1
|
A Novel Glycoside Hydrolase DogH Utilizing Soluble Starch to Maltose Improve Osmotic Tolerance in Deinococcus radiodurans. Int J Mol Sci 2023; 24:ijms24043437. [PMID: 36834856 PMCID: PMC9967864 DOI: 10.3390/ijms24043437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Deinococcus radiodurans is a microorganism that can adjust, survive or thrive in hostile conditions and has been described as "the strongest microorganism in the world". The underlying mechanism behind the exceptional resistance of this robust bacterium still remains unclear. Osmotic stress, caused by abiotic stresses such as desiccation, salt stress, high temperatures and freezing, is one of the main stresses suffered by microorganisms, and it is also the basic response pathway by which organisms cope with environmental stress. In this study, a unique trehalose synthesis-related gene, dogH (Deinococcus radiodurans orphan glycosyl hydrolase-like family 10), which encodes a novel glycoside hydrolase, was excavated using a multi-omics combination method. The content accumulation of trehalose and its precursors under hypertonic conditions was quantified by HPLC-MS. Ours results showed that the dogH gene was strongly induced by sorbitol and desiccation stress in D. radiodurans. DogH glycoside hydrolase hydrolyzes α-1,4-glycosidic bonds by releasing maltose from starch in the regulation of soluble sugars, thereby increasing the concentration of TreS (trehalose synthase) pathway precursors and trehalose biomass. The maltose and alginate content in D. radiodurans amounted to 48 μg mg protein-1 and 45 μg mg protein-1, respectively, which were 9 and 28 times higher than those in E. coli, respectively. The accumulation of greater intracellular concentrations of osmoprotectants may be the true reason for the higher osmotic stress tolerance of D. radiodurans.
Collapse
|
2
|
Overproduction of L-piperazic acid by overexpression of ArgB gene in Aureobasidium melanogenum DFAK1. Process Biochem 2023. [DOI: 10.1016/j.procbio.2022.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
3
|
Liamocin overproduction by the mutants of Aureobasidium melanogenum 9-1 for effectively killing spores of the pathogenic fungi from diseased human skin by Massoia lactone. World J Microbiol Biotechnol 2022; 38:107. [PMID: 35507122 DOI: 10.1007/s11274-022-03290-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
Liamocins and Massoia lactone have many applications. In this study, the glucose-derepressed mutant Δcrea5 in which the CREA gene was removed could produce 36.5 g/L of liamocins. Furthermore, overexpression of the MSN2 gene in the mutant Δcrea5 made the transformant M60 produce 41.4 g/L of liamocins and further overexpression of the GAL1 gene in the transformant M60 rendered the transformant G40 to produce 49.5 ± 0.4 g/L of liamocins during the 10-L fermentation while their wild type strain 9-1 made only 26.3 g/L of liamocins. The expressed transcription activators Msn2 and Gal1 were localized in the nuclei, promoting expression of the genes responsible for liamocins biosynthesis and sugar transport. Massoia lactone prepared from the produced liamocins could actively kill the spores of the pathogenic fungi from the diseased human skin by inhibiting spore germination and causing cellular necrosis of the fungal spores.
Collapse
|
4
|
Chen L, Wei X, Liu GL, Hu Z, Chi ZM, Chi Z. Glycerol, trehalose and vacuoles had relations to pullulan synthesis and osmotic tolerance by the whole genome duplicated strain Aureobasidium melanogenum TN3-1 isolated from natural honey. Int J Biol Macromol 2020; 165:131-140. [PMID: 32987074 DOI: 10.1016/j.ijbiomac.2020.09.149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/05/2020] [Accepted: 09/20/2020] [Indexed: 10/23/2022]
Abstract
In our previous study, it was found that Aureobasidium melanogenum TN3-1 was a high pullulan producing and osmotic tolerant yeast-like fungal strain. In this study, the HOG1 signaling pathway controlling glycerol synthesis, glycerol, trehalose and vacuoles were found to be closely related to its pullulan biosynthesis and high osmotic tolerance. Therefore, deletion of the key genes for the HOG1 signaling pathway, glycerol and trehalose biosynthesis and vacuole formation made all the mutants reduce pullulan biosynthesis and increase sensitivity of the growth of the mutants to high glucose concentration. Especially, abolishment of both the VSP11 and VSP12 genes which controlled the fission/fusion balance of vacuoles could cause big reduction in pullulan production (less than 7.4 ± 0.4 g/L) by the double mutant ΔDV-5 and increased sensitivity to high concentration glucose, while expression of the VSP11 gene in the double mutant ΔDV-5 made the transformants EV-2 restore pullulan production and tolerance to high concentration glucose. But cell growth of them were the similar. The double mutant ΔDV-5 had much bigger vacuoles and less numbers of vacuoles than the transformant EV-2 and its wild type strain TN3-1 while it grew weakly on the plate with 40% (w/v) glucose while the transformant EV-2 and its wild type strain TN3-1 could grow normally on the plate even with 60% (w/v) glucose. The double mutant ΔDV-5 also had high level of pigment and its cells were swollen. This was the first time to give the evidence that glycerol, trehalose and vacuoles were closely related to pullulan biosynthesis and high osmotic tolerance by A. melanogenum.
