiyama
- Institute of Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan, Center for Biological Resources and Informatics, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan, Division of Frontier Research, Creative Research Initiative “Sousei”, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan, and Research Institute for Computational Sciences, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono,
| |
Collapse
|
11
|
Arzumanov A, Stetsenko DA, Malakhov AD, Reichelt S, Sørensen MD, Babu BR, Wengel J, Gait MJ. A structure-activity study of the inhibition of HIV-1 Tat-dependent trans-activation by mixmer 2'-O-methyl oligoribonucleotides containing locked nucleic acid (LNA), alpha-L-LNA, or 2'-thio-LNA residues. Oligonucleotides 2004; 13:435-53. [PMID: 15025911 DOI: 10.1089/154545703322860762] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The HIV-1 trans-activation responsive element (TAR) RNA stem-loop interacts with the HIV trans-activator protein Tat and other cellular factors to stimulate transcriptional elongation from the viral long terminal repeat (LTR). Inhibitors of these interactions block full-length transcription and, hence, would potentially inhibit HIV replication. We have studied structure-activity relationships in inhibition of trans-activation by steric block 2'-O-methyl (OMe) oligonucleotides chimeras (mixmers) containing locked nucleic acid (LNA) units. Inhibition was measured both in Tat-dependent in vitro transcription from an HIV-1 DNA template directed by HeLa cell nuclear extract and in a robust HeLa cell reporter assay that involves use of stably integrated plasmids to express firefly luciferase Tat dependently and Renilla luciferase Tat-independently. OMe oligonucleotides with optimally 40%-50% LNA units and a minimum of 12 residues in length were active in the cellular assay when delivered with cationic gemini surfactant GS11 at 50% inhibitory concentrations of 230 +/- 40 nM, whereas activity in the in vitro transcription assay was observed down to 9 residues. No cellular activity was observed for OMe oligonucleotides of 12 or 16 residues, which was shown to be due to poor cellular uptake. Both 12-mer mixmers containing alpha -L-LNA or 2'-thio-LNA (S-LNA) were also active in in vitro transcription and the former in cellular reporter inhibition assays, demonstrating that the property of promotion of cellular uptake by LNA is not due to specific sugar conformational effects. Covalent conjugates of OMe/LNA chimeras with Kaposi-fibroblast growth factor (K-FGF) or Transportan peptides failed to enter HeLa cells without a delivery agent but were fully active when delivered by cationic gemini surfactant, showing that in principle, peptide conjugation does not interfere with cellular activity. Thus, OMe/LNA mixmers are powerful reagents for use as steric block inhibitors of gene expression regulated by protein-RNA interactions within HeLa cell nuclei.
Collapse
Affiliation(s)
- Andrey Arzumanov
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 2QH, UK
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Bergeron LJ, Ouellet J, Perreault JP. Ribozyme-based gene-inactivation systems require a fine comprehension of their substrate specificities; the case of delta ribozyme. Curr Med Chem 2003; 10:2589-97. [PMID: 14529473 PMCID: PMC2902527 DOI: 10.2174/0929867033456486] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The ability of ribozymes (i.e. RNA enzymes) to specifically recognize and subsequently catalyze the cleavage of an RNA substrate makes them attractive for the development of therapeutic tools for the inactivation of both viral RNAs and mRNAs associated with various diseases. Several applicable ribozyme models have been tested both in vitro and in a cellular environment, and have shown significant promise. However, several hurdles remain to be surpassed before we generate a useful gene-inactivation system based on a ribozyme. Among the most important requirements for further progress are a better understanding of the features that contribute to defining the substrate specificity for cleavage by a ribozyme, and the identification of the potential cleavage sites in a given target RNA. The goal of this review is to illustrate the importance of both of these factors at the RNA level in the development of any type of ribozyme based gene-therapy. This is achieved by reviewing the recent progress in both the structure-function relationships and the development of a gene-inactivation system of a model ribozyme, specifically delta ribozyme.
Collapse
Affiliation(s)
| | | | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine, Université de Sherbrooke, Sherbrooke, Québec, JIH 5N4, Canada
| |
Collapse
|
13
|
|
14
|
Tilly G, Chapuis J, Vilette D, Laude H, Vilotte JL. Efficient and specific down-regulation of prion protein expression by RNAi. Biochem Biophys Res Commun 2003; 305:548-51. [PMID: 12763028 DOI: 10.1016/s0006-291x(03)00805-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Prion diseases are fatal neurodegenerative disorders associated with an abnormal isoform of the PrPc host-encoded protein. Invalidation of the Prnp gene, that encodes PrPc, led to transgenic mice that are viable, apparently healthy, and resistant to challenge by the infectious agent. These results indicated that a down-regulation of the Prnp gene expression is a potential therapeutic approach. In the present report, we demonstrate that RNAi targeted towards the Prnp mRNA can efficiently and highly specifically reduce the level of PrPc in transfected cells. It, thus, indicates that RNAi is an attractive therapeutic approach to fight against prion diseases.
