1
|
Mullié Y, Arto I, Yahiaoui N, Drew T. Contribution of the Entopeduncular Nucleus and the Globus Pallidus to the Control of Locomotion and Visually Guided Gait Modifications in the Cat. Cereb Cortex 2020; 30:5121-5146. [PMID: 32377665 DOI: 10.1093/cercor/bhaa106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
We tested the hypothesis that the entopeduncular (EP) nucleus (feline equivalent of the primate GPi) and the globus pallidus (GPe) contribute to both the planning and execution of locomotion and voluntary gait modifications in the cat. We recorded from 414 cells distributed throughout these two nuclei (referred to together as the pallidum) while cats walked on a treadmill and stepped over an obstacle that advanced towards them. Neuronal activity in many cells in both structures was modulated on a step-by-step basis during unobstructed locomotion and was modified in the step over the obstacle. On a population basis, the most frequently observed change, in both the EP and the GPe, was an increase in activity prior to and/or during the swing phase of the step over the obstacle by the contralateral forelimb, when it was the first limb to pass over the obstacle. Our results support a contribution of the pallidum, in concert with cortical structures, to the control of both the planning and the execution of the gait modifications. We discuss the results in the context of current models of pallidal action on thalamic activity, including the possibility that cells in the EP with increased activity may sculpt thalamo-cortical activity.
Collapse
Affiliation(s)
- Yannick Mullié
- Département de Neurosciences, Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Pavillon Paul-G. Desmarais, C.P. 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Irène Arto
- Département de Neurosciences, Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Pavillon Paul-G. Desmarais, C.P. 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Nabiha Yahiaoui
- Département de Neurosciences, Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Pavillon Paul-G. Desmarais, C.P. 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Trevor Drew
- Département de Neurosciences, Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Pavillon Paul-G. Desmarais, C.P. 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| |
Collapse
|
2
|
Shukla DK, Chiappelli JJ, Sampath H, Kochunov P, Hare SM, Wisner K, Rowland LM, Hong LE. Aberrant Frontostriatal Connectivity in Negative Symptoms of Schizophrenia. Schizophr Bull 2019; 45:1051-1059. [PMID: 30576563 PMCID: PMC6737477 DOI: 10.1093/schbul/sby165] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Negative symptoms represent a distinct component of psychopathology in schizophrenia (SCZ) and are a stable construct over time. Although impaired frontostriatal connectivity has been frequently described in SCZ, its link with negative symptoms has not been carefully studied. We tested the hypothesis that frontostriatal connectivity at rest may be associated with the severity of negative symptoms in SCZ. Resting state functional connectivity (rsFC) data from 95 mostly medicated patients with SCZ and 139 healthy controls (HCs) were acquired. Negative symptoms were assessed using the Brief Negative Symptom Scale. The study analyzed voxel-wise rsFC between 9 frontal "seed regions" and the entire striatum, with the intention to reduce potential biases introduced by predefining any single frontal or striatal region. SCZ showed significantly reduced rsFC between the striatum and the right medial and lateral orbitofrontal cortex (OFC), lateral prefrontal cortex, and rostral anterior cingulate cortex compared with HCs. Further, rsFC between the striatum and the right medial OFC was significantly associated with negative symptom severity. The involved striatal regions were primarily at the ventral putamen. Our results support reduced frontostriatal functional connectivity in SCZ and implicate striatal connectivity with the right medial OFC in negative symptoms. This task-independent resting functional magnetic resonance imaging study showed that medial OFC-striatum functional connectivity is reduced in SCZ and associated with severity of negative symptoms. This finding supports a significant association between frontostriatal connectivity and negative symptoms and thus may provide a potential circuitry-level biomarker to study the neurobiological mechanisms of negative symptoms.