Collapse
Affiliation(s)
- Lu Chen
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | - Xin Wei
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | - Guang-Lei Liu
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou 515063, China
| | - Zhen-Ming Chi
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China.
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China
| |
Collapse
|
5
|
A multidomain α-glucan synthetase 2 (AmAgs2) is the key enzyme for pullulan biosynthesis in Aureobasidium melanogenum P16. Int J Biol Macromol 2020; 150:1037-1045. [DOI: 10.1016/j.ijbiomac.2019.10.108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/23/2022]
|
6
|
Chen TJ, Liu GL, Chen L, Yang G, Hu Z, Chi ZM, Chi Z. Alternative primers are required for pullulan biosynthesis in Aureobasidium melanogenum P16. Int J Biol Macromol 2020; 147:10-17. [DOI: 10.1016/j.ijbiomac.2020.01.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/28/2019] [Accepted: 01/06/2020] [Indexed: 01/22/2023]
|
7
|
High pullulan biosynthesis from high concentration of glucose by a hyperosmotic resistant, yeast-like fungal strain isolated from a natural comb-honey. Food Chem 2019; 286:123-128. [DOI: 10.1016/j.foodchem.2019.01.206] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/14/2019] [Accepted: 01/31/2019] [Indexed: 11/24/2022]
|
8
|
Chen TJ, Chi Z, Jiang H, Liu GL, Hu Z, Chi ZM. Cell wall integrity is required for pullulan biosynthesis and glycogen accumulation in Aureobasidium melanogenum P16. Biochim Biophys Acta Gen Subj 2018; 1862:1516-1526. [PMID: 29550432 DOI: 10.1016/j.bbagen.2018.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/11/2018] [Accepted: 03/13/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Pullulan and glycogen have many applications and physiological functions. However, to date, it has been unknown where and how the pullulan is synthesized in the yeast cells and if cell wall structure of the producer can affect pullulan and glycogen biosynthesis. METHODS The genes related to cell wall integrity were cloned, characterized, deleted and complemented. The cell wall integrity, pullulan biosynthesis, glycogen accumulation and gene expression were examined. RESULTS In this study, the GT6 and GT7 genes encoding different α1,2 mannosyltransferases in Aureobasidium melanogenum P16 were cloned and characterized. The proteins deduced from both the GT6 and GT7 genes contained the conserved sequences YNMCHFWSNFEI and YSTCHFWSNFEI of a Ktr mannosyltransferase family. The removal of each gene and both the two genes caused the changes in colony and cell morphology and enhanced glycogen accumulation, leading to a reduced pullulan biosynthesis and the declined expression of many genes related to pullulan biosynthesis. The swollen cells of the disruptants were due to increased accumulation of glycogen, suggesting that uridine diphosphate glucose (UDP-glucose) was channeled to glycogen biosynthesis in the disruptants, rather than pullulan biosynthesis. Complementation of the GT6 and GT7 genes in the corresponding disruptants and growth of the disruptants in the presence of 0.6 M KCl made pullulan biosynthesis, glycogen accumulation, colony and cell morphology be restored. GENERAL SIGNIFICANCE This is the first report that the two α1,2 mannosyltransferases were required for colony and cell morphology, glycogen accumulation and pullulan biosynthesis in the pullulan producing yeast.