Collapse
Affiliation(s)
- G Tilly
- Laboratoire de Génétique Biochimique et de Cytogénétique, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas Cedex, France
| | | | | | | | | |
Collapse
|
15
|
Luzi E, Papucci L, Schiavone N, Donnini M, Lapucci A, Tempestini A, Witort E, Nicolin A, Capaccioli S. Downregulation of bcl-2 expression in lymphoma cells by bcl-2 ARE-targeted modified, synthetic ribozyme. Cancer Gene Ther 2003; 10:201-8. [PMID: 12637941 DOI: 10.1038/sj.cgt.7700556] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Synthetic ribozymes are catalytic RNA molecules designed to inhibit gene expression by cleaving specific mRNA sequences. We investigated the potential of synthetic ribozymes to inhibit bcl-2 expression in apoptosis defective bcl-2 overexpressing tumors. A chemically stabilized hammerhead ribozyme has been targeted to the A+U-rich regulative element of bcl-2 mRNA that is involved in bcl-2 gene switch-off during apoptosis. The design of the ribozyme was based on the results of probing accessibility of the RNA target in cellular extracts with antisense DNA. The ribozyme was lipotransfected to a bcl-2 overexpressing human lymphoma cell line (Raji). The cellular uptake of this ribozyme resulted in a marked reduction of both bcl-2 mRNA and BCL-2 protein levels and dramatically increased cellular death by apoptosis. Our results suggest a potential therapeutic application of such ribozyme for the treatment of bcl-2 overexpressing tumors.
Collapse
Affiliation(s)
- Ettore Luzi
- Department of Experimental Pathology and Oncology, University of Florence, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Oligonucleotides have a wide range of applications in fields such as biotechnology, molecular biology, diagnosis and therapy. However, the spectrum of uses can be broadened by introducing chemical modifications into their structures. The most prolific field in the search for new oligonucleotide analogs is the antisense strategy, where chemical modifications confer appropriate characteristics such as hybridization, resistance to nucleases, cellular uptake, selectivity and, basically, good pharmacokinetic and pharmacodynamic properties. Combinatorial technology is another research area where oligonucleotides and their analogs are extensively employed. Aptamers, new catalytic ribozymes and deoxyribozymes are RNA or DNA molecules individualized from a randomly synthesized library on the basis of a particular property. They are identified by repeated cycles of selection and amplification, using PCR technologies. Modified nucleotides can be introduced either during the amplification procedure or after selection.
Collapse
Affiliation(s)
- M Gallo
- Laboratorio de Química de Acidos Nucleicos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, CONICET-UBA, Buenos Aires, Argentina
| | | | | |
Collapse
|
17
|
Abstract
Non-natural, functional RNA molecules, such as short interfering (si) RNAs, aptazymes, maxizymes and intramers, allow modulation of gene function at the mRNA or protein level. This review discusses recent advances made in the expression and application of these functional RNAs and illustrates how engineered, intracellularly active RNAs can serve as promising tools for understanding the function of genes and their protein products or as potential therapeutic agents.
Collapse
Affiliation(s)
- Michael Famulok
- Institut für Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany.
| | | |
Collapse
|
18
|
Boero M, Terakura K, Tateno M. Catalytic role of metal ion in the selection of competing reaction paths: a first principles molecular dynamics study of the enzymatic reaction in ribozyme. J Am Chem Soc 2002; 124:8949-57. [PMID: 12137550 DOI: 10.1021/ja017843q] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
By using finite temperature first principles molecular dynamics, the mechanism of the enzymatic reaction of ribozyme was investigated for both the anionic and the radical charge states of the modeled RNA fragment. In the case of the anionic system, a pseudorotation and the subsequent 3' --> 2' migration occur in a vacuum, rather than the self-cleavage of the phosphodiester. On the other hand, when either a divalent metal ion (Mg(2+)) catalyst or the continuous hydrogen bond network of the solvent is present, the reaction path of the anionic species changes dramatically, going toward the transesterification channel. In a radical system, the transesterification can occur without a metal catalyst, as a consequence of the displacement of a hole (empty electronic state) along the reaction path. Thus, the present analysis suggests that a metal ion might be essential not only in lowering the activation barrier but also in selecting the reaction path among those corresponding to possible different charge states of the intermediate structure in vivo. Furthermore, simulation of the anionic species in solution shows that, in the absence of a metal catalyst, water molecules cooperate with the proton transfer via a proton wire mechanism and the hydrogen bond network plays a crucial role in preventing pseudorotations. On the other hand, when a metal cation is present in the vicinity of the site where the nucleophilic attack occurs, the hydrogen bond network is interrupted and detachment of the proton, enhanced by the catalyst, does not give rise to any proton-transfer process.
Collapse
Affiliation(s)
- Mauro Boero
- Angstrom Technology Partnership, Joint Research Center for Atom Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-0046, Japan.
| | | | | |
Collapse
|
19
|
Hartig JS, Najafi-Shoushtari SH, Grüne I, Yan A, Ellington AD, Famulok M. Protein-dependent ribozymes report molecular interactions in real time. Nat Biotechnol 2002; 20:717-22. [PMID: 12089558 DOI: 10.1038/nbt0702-717] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Most approaches to monitoring interactions between biological macromolecules require large amounts of material, rely upon the covalent modification of an interaction partner, or are not amenable to real-time detection. We have developed a generalizable assay system based on interactions between proteins and reporter ribozymes. The assay can be configured in a modular fashion to monitor the presence and concentration of a protein or of molecules that modulate protein function. We report two applications of the assay: screening for a small molecule that disrupts protein binding to its nucleic acid target and screening for protein protein interactions. We screened a structurally diverse library of antibiotics for small molecules that modulate the activity of HIV-1 Rev-responsive ribozymes by binding to Rev. We identified an inhibitor that subsequently inhibited HIV-1 replication in cells. A simple format switch allowed reliable monitoring of domain-specific interactions between the blood-clotting factor thrombin and its protein partners. The rapid identification of interactions between proteins or of compounds that disrupt such interactions should have substantial utility for the drug-discovery process.