Collapse
Affiliation(s)
- Dinesh K Shukla
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD,To whom correspondence should be addressed; Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, PO Box 21247, Baltimore, MD 21228, US; tel: 410-402-6028, fax: 410-402-6077, e-mail:
| | - Joshua John Chiappelli
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD
| | - Hemalatha Sampath
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD
| | - Peter Kochunov
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD
| | - Stephanie M Hare
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD
| | - Krista Wisner
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD
| | - Laura M Rowland
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD
| | - L Elliot Hong
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
3
|
Stolzberg D, Butler BE, Lomber SG. Effects of neonatal deafness on resting-state functional network connectivity. Neuroimage 2017; 165:69-82. [PMID: 28988830 DOI: 10.1016/j.neuroimage.2017.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/04/2017] [Accepted: 10/02/2017] [Indexed: 11/27/2022] Open
Abstract
Normal brain development depends on early sensory experience. Behavioral consequences of brain maturation in the absence of sensory input early in life are well documented. For example, experiments with mature, neonatally deaf human or animal subjects have revealed improved peripheral visual motion detection and spatial localization abilities. Such supranormal behavioral abilities in the nondeprived sensory modality are evidence of compensatory plasticity occurring in deprived brain regions at some point or throughout development. Sensory deprived brain regions may simply become unused neural real-estate resulting in a loss of function. Compensatory plasticity and loss of function are likely reflected in the differences in correlations between brain networks in deaf compared with hearing subjects. To address this, we used resting-state functional magnetic resonance imaging (fMRI) in lightly anesthetized hearing and neonatally deafened cats. Group independent component analysis (ICA) was used to identify 20 spatially distinct brain networks across all animals including auditory, visual, somatosensory, cingulate, insular, cerebellar, and subcortical networks. The resulting group ICA components were back-reconstructed to individual animal brains. The maximum correlations between the time-courses associated with each spatial component were computed using functional network connectivity (FNC). While no significant differences in the delay to peak correlations were identified between hearing and deaf cats, we observed 10 (of 190) significant differences in the amplitudes of between-network correlations. Six of the significant differences involved auditory-related networks and four involved visual, cingulate, or somatosensory networks. The results are discussed in context of known behavioral, electrophysiological, and anatomical differences following neonatal deafness. Furthermore, these results identify novel targets for future investigations at the neuronal level.
Collapse
Affiliation(s)
- Daniel Stolzberg
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, N6A 5C1, Canada; Brain and Mind Institute, University of Western Ontario, London, Ontario, N6A 5B7, Canada.
| | - Blake E Butler
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, N6A 5C1, Canada; Brain and Mind Institute, University of Western Ontario, London, Ontario, N6A 5B7, Canada; Department of Psychology, University of Western Ontario, London, Ontario, N6A 5C2, Canada
| | - Stephen G Lomber
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, N6A 5C1, Canada; Brain and Mind Institute, University of Western Ontario, London, Ontario, N6A 5B7, Canada; Department of Psychology, University of Western Ontario, London, Ontario, N6A 5C2, Canada; National Centre for Audiology, University of Western Ontario, London, Ontario, N6G 1H1, Canada.
| |
Collapse
|
4
|
Ceaser AE, Barch DM. Striatal Activity is Associated with Deficits of Cognitive Control and Aberrant Salience for Patients with Schizophrenia. Front Hum Neurosci 2016; 9:687. [PMID: 26869912 PMCID: PMC4738294 DOI: 10.3389/fnhum.2015.00687] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 12/04/2015] [Indexed: 11/25/2022] Open
Abstract
A recent meta-analysis has shown that a large dopamine abnormality exists in the striatum when comparing patients with schizophrenia and controls, and this abnormality is thought to contribute to aberrant salience assignment (or a misattribution of relevance to irrelevant stimuli). This abnormality may also disrupt striatal contributions to cognitive control processing. We examined the relationship between striatal involvement in cognition and aberrant salience symptoms using a task of cognitive control that involves updating, interference control, and simple maintenance. The current study included a sample of 22 patients with schizophrenia and 20 healthy controls and used a slow event-related fMRI design. We predicted that (1) aberrant salience symptoms would be greater for patient's, (2) patients would demonstrate increased errors during interference control trials, given that patients may be inappropriately assigning salience to distracters, and (3) striatal activity during those errors would be correlated with aberrant salience symptoms. We found a trend toward a significant difference between patients and controls on aberrant salience symptoms, and a significant difference between groups on select task conditions. During interference control trials, patients were more likely to inappropriately encode distracters. For patients, both prefrontal and striatal activity was significantly greater when patients inappropriately identified the distracter as correct compared to activity during distracter rejection. During updating, patient prefrontal and striatal activity was significantly lower for incorrect than correct updating trials. Finally, as predicted, for patients the increase of activity during incorrect distracter trials was positively correlated with aberrant salience symptoms, but only for the striatal region. These relationships may have implications for treatments that improve cognitive function and reduce symptom expression.