Collapse
Affiliation(s)
- Tie-Jun Chen
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China
| | - Hong Jiang
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | - Guang-Lei Liu
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou 515063, China
| | - Zhen-Ming Chi
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China.
| |
Collapse
|
9
|
Piwowarek K, Lipińska E, Hać-Szymańczuk E, Kieliszek M, Ścibisz I. Propionibacterium spp.-source of propionic acid, vitamin B12, and other metabolites important for the industry. Appl Microbiol Biotechnol 2018; 102:515-538. [PMID: 29167919 PMCID: PMC5756557 DOI: 10.1007/s00253-017-8616-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 01/09/2023]
Abstract
Bacteria from the Propionibacterium genus consists of two principal groups: cutaneous and classical. Cutaneous Propionibacterium are considered primary pathogens to humans, whereas classical Propionibacterium are widely used in the food and pharmaceutical industries. Bacteria from the Propionibacterium genus are capable of synthesizing numerous valuable compounds with a wide industrial usage. Biomass of the bacteria from the Propionibacterium genus constitutes sources of vitamins from the B group, including B12, trehalose, and numerous bacteriocins. These bacteria are also capable of synthesizing organic acids such as propionic acid and acetic acid. Because of GRAS status and their health-promoting characteristics, bacteria from the Propionibacterium genus and their metabolites (propionic acid, vitamin B12, and trehalose) are commonly used in the cosmetic, pharmaceutical, food, and other industries. They are also used as additives in fodders for livestock. In this review, we present the major species of Propionibacterium and their properties and provide an overview of their functions and applications. This review also presents current literature concerned with the possibilities of using Propionibacterium spp. to obtain valuable metabolites. It also presents the biosynthetic pathways as well as the impact of the genetic and environmental factors on the efficiency of their production.
Collapse
Affiliation(s)
- Kamil Piwowarek
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Food Biotechnology and Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland.
| | - Edyta Lipińska
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Food Biotechnology and Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland
| | - Elżbieta Hać-Szymańczuk
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Food Biotechnology and Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland
| | - Marek Kieliszek
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Food Biotechnology and Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland
| | - Iwona Ścibisz
- Department of Food Technology, Division of Fruit and Vegetable Technology, Faculty of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland
| |
Collapse
|
10
|
Jiang H, Liu GL, Chi Z, Hu Z, Chi ZM. Genetics of trehalose biosynthesis in desert-derived Aureobasidium melanogenum and role of trehalose in the adaptation of the yeast to extreme environments. Curr Genet 2017; 64:479-491. [PMID: 29018921 DOI: 10.1007/s00294-017-0762-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 11/26/2022]
Abstract
Melanin plays an important role in the stress adaptation of Aureobasidium melanogenum XJ5-1 isolated from the Taklimakan desert. A trehalose-6-phosphate synthase gene (TPS1 gene) was cloned from K5, characterized, and then deleted to determine the role of trehalose in the stress adaptation of the albino mutant K5. No stress response element and heat shock element were found in the promoter of the TPS1 gene. Deletion of the TPS1 gene in the albino mutant rendered a strain DT43 unable to synthesize any trehalose, but DT43 still could grow in glucose, suggesting that its hexokinase was insensitive to inhibition by trehalose-6-phosphate. Overexpression of the TPS1 gene enhanced trehalose biosynthesis in strain ET6. DT43 could not grow at 33 °C, whereas K5, ET6, and XJ5-1 could grow well at this temperature. Compared with K5 and ET6, DT43 was highly sensitive to heat shock treatment, high oxidation, and high desiccation, but all the three strains demonstrated the same sensitivity to UV light and high NaCl concentration. Therefore, trehalose played an important role in the adaptation of K5 to heat shock treatment, high oxidation, and high desiccation.
Collapse
Affiliation(s)
- Hong Jiang
- College of Marine Life Sciences, Ocean University of China, Yushan-Road, No. 5, Qingdao, China
| | - Guang-Lei Liu
- College of Marine Life Sciences, Ocean University of China, Yushan-Road, No. 5, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, Yushan-Road, No. 5, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, 515063, China
| | - Zhen-Ming Chi
- College of Marine Life Sciences, Ocean University of China, Yushan-Road, No. 5, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.
| |
Collapse
|
11
|
Suriya J, Bharathiraja S, Krishnan M, Manivasagan P, Kim SK. Marine Microbial Amylases: Properties and Applications. ADVANCES IN FOOD AND NUTRITION RESEARCH 2016; 79:161-177. [PMID: 27770860 DOI: 10.1016/bs.afnr.2016.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amylases are crucial enzymes which hydrolyze internal glycosidic linkages in starch and produce as primary products dextrins and oligosaccharides. Amylases are classified into α-amylase, β-amylase, and glucoamylase based on their three-dimensional structures, reaction mechanisms, and amino acid sequences. Amylases have innumerable applications in clinical, medical, and analytical chemistries as well as in food, detergent, textile, brewing, and distilling industries. Amylases can be produced from plants, animals, and microbial sources. Due to the advantages in microbial production, it meets commercial needs. The pervasive nature, easy production, and wide range of applications make amylase an industrially pivotal enzyme. This chapter will focus on amylases found in marine microorganisms, their potential industrial applications, and how these enzymes can be improved to the required bioprocessing conditions.