Collapse
Affiliation(s)
- Jörg S Hartig
- Kekulé Institut für Organische Chemie und Biochemie, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Puerta-Fernández E, Barroso-DelJesus A, Berzal-Herranz A. Anchoring hairpin ribozymes to long target RNAs by loop-loop RNA interactions. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2002; 12:1-9. [PMID: 12022685 DOI: 10.1089/108729002753670210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Efficient ribozyme-mediated gene silencing requires the effective binding of a ribozyme to its specific target sequence. Stable stem-loop domains are key elements for efficiency of natural antisense RNAs. This work tests the possibility of using such naturally existing structural motifs for anchoring hairpin ribozymes when targeting long RNAs. Assays were performed with four catalytic antisense RNAs, based on the hairpin ribozyme (HP), that carried a stable stem-loop motif at their 3' end. Extensions consisted of one of the following motifs: the stem-loop II of the natural antisense RNA-CopA, its natural target in CopT, the TAR-RNA motif, or its complementary sequence alphaTAR. Interestingly, the presence of any of these antisense motifs resulted in an enhancement of catalytic performance against the ribozyme's 14-nucleotide-long target RNA (Swt). A series of artificial, long RNA substrates containing the Swt sequence and the natural TAR-RNA stem-loop were constructed and challenged with a catalytic antisense RNA carrying the TAR-complementary stem-loop. This cleaves each of these substrates significantly more efficiently than HP. The deletion of the TAR domain in the substrate, or its substitution by its complementary counterpart alphaTAR, abolishes the positive effect. These results suggest that the enhancement is owed to the interaction of both complementary stem-loop domains. Moreover, they demonstrate that the TAR domain can be used as an anchoring site to facilitate the access of hairpin ribozymes to their specific target sequences within TAR-containing RNAs.
Collapse
Affiliation(s)
- Elena Puerta-Fernández
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | | |
Collapse
|
21
|
Famulok M, Blind M, Mayer G. Intramers as promising new tools in functional proteomics. CHEMISTRY & BIOLOGY 2001; 8:931-9. [PMID: 11590018 DOI: 10.1016/s1074-5521(01)00070-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Aptamers are valuable tools for studying numerous aspects of biological processes, opening up new experimental opportunities to analyse the function of a wide range of cellular molecules. Functional RNA molecules can be rapidly selected in vitro from complex combinatorial mixtures of different sequences. Recently, it was shown that in vitro selection processes can be automated: the first generation selection robots will soon mean aptamers for several targets can be isolated in parallel within days rather than weeks. Aptamers not only exhibit highly specific molecular recognition properties but are also able to modulate the function of their cognate targets in a highly specific manner by agonistic or antagonistic mechanisms. These properties prompted the development of novel technologies to exploit the use of aptamers to modulate distinct functions of biological targets. Recent controlled expression of aptamers inside cells demonstrated their impressive potential as rapidly generated intracellular inhibitors of biomolecules. Intracellularly applied aptamers are also called 'intramers'. Here we discuss recent developments and strategies for intramer-based technologies that have the potential to greatly facilitate characterisation of unknown protein functions in the context of their natural expression status in vivo. Thus, intramer-based technologies offer many promising applications in functional genomics, proteomics and drug discovery.
Collapse
Affiliation(s)
- M Famulok
- Kekulé-Institut für Organische und Biochimie, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany.
| | | | | |
Collapse
|
22
|
Sohail M, Hochegger H, Klotzbücher A, Guellec RL, Hunt T, Southern EM. Antisense oligonucleotides selected by hybridisation to scanning arrays are effective reagents in vivo. Nucleic Acids Res 2001; 29:2041-51. [PMID: 11353073 PMCID: PMC55457 DOI: 10.1093/nar/29.10.2041] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transcripts representing mRNAs of three Xenopus cyclins, B1, B4 and B5, were hybridised to arrays of oligonucleotides scanning the first 120 nt of the coding region to assess the ability of the immobilised oligonucleotides to form heteroduplexes with their targets. Oligonucleotides that produced high heteroduplex yield and others that showed little annealing were assayed for their effect on translation of endogenous cyclin mRNAs in Xenopus egg extracts and their ability to promote cleavage of cyclin mRNAs in oocytes by RNase H. Excellent correlation was found between antisense potency and affinity of oligonucleotides for the cyclin transcripts as measured by the array, despite the complexity of the cellular environment.