Collapse
Affiliation(s)
- Alan E Ceaser
- Cognitive Control and Psychopathology Laboratory, Department of Psychology, Washington University in St. Louis St. Louis, MO, USA
| | - Deanna M Barch
- Cognitive Control and Psychopathology Laboratory, Department of Psychology, Washington University in St. LouisSt. Louis, MO, USA; Department of Psychiatry, Washington University in St. LouisSt. Louis, MO, USA; Department of Radiology, Washington University in St. LouisSt. Louis, MO, USA
| |
Collapse
|
5
|
Khibnik LA, Tritsch NX, Sabatini BL. A direct projection from mouse primary visual cortex to dorsomedial striatum. PLoS One 2014; 9:e104501. [PMID: 25141172 PMCID: PMC4139305 DOI: 10.1371/journal.pone.0104501] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/11/2014] [Indexed: 01/23/2023] Open
Abstract
The mammalian striatum receives inputs from many cortical areas, but the existence of a direct axonal projection from the primary visual cortex (V1) is controversial. In this study we use anterograde and retrograde tracing techniques to demonstrate that V1 directly innervates a topographically defined longitudinal strip of dorsomedial striatum in mice. We find that this projection forms functional excitatory synapses with direct and indirect pathway striatal projection neurons (SPNs) and engages feed-forward inhibition onto these cells. Importantly, stimulation of V1 afferents is sufficient to evoke phasic firing in SPNs. These findings therefore identify a striatal region that is functionally innervated by V1 and suggest that early visual processing may play an important role in striatal-based behaviors.
Collapse
Affiliation(s)
- Lena A. Khibnik
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nicolas X. Tritsch
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bernardo L. Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
6
|
Schroll H, Hamker FH. Computational models of basal-ganglia pathway functions: focus on functional neuroanatomy. Front Syst Neurosci 2013; 7:122. [PMID: 24416002 PMCID: PMC3874581 DOI: 10.3389/fnsys.2013.00122] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/11/2013] [Indexed: 11/30/2022] Open
Abstract
Over the past 15 years, computational models have had a considerable impact on basal-ganglia research. Most of these models implement multiple distinct basal-ganglia pathways and assume them to fulfill different functions. As there is now a multitude of different models, it has become complex to keep track of their various, sometimes just marginally different assumptions on pathway functions. Moreover, it has become a challenge to oversee to what extent individual assumptions are corroborated or challenged by empirical data. Focusing on computational, but also considering non-computational models, we review influential concepts of pathway functions and show to what extent they are compatible with or contradict each other. Moreover, we outline how empirical evidence favors or challenges specific model assumptions and propose experiments that allow testing assumptions against each other.