Collapse
Affiliation(s)
- J Suriya
- School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - S Bharathiraja
- CAS in Marine Biology, Annamalai University, Porto Novo, Tamil Nadu, India
| | - M Krishnan
- School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - P Manivasagan
- Marine Bioprocess Research Center, Pukyong National University, Busan, Republic of Korea.
| | - S-K Kim
- Marine Bioprocess Research Center; Specialized Graduate School Science & Technology Convergence, Pukyong National University, Busan, Republic of Korea.
| |
Collapse
|
12
|
Homaei A, Ghanbarzadeh M, Monsef F. Biochemical features and kinetic properties of α-amylases from marine organisms. Int J Biol Macromol 2015; 83:306-14. [PMID: 26657843 DOI: 10.1016/j.ijbiomac.2015.11.080] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 11/27/2015] [Accepted: 11/27/2015] [Indexed: 11/28/2022]
Abstract
Marine organisms have the ability of producing enzymes with unique properties compared to those of the same enzymes from terrestrial organisms. α-Amylases are among the most important extracellular enzymes found in various groups of organisms such as plants, animals and microorganisms. They play important roles in their carbohydrates metabolism of each organism. Microbial production of α-amylases is more effective than other sources of the enzyme. Many microorganisms are known to produce α-amylase including bacteria, yeasts, fungi and actinomycetes. However, enzymes from fungal and bacterial sources have dominated applications in industrial sectors. This review deals with what is known about the kinetics, biochemical properties and applications of these enzymes that have only been found in them and not in other α-amylases, and discussing their mechanistic and regulatory implications.
Collapse
Affiliation(s)
- Ahmad Homaei
- Department of Biochemistry, Faculty of Science, Hormozgan University, Bandar Abbas, Iran.
| | - Mehri Ghanbarzadeh
- Department of Marine Biology, Faculty of Science, Hormozgan University, Bandar Abbas, Iran
| | - Ferial Monsef
- Department of Marine Biology, Faculty of Science, Hormozgan University, Bandar Abbas, Iran
| |
Collapse
|
13
|
Zaky AS, Tucker GA, Daw ZY, Du C. Marine yeast isolation and industrial application. FEMS Yeast Res 2014; 14:813-25. [PMID: 24738708 PMCID: PMC4262001 DOI: 10.1111/1567-1364.12158] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/11/2014] [Accepted: 04/13/2014] [Indexed: 11/29/2022] Open
Abstract
Over the last century, terrestrial yeasts have been widely used in various industries, such as baking, brewing, wine, bioethanol and pharmaceutical protein production. However, only little attention has been given to marine yeasts. Recent research showed that marine yeasts have several unique and promising features over the terrestrial yeasts, for example higher osmosis tolerance, higher special chemical productivity and production of industrial enzymes. These indicate that marine yeasts have great potential to be applied in various industries. This review gathers the most recent techniques used for marine yeast isolation as well as the latest applications of marine yeast in bioethanol, pharmaceutical and enzyme production fields.