Collapse
Affiliation(s)
- M Sohail
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | | | | | | | | | |
Collapse
|
23
|
Wyszko E, Barciszewska MZ, Bald R, Erdmann VA, Barciszewski J. The specific hydrolysis of HIV-1 TAR RNA element with the anti-TAR hammerhead ribozyme: structural and functional implications. Int J Biol Macromol 2001; 28:373-80. [PMID: 11325424 DOI: 10.1016/s0141-8130(01)00138-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The main transcriptional regulator of the human immunodeficiency virus is the Tat protein, which recognises and binds to a fragment RNA at the 5' end of viral mRNA, named transactivation response element (TAR) RNA. Extensive mutagenesis studies have shown that a region of TAR RNA important for Tat binding involves a set of nucleotides surrounding a characteristic UCU nucleotide bulge. The specific Tat-TAR complex formation enhances the rate of transcription elongation but inhibition of that interaction prevents the human immunodeficiency virus type 1 (HIV-1) replication. If so, a possibility of virus inactivation would be a site specific degradation of the TAR RNA element. To break down and inactivate TAR RNA, we designated the anti-hammerhead (HH) ribozyme to cleave nucleosides within the bulge. We showed for the first time the new type of the AUC hammerhead ribozyme, which hydrolyses specifically the TAR RNA element at C8 nucleotide in the bulge (C24 in the standard TAR RNA numbering). The cleavage reaction has broad magnesium requirements. Mn and particularly Ca are less efficient. Argininamide interferes with the cleavage of TAR RNA induced by the ribozyme. These results have two implications; (i) structural, where the HIV-1 TAR RNA element in solution occurs in equilibrium of only two forms, one of which, a double stranded RNA, meets structural requirements for ribozyme pairing and cleavage, and (ii) functional, the HH ribozyme can be explored for an inactivation of HIV-1 through the TAR RNA element deintegration.
Collapse
Affiliation(s)
- E Wyszko
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, 61794, Poznan, Poland
| | | | | | | | | |
Collapse
|
24
|
Abstract
The hammerhead ribozyme is an intriguing RNA molecule with the ability to serve as a catalyst to cleave sequence-specifically RNA molecules in an intermolecular reaction. Preferentially Mg(2+) is required for optimal activity by inducing the catalytically competent conformation and by possibly acting as an acid-base catalyst. Even though the three-dimensional structure has been elucidated details of the structure-function relationship and of the mechanism remain unanswered. The hammerhead ribozyme has stimulated the concept of the sequence-specific cleavage of mRNAs intracellularly and thus to inhibit gene expression by preventing translation. This represents an area of considerable interest as it has the potential for the development of drugs.
Collapse
Affiliation(s)
- F Eckstein
- Max-Planck Institut für experimentelle Medizin, Hermann-Rein-Str. 3, D-37075 Göttingen, Germany.
| | | |
Collapse
|
25
|
Geyer CR. Peptide Aptamers: Dominant “Genetic” Agents for Forward and Reverse Analysis of Cellular Processes. ACTA ACUST UNITED AC 2001; Chapter 24:Unit 24.4. [DOI: 10.1002/0471142727.mb2404s52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Beckley SA, Liu P, Stover ML, Gunderson SI, Lichtler AC, Rowe DW. Reduction of target gene expression by a modified U1 snRNA. Mol Cell Biol 2001; 21:2815-25. [PMID: 11283260 PMCID: PMC86911 DOI: 10.1128/mcb.21.8.2815-2825.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the primary function of U1 snRNA is to define the 5' donor site of an intron, it can also block the accumulation of a specific RNA transcript when it binds to a donor sequence within its terminal exon. This work was initiated to investigate if this property of U1 snRNA could be exploited as an effective method for inactivating any target gene. The initial 10-bp segment of U1 snRNA, which is complementary to the 5' donor sequence, was modified to recognize various target mRNAs (chloramphenicol acetyltransferase [CAT], beta-galactosidase, or green fluorescent protein [GFP]). Transient cotransfection of reporter genes and appropriate U1 antitarget vectors resulted in >90% reduction of transgene expression. Numerous sites within the CAT transcript were suitable for targeting. The inhibitory effect of the U1 antitarget vector is directly related to the hybrid formed between the U1 vector and target transcripts and is dependent on an intact 70,000-molecular-weight binding domain within the U1 gene. The effect is long lasting when the target (CAT or GFP) and U1 antitarget construct are inserted into fibroblasts by stable transfection. Clonal cell lines derived from stable transfection with a pOB4GFP target construct and subsequently stably transfected with the U1 anti-GFP construct were selected. The degree to which GFP fluorescence was inhibited by U1 anti-GFP in the various clonal cell lines was assessed by fluorescence-activated cell sorter analysis. RNA analysis demonstrated reduction of the GFP mRNA in the nuclear and cytoplasmic compartment and proper 3' cleavage of the GFP residual transcript. An RNase protection strategy demonstrated that the transfected U1 antitarget RNA level varied between 1 to 8% of the endogenous U1 snRNA level. U1 antitarget vectors were demonstrated to have potential as effective inhibitors of gene expression in intact cells.