Collapse
Affiliation(s)
- Henning Schroll
- Bernstein Center for Computational Neuroscience, Charitè - Universitätsmedizin Berlin Berlin, Germany ; Department of Psychology, Humboldt-Universität zu Berlin Berlin, Germany ; Department of Neurology, Charitè - Universitätsmedizin Berlin Berlin, Germany ; Department of Computer Science, Chemnitz University of Technology Chemnitz, Germany
| | - Fred H Hamker
- Bernstein Center for Computational Neuroscience, Charitè - Universitätsmedizin Berlin Berlin, Germany ; Department of Computer Science, Chemnitz University of Technology Chemnitz, Germany
| |
Collapse
|
7
|
Foxworthy WA, Clemo HR, Meredith MA. Laminar and connectional organization of a multisensory cortex. J Comp Neurol 2013; 521:1867-90. [PMID: 23172137 DOI: 10.1002/cne.23264] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/07/2012] [Accepted: 11/06/2012] [Indexed: 11/07/2022]
Abstract
The transformation of sensory signals as they pass through cortical circuits has been revealed almost exclusively through studies of the primary sensory cortices, for which principles of laminar organization, local connectivity, and parallel processing have been elucidated. In contrast, almost nothing is known about the circuitry or laminar features of multisensory processing in higher order, multisensory cortex. Therefore, using the ferret higher order multisensory rostral posterior parietal (PPr) cortex, the present investigation employed a combination of multichannel recording and neuroanatomical techniques to elucidate the laminar basis of multisensory cortical processing. The proportion of multisensory neurons, the share of neurons showing multisensory integration, and the magnitude of multisensory integration were all found to differ by layer in a way that matched the functional or connectional characteristics of the PPr. Specifically, the supragranular layers (L2/3) demonstrated among the highest proportions of multisensory neurons and the highest incidence of multisensory response enhancement, while also receiving the highest levels of extrinsic inputs, exhibiting the highest dendritic spine densities, and providing a major source of local connectivity. In contrast, layer 6 showed the highest proportion of unisensory neurons while receiving the fewest external and local projections and exhibiting the lowest dendritic spine densities. Coupled with a lack of input from principal thalamic nuclei and a minimal layer 4, these observations indicate that this higher level multisensory cortex shows functional and organizational modifications from the well-known patterns identified for primary sensory cortical regions.
Collapse
Affiliation(s)
- W Alex Foxworthy
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
| | | | | |
Collapse
|
8
|
Langers DRM, Melcher JR. Hearing without listening: functional connectivity reveals the engagement of multiple nonauditory networks during basic sound processing. Brain Connect 2013; 1:233-44. [PMID: 22433051 DOI: 10.1089/brain.2011.0023] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The present functional magnetic resonance imaging (fMRI) study presents data challenging the traditional view that sound is processed almost exclusively in the classical auditory pathway unless imbued with behavioral significance. In a first experiment, subjects were presented with broadband noise in on/off fashion as they performed an unrelated visual task. A conventional analysis assuming predictable sound-evoked responses demonstrated a typical activation pattern that was confined to classical auditory centers. In contrast, spatial independent component analysis (sICA) disclosed multiple networks of acoustically responsive brain centers. One network comprised classical auditory centers, but four others included nominally "nonauditory" areas: cingulo-insular cortex, mediotemporal limbic lobe, basal ganglia, and posterior orbitofrontal cortex, respectively. Functional connectivity analyses confirmed the sICA results by demonstrating coordinated activity between the involved brain structures. In a second experiment, fMRI data obtained from unstimulated (i.e., resting) subjects revealed largely similar networks. Together, these two experiments suggest the existence of a coordinated system of multiple acoustically responsive intrinsic brain networks, comprising classical auditory centers but also other brain areas. Our results suggest that nonauditory centers play a role in sound processing at a very basic level, even when the sound is not intertwined with behaviors requiring the well-known functionality of these regions.