Collapse
Affiliation(s)
- Abdelrahman Saleh Zaky
- School of Biosciences, University of NottinghamNottingham, UK
- Department of Microbiology, Faculty of Agriculture, Cairo UniversityGiza, Egypt
| | | | - Zakaria Yehia Daw
- Department of Microbiology, Faculty of Agriculture, Cairo UniversityGiza, Egypt
| | - Chenyu Du
- School of Biosciences, University of NottinghamNottingham, UK
| |
Collapse
|
14
|
Expression of TPS1 Gene from Saccharomycopsis fibuligera A11 in Saccharomyces sp. W0 Enhances Trehalose Accumulation, Ethanol Tolerance, and Ethanol Production. Mol Biotechnol 2013; 56:72-8. [DOI: 10.1007/s12033-013-9683-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Yang Q, Zhang H, Li X, Wang Z, Xu Y, Ren S, Chen X, Xu Y, Hao H, Wang H. Extracellular enzyme production and phylogenetic distribution of yeasts in wastewater treatment systems. BIORESOURCE TECHNOLOGY 2013; 129:264-273. [PMID: 23261999 DOI: 10.1016/j.biortech.2012.11.101] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 11/21/2012] [Accepted: 11/22/2012] [Indexed: 06/01/2023]
Abstract
The abilities of yeasts to produce different extracellular enzymes and their distribution characteristics were studied in municipal, inosine fermentation, papermaking, antibiotic fermentation, and printing and dyeing wastewater treatment systems. The results indicated that of the 257 yeasts, 16, 14, 55, and 11 produced lipase, protease, manganese dependant peroxidase (MnP), and lignin peroxidase (LiP), respectively. They were distributed in 12 identified and four unidentified genera, in which Candida rugosa (AA-M17) and an unidentified Saccharomycetales (AA-Y5), Pseudozyma sp. (PH-M15), Candida sp. (MO-Y11), and Trichosporon montevideense (MO-M16) were shown to have the highest activity of lipase, protease, Mnp, and LiP, respectively. No yeast had amylase, cellulose, phytase, or laccase activity. Although only 60 isolates produced ligninolytic enzymes, 249 of the 257 yeasts could decolorize different dyes through the mechanism of biodegradation (222 isolates) or bio-sorption. The types of extracellular enzymes that the yeasts produced were significantly shaped by the types of wastewater treated.
Collapse
Affiliation(s)
- Qingxiang Yang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
The changes in Tps1 activity, trehalose content and expression of TPS1 gene in the psychrotolerant yeast Guehomyces pullulans 17-1 grown at different temperatures. Extremophiles 2013; 17:241-9. [DOI: 10.1007/s00792-013-0511-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 01/04/2013] [Indexed: 11/25/2022]
|
17
|
Ruhal R, Kataria R, Choudhury B. Trends in bacterial trehalose metabolism and significant nodes of metabolic pathway in the direction of trehalose accumulation. Microb Biotechnol 2013; 6:493-502. [PMID: 23302511 PMCID: PMC3918152 DOI: 10.1111/1751-7915.12029] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/30/2012] [Accepted: 12/03/2012] [Indexed: 11/29/2022] Open
Abstract
Summary The current knowledge of trehalose biosynthesis under stress conditions is incomplete and needs further research. Since trehalose finds industrial and pharmaceutical applications, enhanced accumulation of trehalose in bacteria seems advantageous for commercial production. Moreover, physiological role of trehalose is a key to generate stress resistant bacteria by metabolic engineering. Although trehalose biosynthesis requires few metabolites and enzyme reactions, it appears to have a more complex metabolic regulation. Trehalose biosynthesis in bacteria is known through three pathways – OtsAB, TreYZ and TreS. The interconnections of in vivo synthesis of trehalose, glycogen or maltose were most interesting to investigate in recent years. Further, enzymes at different nodes (glucose-6-P, glucose-1-P and NDP-glucose) of metabolic pathways influence enhancement of trehalose accumulation. Most of the study of trehalose biosynthesis was explored in medically significant Mycobacterium, research model Escherichia coli, industrially applicable Corynebacterium and food and probiotic interest Propionibacterium freudenreichii. Therefore, the present review dealt with the trehalose metabolism in these bacteria. In addition, an effort was made to recognize how enzymes at different nodes of metabolic pathway can influence trehalose accumulation.
Collapse
Affiliation(s)
- Rohit Ruhal
- Department of Chemistry, Umeå University, Umeå, Sweden; Department of Biotechnology, IIT Roorkee, Roorkee, India.