Collapse
Affiliation(s)
- S A Beckley
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | | | | | |
Collapse
|
27
|
Geyer CR, Brent R. Selection of genetic agents from random peptide aptamer expression libraries. Methods Enzymol 2001; 328:171-208. [PMID: 11075346 DOI: 10.1016/s0076-6879(00)28398-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- C R Geyer
- Molecular Sciences Institute, Berkeley, California 94704, USA
| | | |
Collapse
|
28
|
Bramlage B, Luzi E, Eckstein F. HIV-1 LTR as a target for synthetic ribozyme-mediated inhibition of gene expression: site selection and inhibition in cell culture. Nucleic Acids Res 2000; 28:4059-67. [PMID: 11058100 PMCID: PMC113160 DOI: 10.1093/nar/28.21.4059] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A library of three synthetic ribozymes with randomized arms, targeting NUX, GUX and NXG triplets, respectively, were used to identify ribozyme-accessible sites on the HIV-1 LTR transcript comprising positions -533 to 386. Three cleavable sites were identified at positions 109, 115 and 161. Ribozymes were designed against these sites, either unmodified or with 2'-modifications and phosphorothioate groups, and their cleavage activities of the transcript were determined. Their biological activities were assessed in cell culture, using a HIV-1 model assay system where the LTR is a promoter for the expression of the reporter gene luciferase in a transient expression system. Intracellular efficiency of the ribozymes were determined by cotransfection of ribozyme and plasmid DNA, expressing the target RNA. Modified ribozymes, directed against positions 115 and 161, lowered the level of LTR mRNA in the cell resulting in inhibition of expression of the LTR-driven reporter gene luciferase of 87 and 61%, respectively. In the presence of Tat the inhibitions were 43 and 25%. The inactive variants of these ribozymes exhibited a similar inhibitory effect. RNase protection revealed a reduction of RNA which was somewhat stronger for the active than the inactive ribozymes, particularly for ribozyme 115. Unmodified ribozymes showed no inhibition in the cell. The third ribozyme, targeting a GUG-triplet at position 109, possessed only low cleavage activity in vitro and no inhibitory effect in cell culture.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Codon/genetics
- Down-Regulation
- Gene Expression Regulation, Viral
- Gene Library
- Genes, Reporter/genetics
- Genetic Engineering
- HIV Long Terminal Repeat/genetics
- HIV-1/genetics
- HeLa Cells
- Humans
- Kinetics
- Nuclease Protection Assays
- Nucleic Acid Conformation
- Oligoribonucleotides/chemical synthesis
- Oligoribonucleotides/chemistry
- Oligoribonucleotides/genetics
- Oligoribonucleotides/metabolism
- RNA Stability
- RNA, Catalytic/chemical synthesis
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Substrate Specificity
- Transcription, Genetic/genetics
- Transfection
Collapse
Affiliation(s)
- B Bramlage
- Max-Planck-Institut für experimentelle Medizin, Hermann-Rein-Strabetae 3, D-37075 Göttingen, Germany
| | | | | |
Collapse
|
29
|
Abstract
Triplex-forming oligonucleotides (TFOs) recognize and bind to specific duplex DNA sequences and have been used extensively to modify gene function in cells. Although germ line mutations can be incorporated by means of embryonic stem cell technology, little progress has been made toward introducing mutations in somatic cells of living organisms. Here we demonstrate that TFOs can induce mutations at specific genomic sites in somatic cells of adult mice. Mutation detection was facilitated by the use of transgenic mice bearing chromosomal copies of the supF and cII reporter genes. Mice treated with a supF-targeted TFO displayed about fivefold greater mutation frequencies in the supF gene compared with mice treated with a scrambled sequence control oligomer. No mutagenesis was detected in the control gene (cII) with either oligonucleotide. These results demonstrate that site-specific, TFO-directed genome modification can be accomplished in intact animals.
Collapse
Affiliation(s)
- K M Vasquez
- Departments of Therapeutic Radiology and Genetics, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | | | | |
Collapse
|
30
|
Kore AR, Vaish NK, Morris JA, Eckstein F. In vitro evolution of the hammerhead ribozyme to a purine-specific ribozyme using mutagenic PCR with two nucleotide analogues. J Mol Biol 2000; 301:1113-21. [PMID: 10966809 DOI: 10.1006/jmbi.2000.4020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The conventional hammerhead ribozyme cleaves RNA 3' to nucleotide triplets with the general formula NUH, where N is any nucleotide, U is uridine and H is any nucleotide except guanosine. In order to isolate hammerhead ribozyme sequences capable of cleaving 3' to the GUG triplet, we performed a mutagenic selection protocol starting with the conventional sequence of an NUH-cleaving ribozyme. The 22 nucleotides in the core and the stem-loop II region were subjected to mutagenic PCR using the two nucleotide analogues 6-(2-deoxy-beta-d-ribofuranosyl)-3,4-dihydro-8H-pyrimido-[4,5-C)][1, 2] oxazin-7-one and of 8-oxo-2'-deoxyguanosine. After five repetitions of the selection cycle, several clones showed cleavage activity. One sequence, having one deletion, showed at least a 90 times higher in trans cleavage rate than the starting ribozyme. It cleaved 3' to GUG and GUA. The sequence of this ribozyme is essentially identical with that obtained previously by selection for AUG cleavage starting with a randomised core and stem-loop II region. This identical result of two independent selection procedures supports the notion that sequences for NUR cleavage, where R is a purine nucleotide, are not compatible with the classical hammerhead structure, and that the sequence space for this cleavage specificity is very limited. The cleavage of NUR triplets is not restricted to the sequence of the substrate that was used for selection but is sequence-independent for in trans cleavage, although the sequence context influences the value for the cleavage rate somewhat. Analysis of cleavage activities indicates the importance of A at position L2.5 in loop II.