Collapse
Affiliation(s)
- Dave R M Langers
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.
| | | |
Collapse
|
9
|
Choi EY, Yeo BTT, Buckner RL. The organization of the human striatum estimated by intrinsic functional connectivity. J Neurophysiol 2012; 108:2242-63. [PMID: 22832566 DOI: 10.1152/jn.00270.2012] [Citation(s) in RCA: 539] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The striatum is connected to the cerebral cortex through multiple anatomical loops that process sensory, limbic, and heteromodal information. Tract-tracing studies in the monkey reveal that these corticostriatal connections form stereotyped patterns in the striatum. Here the organization of the striatum was explored in the human with resting-state functional connectivity MRI (fcMRI). Data from 1,000 subjects were registered with nonlinear deformation of the striatum in combination with surface-based alignment of the cerebral cortex. fcMRI maps derived from seed regions placed in the foot and tongue representations of the motor cortex yielded the expected inverted somatotopy in the putamen. fcMRI maps derived from the supplementary motor area were located medially to the primary motor representation, also consistent with anatomical studies. The topography of the complete striatum was estimated and replicated by assigning each voxel in the striatum to its most strongly correlated cortical network in two independent groups of 500 subjects. The results revealed at least five cortical zones in the striatum linked to sensorimotor, premotor, limbic, and two association networks with a topography globally consistent with monkey anatomical studies. The majority of the human striatum was coupled to cortical association networks. Examining these association networks further revealed details that fractionated the five major networks. The resulting estimates of striatal organization provide a reference for exploring how the striatum contributes to processing motor, limbic, and heteromodal information through multiple large-scale corticostriatal circuits.
Collapse
Affiliation(s)
- Eun Young Choi
- Program in Neuroscience, Division of Medical Sciences, Harvard University, Cambridge, MA, USA
| | | | | |
Collapse
|
10
|
Abstract
The fluorescent dye Lucifer yellow (LY) was introduced in 1978, and has been extremely useful in studying cell structure and communications. This dye has been used mostly for labelling cells by intracellular injection from microelectrodes. This review describes the numerous applications of LY, with emphasis on the enteric nervous system and interstitial cells of Cajal. Of particular importance is the dye coupling method, which enables the detection of cell coupling by gap junctions.
Collapse
Affiliation(s)
- Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel.
| |
Collapse
|
11
|
Friston KJ, Shiner T, FitzGerald T, Galea JM, Adams R, Brown H, Dolan RJ, Moran R, Stephan KE, Bestmann S. Dopamine, affordance and active inference. PLoS Comput Biol 2012; 8:e1002327. [PMID: 22241972 PMCID: PMC3252266 DOI: 10.1371/journal.pcbi.1002327] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 11/10/2011] [Indexed: 11/18/2022] Open
Abstract
The role of dopamine in behaviour and decision-making is often cast in terms of reinforcement learning and optimal decision theory. Here, we present an alternative view that frames the physiology of dopamine in terms of Bayes-optimal behaviour. In this account, dopamine controls the precision or salience of (external or internal) cues that engender action. In other words, dopamine balances bottom-up sensory information and top-down prior beliefs when making hierarchical inferences (predictions) about cues that have affordance. In this paper, we focus on the consequences of changing tonic levels of dopamine firing using simulations of cued sequential movements. Crucially, the predictions driving movements are based upon a hierarchical generative model that infers the context in which movements are made. This means that we can confuse agents by changing the context (order) in which cues are presented. These simulations provide a (Bayes-optimal) model of contextual uncertainty and set switching that can be quantified in terms of behavioural and electrophysiological responses. Furthermore, one can simulate dopaminergic lesions (by changing the precision of prediction errors) to produce pathological behaviours that are reminiscent of those seen in neurological disorders such as Parkinson's disease. We use these simulations to demonstrate how a single functional role for dopamine at the synaptic level can manifest in different ways at the behavioural level.