| | | | | |
Collapse
|
18
|
Production and Characterization of Extracellular α-Amylase Produced by Wickerhamia sp. X-Fep. Appl Biochem Biotechnol 2012; 167:2117-29. [PMID: 22678824 DOI: 10.1007/s12010-012-9736-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 05/14/2012] [Indexed: 10/28/2022]
|
19
|
Ruhal R, Choudhury B. Use of an osmotically sensitive mutant of Propionibacterium freudenreichii subspp. shermanii for the simultaneous productions of organic acids and trehalose from biodiesel waste based crude glycerol. BIORESOURCE TECHNOLOGY 2012; 109:131-139. [PMID: 22306074 DOI: 10.1016/j.biortech.2012.01.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/01/2012] [Accepted: 01/10/2012] [Indexed: 05/31/2023]
Abstract
Recently suitability of crude glycerol for trehalose and propionic acid productions was reported using Propionibacterium freudenreichii subspp. shermanii and it was concluded that presence of KCl in crude glycerol was the probable reason for higher trehalose accumulation with crude glycerol medium. To further improve trehalose production, an osmotic sensitive mutant of this strain (non-viable in medium with 3% NaCl) with higher trehalose yield was isolated. In mutant, trehalose yields achieved with respect to biomass and substrate consumed (391 mg/g of biomass, 90 mg/g of substrate consumed) were three and four times higher, respectively as compared to parent strain when crude glycerol was used as a carbon source. Other major fermentation products obtained were propionic acid (0.42 g/g of substrate consumed) and lactic acid (0.3g/g of substrate consumed). It was also observed that in mutant higher activity of ADP-glucose pyrophosphorylase was probably responsible for higher trehalose accumulation.
Collapse
Affiliation(s)
- Rohit Ruhal
- Bioprocess Engineering Laboratory, Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| | | |
Collapse
|
20
|
Liu GL, Wang DS, Wang LF, Zhao SF, Chi ZM. Mig1 is involved in mycelial formation and expression of the genes encoding extracellular enzymes in Saccharomycopsis fibuligera A11. Fungal Genet Biol 2011; 48:904-13. [DOI: 10.1016/j.fgb.2011.04.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/15/2011] [Accepted: 04/22/2011] [Indexed: 11/30/2022]
|
21
|
Wang D, Chi Z, Zhao S, Chi ZM. Disruption of the acid protease gene in Saccharomycopsis fibuligera A11 enhances amylolytic activity and stability as well as trehalose accumulation. Enzyme Microb Technol 2011; 49:88-93. [DOI: 10.1016/j.enzmictec.2011.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 12/21/2010] [Accepted: 03/09/2011] [Indexed: 11/24/2022]
|
22
|
Trehalose accumulation from cassava starch and release by a highly thermosensitive and permeable mutant of Saccharomycopsis fibuligera. J Ind Microbiol Biotechnol 2011; 38:1545-52. [PMID: 21290165 DOI: 10.1007/s10295-011-0943-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Accepted: 01/11/2011] [Indexed: 10/18/2022]
Abstract
Highly thermosensitive and permeable mutants are the mutants from which intracellular contents can be released when they are incubated both in low osmolarity water and at non-permissive temperature (usually 37°C). After mutagenesis by using nitrosoguanidine, a highly thermosensitive and permeable mutant named A11-b was obtained from Saccharomycopsis fibuligera A11-12, a trehalose overproducer in which the acid protease gene has been disrupted. Of the total trehalose, 73.8% was released from the mutant cells suspended in distilled water after they had been treated at 37°C overnight. However, only 10.0% of the total trehalose was released from the cells of S. fibuligera A11-12 treated under the same conditions. The cell volume of the mutant cells suspended in distilled water and treated at 37°C overnight was much bigger than that of S. fibuligera A11-12 treated under the same conditions. The cell growth and trehalose accumulation of the mutant were almost the same as those of S. fibuligera A11-12 during the cultivation at the flask level and in a 5-l fermentor. Both could accumulate around 28.0% (w/w) trehalose from cassava starch. After purification, the trehalose crystal from the aqueous extract of the mutant was obtained.
Collapse
|
23
|
Yu XJ, Li HJ, Li J, Chi ZM. Overexpression of acid protease of Saccharomycopsis fibuligera in Yarrowia lipolytica and characterization of the recombinant acid protease for skimmed milk clotting. BIOTECHNOL BIOPROC E 2010. [DOI: 10.1007/s12257-009-3081-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Zhang T, Chi Z, Chi Z, Parrou JL, Gong F. Expression of the inulinase gene from the marine-derived Pichia guilliermondii in Saccharomyces sp. W0 and ethanol production from inulin. Microb Biotechnol 2010; 3:576-82. [PMID: 21255354 PMCID: PMC3815770 DOI: 10.1111/j.1751-7915.2010.00175.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
It has been confirmed that Saccharomyces sp. W0 can produce high concentration of ethanol. In this study, the INU1 gene cloned from the marine-derived Pichia guilliermondii was transformed into uracil mutant of Saccharomyces sp. W0. The positive transformant Inu-66 obtained could produce 34.2 U ml⁻¹ of extracellular inulinase within 72 h of cultivation. It was found that 15.2 U of inulinase activity per one gram of inulin was suitable for inulin hydrolysis and ethanol production by the transformant Inu-66. During the small-scale fermentation, 13.7 ml of ethanol in 100 ml of medium was produced and 99.1% of the added inulin was utilized by the transformant. During the 2 l fermentation, 14.9% (v/v) of ethanol was produced from inulin and 99.5% of the added inulin was converted into ethanol, CO₂ and cell mass.