Collapse
Affiliation(s)
- A R Kore
- Max-Planck-Institut für experimentelle Medizin, Hermann-Rein-Str. 3, Göttingen, D-37075, Germany
| | | | | | | |
Collapse
|
31
|
Famulok M, Mayer G, Blind M. Nucleic acid aptamers-from selection in vitro to applications in vivo. Acc Chem Res 2000; 33:591-9. [PMID: 10995196 DOI: 10.1021/ar960167q] [Citation(s) in RCA: 332] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aptamers are nucleic acid ligands which are isolated from combinatorial oligonucleotide libraries by in vitro selection. They exhibit highly complex and sophisticated molecular recognition properties and are capable of binding tightly and specifically to targets ranging from small molecules to complex multimeric structures. Besides their promising application as molecular sensors, many aptamers targeted against proteins are also able to interfere with the proteins' biological function. Recently developed techniques facilitate the intracellular application of aptamers and their use as in vivo modulators of cellular physiology. Using these approaches, one can quickly obtain highly specific research reagents that act on defined intracellular targets in the context of the living cell.
Collapse
Affiliation(s)
- M Famulok
- Kekulé-Institut für Organische Chemie und Biochemie, Gerhard Domagk-Strasse 1, 53121 Bonn, Germany.
| | | | | |
Collapse
|
32
|
Kore AR, Carola C, Eckstein F. Attempts to obtain more efficient GAC-cleaving hammerhead ribozymes by in vitro selection. Bioorg Med Chem 2000; 8:1767-71. [PMID: 10976525 DOI: 10.1016/s0968-0896(00)00103-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
An in vitro selection was carried out to identify hammerhead ribozymes cleaving 3' to GAC triplets more efficiently than the wild type ribozyme. A double-stranded DNA containing the sequence for the hammerhead ribozyme with 10 randomizations in the catalytic core, designed for in cis cleavage, was transcribed and the cleavage product amplified by reverse transcription and PCR. After seven selection cycles, the DNA was cloned and 50 colonies sequenced. One sequence, appearing six times, was active for in cis cleavage of GAC. It was identical to the consensus sequence except for a mutation at position 7. Another cleaved GUC and two more, cleaved GUA. The cleavage rates of these ribozymes for in trans cleavage were slower than the rate of the consensus ribozyme. Interestingly, the consensus sequence was not found in the selection. This strongly suggests that the consensus hammerhead ribozyme has evolved to an optimal sequence.
Collapse
Affiliation(s)
- A R Kore
- Max-Planck-Institut für Experimentelle Medizin, Göttingen, Germany
| | | | | |
Collapse
|
33
|
Wrzesinski J, Legiewicz M, Ciesiołka J. Mapping of accessible sites for oligonucleotide hybridization on hepatitis delta virus ribozymes. Nucleic Acids Res 2000; 28:1785-93. [PMID: 10734198 PMCID: PMC102829 DOI: 10.1093/nar/28.8.1785] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Semi-random libraries of DNA 6mers and RNase H digestion were applied to search for sites accessible to hybridization on the genomic and antigenomic HDV ribozymes and their 3' truncated derivatives. An approach was proposed to correlate the cleavage sites and most likely sequences of oligomers, members of the oligonucleotide libraries, which were engaged in the formation of RNA-DNA hybrids. The predicted positions of oligomers hybridizing to the genomic ribozyme were compared with the fold of polynucleotide chain in the ribozyme crystal structure. The data exemplified the crucial role of target RNA structural features in the binding of antisense oligonucleotides. It turned out that cleavages were induced if the bound oligomer could adapt an ordered helical conformation even when it required partial penetration of an adjacent double-stranded region. The major features of RNA structure disfavoring hybridization and/or RNase H hydrolysis were sharp turns of the polynucleotide chain and breaks in stacking interactions of bases. Based on the predicted positions of oligomers hybridizing to the antigenomic ribozyme we chose and synthesized four antisense DNA 6mers which were shown to direct hydrolysis in the desired, earlier predicted regions of the molecule.
Collapse
Affiliation(s)
- J Wrzesinski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | | | | |
Collapse
|
34
|
Abstract
The hairpin ribozyme belongs to the family of small catalytic RNAs that cleave RNA substrates in a reversible reaction that generates 2',3'-cyclic phosphate and 5'-hydroxyl termini. The hairpin catalytic motif was discovered in the negative strand of the tobacco ringspot virus satellite RNA, where hairpin ribozyme-mediated self-cleavage and ligation reactions participate in processing RNA replication intermediates. The self-cleaving hairpin, hammerhead, hepatitis delta and Neurospora VS RNAs each adopt unique structures and exploit distinct kinetic and catalytic mechanisms despite catalyzing the same chemical reactions. Mechanistic studies of hairpin ribozyme reactions provided early evidence that, like protein enzymes, RNA enzymes are able to exploit a variety of catalytic strategies. In contrast to the hammerhead and Tetrahymena ribozyme reactions, hairpin-mediated cleavage and ligation proceed through a catalytic mechanism that does not require direct coordination of metal cations to phosphate or water oxygens. The hairpin ribozyme is a better ligase than it is a nuclease while the hammerhead reaction favors cleavage over ligation of bound products by nearly 200-fold. Recent structure-function studies have begun to yield insights into the molecular bases of these unique features of the hairpin ribozyme.