Collapse
Affiliation(s)
- Karl J Friston
- The Wellcome Trust Centre for Neuroimaging, University College London, Queen Square, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Viegas P, Nicoleau C, Perrier AL. Derivation of striatal neurons from human stem cells. PROGRESS IN BRAIN RESEARCH 2012. [DOI: 10.1016/b978-0-444-59575-1.00017-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Badgaiyan RD, Wack D. Evidence of dopaminergic processing of executive inhibition. PLoS One 2011; 6:e28075. [PMID: 22162756 PMCID: PMC3230601 DOI: 10.1371/journal.pone.0028075] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 10/31/2011] [Indexed: 01/09/2023] Open
Abstract
Inhibition of unwanted response is an important function of the executive system. Since the inhibitory system is impaired in patients with dysregulated dopamine system, we examined dopamine neurotransmission in the human brain during processing of a task of executive inhibition. The experiment used a recently developed dynamic molecular imaging technique to detect and map dopamine released during performance of a modified Eriksen's flanker task. In this study, young healthy volunteers received an intravenous injection of a dopamine receptor ligand ((11)C-raclopride) after they were positioned in the PET camera. After the injection, volunteers performed the flanker task under Congruent and Incongruent conditions in a single scan session. They were required to inhibit competing options to select an appropriate response in the Incongruent but not in the Congruent condition. The PET data were dynamically acquired during the experiment and analyzed using two variants of the simplified reference region model. The analysis included estimation of a number of receptor kinetic parameters before and after initiation of the Incongruent condition. We found increase in the rate of ligand displacement (from receptor sites) and decrease in the ligand binding potential in the Incongruent condition, suggesting dopamine release during task performance. These changes were observed in small areas of the putamen and caudate bilaterally but were most significant on the dorsal aspect of the body of left caudate. The results provide evidence of dopaminergic processing of executive inhibition and demonstrate that neurochemical changes associated with cognitive processing can be detected and mapped in a single scan session using dynamic molecular imaging.
Collapse
Affiliation(s)
- Rajendra D Badgaiyan
- Department of Psychiatry, State University of New York at Buffalo, Buffalo, New York, United States of America.
| | | |
Collapse
|
14
|
Strackx E, Van den Hove DLA, Steinbusch HP, Steinbusch HWM, Vles JSH, Blanco CE, Gavilanes AWD. Fetal asphyxia leads to the loss of striatal presynaptic boutons in adult rats. Int J Dev Neurosci 2009; 28:277-81. [PMID: 19500660 DOI: 10.1016/j.ijdevneu.2009.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 05/08/2009] [Accepted: 05/23/2009] [Indexed: 01/05/2023] Open
Abstract
Fetal asphyxic insults in the brain are known to be associated with developmental and neurological problems like neuromotor disorders and cognitive deficits. Little is known, however, about the long-term consequences of fetal asphyxia contributing to the development of different neurological diseases common in the adult or the aging brain. For that reason the present study aimed to investigate the long-term effects of fetal asphyxia on synaptic organization within the adult rat brain. Fetal asphyxia was induced at embryonic day 17 by 75-min clamping of the uterine and ovarian arteries. Presynaptic bouton densities and numbers were analyzed in the striatum and prefrontal cortex at the age of 19 months. A substantial decrease in presynaptic bouton density and number was observed in the striatum of fetal asphyxia rats compared to control rats, while an increase was found in the fifth layer of the prefrontal cortex. These results suggest that fetal asphyxia can have long-lasting effects on synaptic organization that might contribute to a developmental etiology of different neurological disorders and aging.