Collapse
Affiliation(s)
- Tong Zhang
- Unesco Chinese Center of Marine Biotechnology, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | | | | | | | | |
Collapse
|
25
|
Zhang Y, Zhang T, Chi Z, Wang JM, Liu GL, Chi ZM. Conversion of cassava starch to trehalose by Saccharomycopsis fibuligera A11 and purification of trehalose. Carbohydr Polym 2010. [DOI: 10.1016/j.carbpol.2009.10.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Wang F, Yue L, Wang L, Madzak C, Li J, Wang X, Chi Z. Genetic modification of the marine-derived yeast Yarrowia lipolytica with high-protein content using a GPI-anchor-fusion expression system. Biotechnol Prog 2010; 25:1297-303. [PMID: 19743190 DOI: 10.1002/btpr.235] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Yarrowia lipolytica SWJ-1b isolated from the marine fish gut was found to contain 47.6 g of crude protein per 100 g of cell dry weight and had potential use as single cell protein. When the gene encoding enhanced green fluorescent protein (EGFP) was inserted into the surface display plasmid pINA1317-YlCWP110 and expressed in uracil mutant of Y. lipolytica SWJ-1b, the corresponding protein was successfully displayed on the cell surface, and 100% of the yeast cells exhibited the anchored target proteins. We found that yeast cells displaying EGFP were similar to those of Y. lipolytica SWJ-1b. Furthermore, C(18:1) and C(18:3) fatty acids biosynthesis in the marine yeast cells displaying the heterologous EGFP was weakly enhanced compared with that in its wild-type. The results suggest that the marine-derived Y. lipolytica SWJ-1b can be armed with the heterologous protein by the genetic modification and further used as single cell protein.
Collapse
Affiliation(s)
- Fang Wang
- Ocean University of China, Qingdao, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Chi Z, Wang JM, Chi ZM, Ye F. Trehalose accumulation from corn starch by Saccharomycopsis fibuligera A11 during 2-l fermentation and trehalose purification. J Ind Microbiol Biotechnol 2009; 37:19-25. [PMID: 19967448 DOI: 10.1007/s10295-009-0644-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 09/15/2009] [Indexed: 12/01/2022]
Abstract
In this study, corn starch was used as the substrate for cell growth and trehalose accumulation by Saccharomycopsis fibuligera A11. Effect of different aeration rates, agitation speeds, and concentrations of corn starch on direct conversion of corn starch to trehalose by S. fibuligera A11 were examined using a Biostat B2 2-l fermentor. We found that the optimal conditions for direct conversion of corn starch to trehalose by this yeast strain were that agitation speed was 200 rpm, aeration rate was 4.0 l/min, concentration of corn starch was 2.0% (w/v), initial pH was 5.5, fermentation temperature was 30 degrees C. Under these conditions, over 22.9 g of trehalose per 100 g of cell dry weight was accumulated in the yeast cells, cell mass was 15.2 g/l of the fermentation medium, 0.12% (w/v) of reducing sugar, and 0.21% (w/v) of total sugar were left in the fermented medium within 48 h of the fermentation. It was found that trehalose in the yeast cells could be efficiently extracted by the hot distilled water (80 degrees C). After isolation and purification, the crystal trehalose was obtained from the extract of the cells.