Collapse
Affiliation(s)
- M J Fedor
- Department of Molecular Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, MB35, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
35
|
McCall MJ, Hendry P, Mir AA, Conaty J, Brown G, Lockett TJ. Small, efficient hammerhead ribozymes. Mol Biotechnol 2000; 14:5-17. [PMID: 10911611 DOI: 10.1385/mb:14:1:5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The hammerhead ribozyme is able to cleave RNA in a sequence-specific manner. These ribozymes are usually designed with four basepairs in helix II, and with equal numbers of nucleotides in the 5' and 3' hybridizing arms that bind the RNA substrate on either side of the cleavage site. Here guidelines are given for redesigning the ribozyme so that it is small, but retains efficient cleavage activity. First, the ribozyme may be reduced in size by shortening the 5' arm of the ribozyme to five or six nucleotides; for these ribozymes, cleavage of short substrates is maximal. Second, the internal double-helix of the ribozyme (helix II) may be shortened to one or no basepairs, forming a miniribozyme or minizyme, respectively. The sequence of the shortened helix + loop II greatly affects cleavage rates. With eight or more nucleotides in both the 5' and the 3' arms of a miniribozyme containing an optimized sequence for helix + loop II, cleavage rates of short substrates are greater than for analogous ribozymes possessing a longer helix II. Cleavage of gene-length RNA substrates may be best achieved by miniribozymes.
Collapse
|
36
|
Driver SE, Robinson GS, Flanagan J, Shen W, Smith LE, Thomas DW, Roberts PC. Oligonucleotide-based inhibition of embryonic gene expression. Nat Biotechnol 1999; 17:1184-7. [PMID: 10585715 DOI: 10.1038/70724] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We describe a technique to define gene function using antisense oligonucleotide (AS-ODN) inhibition of gene expression in mice. A single intravenous injection of an AS-ODN targeting vascular endothelial growth factor (VEGF) into pregnant mice between E7.5-8.5 resulted in a lack of primary angiogenesis. This enabled us to define the critical window required to inhibit VEGF expression and recapitulate the primary loss of function phenotype observed in VEGF (-/-) embryos. This phenotype was sequence-specific and time- and dose-dependent. Injection of an AS-ODN targeting a second gene, E-cadherin, into pregnant mice at E10 confirmed a hypothesized secondary phenotype. This is the first report of AS-ODN inhibition of gene expression in utero and provides a new strategy for target validation in functional genomics.
Collapse
|
37
|
Seidman S, Eckstein F, Grifman M, Soreq H. Antisense technologies have a future fighting neurodegenerative diseases. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1999; 9:333-40. [PMID: 10463077 DOI: 10.1089/oli.1.1999.9.333] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Our growing understanding of the role that unfavorable patterns of gene expression play in the etiology of neurodegenerative disease emphasizes the need for strategies to selectively block the biosynthesis of harmful proteins in the brain. Antisense technologies are ideally suited to this purpose. Tailor-designed to target specific RNA, antisense oligonucleotides and ribozymes offer tools to suppress the production of proteins mediating neurodegeneration. Although technical limitations must still be overcome, the antisense approach represents a novel and exciting strategy for intervention in diseases of the central nervous system.
Collapse
Affiliation(s)
- S Seidman
- Department of Biological Chemistry, Hebrew University of Jerusalem, Israel
| | | | | | | |
Collapse
|
38
|
Bramlage B, Alefelder S, Marschall P, Eckstein F. Inhibition of luciferase expression by synthetic hammerhead ribozymes and their cellular uptake. Nucleic Acids Res 1999; 27:3159-67. [PMID: 10454613 PMCID: PMC148543 DOI: 10.1093/nar/27.15.3159] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Two synthetic hammerhead ribozymes, one unmodified and the other with 2"-modifications and four phosphorothioate groups, targeting a single GUA site in the luciferase mRNA, were compared for their inhibition of gene expression in cell cultureand their cellular uptake was also analysed. A HeLa X1/5 cell line stably expressing luciferase, under an inducible promoter, was treated with these ribozymes by liposome-mediated transfection to determine their activity. Luciferase expression in cells was inhibited to approximately 50% with little difference between the unmodified and the 2"-modified ribozyme. A similar degree of inhibition was observed with two catalytically inactive ribozymes, indicating that inhibition was mainly due to an antisense effect. A ribozyme carrying a cholesterol moiety, applied to the cells without carrier, showed no inhibition. Northern blotting indicated a similar amount of cellular uptake of all ribozymes. The unmodified ribozyme was essentially evenly distributed between cytoplasm and nucleus, whereas a higher proportion of the phosphorothioate-containing ribozyme was observed in the nucleus. Fluorescence microscopy, including confocal microscopy using 5"-fluorescein-labelled ribozymes, showed that the unmodified and 2"-modified ribozymes were present in the cytoplasm and in the nucleus to a similar extent, whereas the fluorescence of the phosphorothioate-containing ribozyme was much stronger in the nucleus. Both ribozymes inhibited luciferase expression to a comparable degree, suggesting that the ribozyme in the nucleus did not contribute significantly to the inhibition. Ribozymes with a cholesterol moiety were predominantly trapped in the cell membrane, explaining their inability to interfere with gene expression.