Collapse
Affiliation(s)
- E Strackx
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Science, Maastricht University, European Graduate School of Neuroscience (EURON), Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
15
|
Da Cunha C, Wietzikoski EC, Dombrowski P, Bortolanza M, Santos LM, Boschen SL, Miyoshi E. Learning processing in the basal ganglia: a mosaic of broken mirrors. Behav Brain Res 2008; 199:157-70. [PMID: 18977393 DOI: 10.1016/j.bbr.2008.10.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 10/01/2008] [Accepted: 10/02/2008] [Indexed: 11/25/2022]
Abstract
In the present review we propose a model to explain the role of the basal ganglia in sensorimotor and cognitive functions based on a growing body of behavioural, anatomical, physiological, and neurochemical evidence accumulated over the last decades. This model proposes that the body and its surrounding environment are represented in the striatum in a fragmented and repeated way, like a mosaic consisting of the fragmented images of broken mirrors. Each fragment forms a functional unit representing articulated parts of the body with motion properties, objects of the environment which the subject can approach or manipulate, and locations the subject can move to. These units integrate the sensory properties and movements related to them. The repeated and widespread distribution of such units amplifies the combinatorial power of the associations among them. These associations depend on the phasic release of dopamine in the striatum triggered by the saliency of stimuli and will be reinforced by the rewarding consequences of the actions related to them. Dopamine permits synaptic plasticity in the corticostriatal synapses. The striatal units encoding the same stimulus/action send convergent projections to the internal segment of the globus pallidus (GPi) and to the substantia nigra pars reticulata (SNr) that stimulate or hold the action through a thalamus-frontal cortex pathway. According to this model, this is how the basal ganglia select actions based on environmental stimuli and store adaptive associations as nondeclarative memories such as motor skills, habits, and memories formed by Pavlovian and instrumental conditioning.
Collapse
Affiliation(s)
- Claudio Da Cunha
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Departamento de Farmacologia, UFPR, C.P. 19.031, 81.531-980 Curitiba PR, Brazil.
| | | | | | | | | | | | | |
Collapse
|
16
|
Matell MS, Meck WH. Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. ACTA ACUST UNITED AC 2005; 21:139-70. [PMID: 15464348 DOI: 10.1016/j.cogbrainres.2004.06.012] [Citation(s) in RCA: 584] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2004] [Indexed: 11/16/2022]
Abstract
Humans and other animals demonstrate the ability to perceive and respond to temporally relevant information with characteristic behavioral properties. For example, the response time distributions in peak-interval timing tasks are well described by Gaussian functions, and superimpose when scaled by the criterion duration. This superimposition has been referred to as the scalar property and results from the fact that the standard deviation of a temporal estimate is proportional to the duration being timed. Various psychological models have been proposed to account for such responding. These models vary in their success in predicting the temporal control of behavior as well as in the neurobiological feasibility of the mechanisms they postulate. A review of the major interval timing models reveals that no current model is successful on both counts. The neurobiological properties of the basal ganglia, an area known to be necessary for interval timing and motor control, suggests that this set of structures act as a coincidence detector of cortical and thalamic input. The hypothesized functioning of the basal ganglia is similar to the mechanisms proposed in the beat frequency timing model [R.C. Miall, Neural Computation 1 (1989) 359-371], leading to a reevaluation of its capabilities in terms of behavioral prediction. By implementing a probabilistic firing rule, a dynamic response threshold, and adding variance to a number of its components, simulations of the striatal beat frequency model were able to produce output that is functionally equivalent to the expected behavioral response form of peak-interval timing procedures.
Collapse
Affiliation(s)
- Matthew S Matell
- Department of Psychology, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA.
| | | |
Collapse
|
17
|
Abstract
The distribution of corticostriatal neurons projecting to the caudate nucleus was examined in the cat by retrograde fluorescent tracers. Thus, Fast Blue and Diamidino Yellow were concomitantly injected in different rostrocaudal, dorsoventral, or mediolateral sectors of the caudate nucleus. The main findings of this study are: 1) few double-labeled cells were found after two injections in different sectors of the caudate nucleus; 2) double-labeled neurons were more abundant after adjacent injections and they were mainly located in 6 alpha beta, dorsolateral prefrontal, dorsomedial prefrontal, prelimbic, anterior limbic, sylvian anterior, and rostral part of cingulate cortical areas; and 3) there were variations in the spatial organization of the corticostriatal neurons in different cortical areas projecting to various parts of the caudate nucleus.
Collapse
Affiliation(s)
- A Rosell
- Departamento de Anatomía, Facultad de Medicina, Universidad de Navarra, Pamplona, Navarra, Spain
| | | |
Collapse
|