Collapse
Affiliation(s)
- B Bramlage
- Max-Planck-Institut für experimentelle Medizin, Hermann-Rein-Strasse 3, D-37075 Göttingen, Germany
| | | | | | | |
Collapse
|
39
|
Abstract
Last year provided new structural data, particularly for the group I intron and the Hepatitis delta ribozymes, that were essential for a better understanding of the RNA structure/function relationship. The role of metal ions in catalysis of ribozyme action still remains elusive, however. In vitro selection has continued to be a rich source for obtaining data on new nucleic acid enzyme activities.
Collapse
Affiliation(s)
- C Carola
- Max-Planck-Institut für Experimentelle Medizin, Hermann-Rein-Strasse 3, D-37075, Göttingen, Germany
| | | |
Collapse
|
40
|
Jenne A, Gmelin W, Raffler N, Famulok M. Zeitaufgelöste Charakterisierung von Ribozymen durch Fluoreszenzresonanzenergie‐Transfer (FRET). Angew Chem Int Ed Engl 1999. [DOI: 10.1002/(sici)1521-3757(19990503)111:9<1383::aid-ange1383>3.0.co;2-#] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Andreas Jenne
- Institut für Biochemie der Universität, Feodor‐Lynen‐Straße 25, D‐81377 München, Fax: (+ 49) 89‐74017‐448
| | - Walter Gmelin
- Institut für Biochemie der Universität, Feodor‐Lynen‐Straße 25, D‐81377 München, Fax: (+ 49) 89‐74017‐448
| | - Nikolai Raffler
- Institut für Biochemie der Universität, Feodor‐Lynen‐Straße 25, D‐81377 München, Fax: (+ 49) 89‐74017‐448
| | - Michael Famulok
- Institut für Biochemie der Universität, Feodor‐Lynen‐Straße 25, D‐81377 München, Fax: (+ 49) 89‐74017‐448
| |
Collapse
|
41
|
Citti L, Eckstein F, Capecchi B, Mariani L, Nevischi S, Poggi A, Rainaldi G. Transient transfection of a synthetic hammerhead ribozyme targeted against human MGMT gene to cells in culture potentiates the genotoxicity of the alkylation damage induced by mitozolomide. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1999; 9:125-33. [PMID: 10355819 DOI: 10.1089/oli.1.1999.9.125] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Unmodified and chemically modified forms of a synthetic hammerhead ribozyme with the mRNA of methylguanine-DNA methyltransferase (MGMT) gene as substrate were characterized for their in vitro and in vivo activities. The unmodified ribozyme efficiently cleaved in vitro a short synthetic substrate, and it was rapidly degraded in fetal bovine serum (FBS). The introduction of phosphorothioates and the substitution of uridine with thymidine at probable nuclease-sensitive sites slightly increased the nuclease resistance of the ribozyme. Conversely, pyrimidine nucleoside substitution with 2'NH2 and 2'F nucleosides strongly enhanced nuclease resistance. The in vivo activity was determined by measuring the genotoxicity induced by the alkylating drug mitozolomide, the damage of which is repaired by MGMT enzyme. CHO/47 cells, temporarily depleted of the MGMT protein, were first transfected with the various synthetic ribozymes and subsequently treated with mitozolomide. At equivalent concentration of the drug, the induction of sister chromatid exchanges was higher in ribozyme-transfected than in untransfected cells, indicating that the synthetic ribozymes potentiated the genotoxicity of mitozolomide. Moreover, the concomitant occurrence of messenger RNA reduction in ribozyme-transfected cells indicated that the inhibition of MGMT resynthesis was the basis of the enhanced genotoxicity.
Collapse
Affiliation(s)
- L Citti
- Genetica e Biochimica Tossicologica, Istituto di Mutagenesi e Differenziamento, CNR, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
42
|
Famulok M, Jenne A. Catalysis Based on Nucleic Acid Structures. IMPLEMENTATION AND REDESIGN OF CATALYTIC FUNCTION IN BIOPOLYMERS 1999. [DOI: 10.1007/3-540-48990-8_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Vaish NK, Kore AR, Eckstein F. Recent developments in the hammerhead ribozyme field. Nucleic Acids Res 1998; 26:5237-42. [PMID: 9826743 PMCID: PMC148018 DOI: 10.1093/nar/26.23.5237] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Developments in the hammerhead ribozyme field during the last two years are reviewed here. New results on the specificity of this ribozyme, the mechanism of its action and on the question of metal ion involvement in the cleavage reaction are discussed. To demonstrate the potential of ribozyme technology examples of the application of this ribozyme for the inhibition of gene expression in cell culture, in animals, as well as in plant models are presented. Particular emphasis is given to critical steps in the approach, including RNA site selection, delivery, vector development and cassette construction.
Collapse
Affiliation(s)
- N K Vaish
- Max-Planck-Institut für experimentelle Medizin, Hermann-Rein-Strasse 3, D-37075 Göttingen, Germany
| | | | | |
Collapse
|