Collapse
Affiliation(s)
- Zhe Chi
- Unesco Chinese Center of Marine Biotechnology, Ocean University of China, Qingdao, China
| | | | | | | |
Collapse
|
28
|
Amylase Production by Saccharomycopsis fibuligera A11 in Solid-State Fermentation for Hydrolysis of Cassava Starch. Appl Biochem Biotechnol 2009; 162:252-63. [DOI: 10.1007/s12010-009-8744-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 08/06/2009] [Indexed: 10/20/2022]
|
29
|
Saccharomycopsis fibuligera and its applications in biotechnology. Biotechnol Adv 2009; 27:423-31. [DOI: 10.1016/j.biotechadv.2009.03.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/12/2009] [Accepted: 03/12/2009] [Indexed: 11/23/2022]
|
30
|
Chi Z, Chi Z, Zhang T, Liu G, Li J, Wang X. Production, characterization and gene cloning of the extracellular enzymes from the marine-derived yeasts and their potential applications. Biotechnol Adv 2009; 27:236-55. [DOI: 10.1016/j.biotechadv.2009.01.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 12/28/2008] [Accepted: 01/08/2009] [Indexed: 10/21/2022]
|
31
|
Chi Z, Su CD, Lu WD. A new exopolysaccharide produced by marine Cyanothece sp. 113. BIORESOURCE TECHNOLOGY 2007; 98:1329-32. [PMID: 16782333 DOI: 10.1016/j.biortech.2006.05.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 05/01/2006] [Accepted: 05/03/2006] [Indexed: 05/10/2023]
Abstract
Cyanothece sp. 113, a unicellular, aerobic, diazotrophic and photosynthetic marine cyanobacterium, produced 22.34 g/l of exopolysaccharide in 11 days at 29 degrees C, aeration rate of 7.0 l/min and continuous illumination with 4300 lux. After purification, the spectra of UV, IR, (1)H NMR, (13)C NMR and GC-MS analysis showed that the purified exopolysaccharide was alpha-D-1,6-homoglucan. This is first report describing linear alpha-D-1,6-homoglucan exopolysaccharide produced by marine cyanobacteria.
Collapse
Affiliation(s)
- Z Chi
- UNESCO Chinese Center of Marine Biotechnology, Ocean University of China, Yushan Road, Qingdao, China.
| | | | | |
Collapse
|
32
|
Purification and characterization of extracellular amylase from the marine yeast Aureobasidium pullulans N13d and its raw potato starch digestion. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.07.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Liang LK, Wang XK, Zhu KL, Chi ZM. Trehalose synthesis in Saccharomycopsis fibuligera does not respond to stress treatments. Appl Microbiol Biotechnol 2007; 74:1084-91. [PMID: 17086411 DOI: 10.1007/s00253-006-0688-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 09/14/2006] [Accepted: 09/18/2006] [Indexed: 10/24/2022]
Abstract
Synthesis of trehalose in Saccharomycopsis fibuligera sdu under various stress conditions was investigated. Neither the activation of trehalose-6-phosphate synthase (SfTPS1) nor the change in trehalose content was observed under stress exposure of S. fibuligera sdu cells. The results of reverse transcription polymerase chain reaction, which was performed with the specific primers designed to target the SfTPS1 gene fragment cloned from this strain, also showed that all stress treatments did not increase the expression of SfTPS1 gene. These results demonstrated that synthesis of trehalose in response to stress conditions in S. fibuligera sdu clearly differs from that of Saccharomyces cerevisiae and most other fungi. The phylogenetic analysis of the amino acid sequence deduced from the SfTPS1 gene fragment showed that the SfTPS1 sequence formed a separate family that was far related to S. cerevisiae TPS1. The yeast strain, which can accumulate a large amount of trehalose under normal growth conditions, has many applications and TPS1 gene in such strain may have unique use in transgenic organisms.
Collapse
Affiliation(s)
- L K Liang
- Department of Biochemistry, Yantai University, Qingquan Road, No.30, Yantai 264005, China.
| | | | | | | |
Collapse
|
34
|
Li H, Chi Z, Duan X, Wang L, Sheng J, Wu L. Glucoamylase production by the marine yeast Aureobasidium pullulans N13d and hydrolysis of potato starch granules by the enzyme. Process Biochem 2007. [DOI: 10.1016/j.procbio.2006.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Liang LK, Wang XK, Zhu KL, Chi ZM. Trehalose accumulation in a high-trehalose-accumulating mutant of Saccharomycopsis fibuligera sdu does not respond to stress treatments. BIOCHEMISTRY (MOSCOW) 2007; 71:1291-7. [PMID: 17223779 DOI: 10.1134/s0006297906120017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The isolation of high-trehalose-accumulating mutant A11 from Saccharomycopsis fibuligera sdu has been previously described. In this paper, accumulation of trehalose under various stress conditions in S. fibuligera A11 was investigated. Neither activation of trehalose-6-phosphate synthase (SfTps1) nor change in trehalose content was observed under stress exposure of S. fibuligera A11 cells. A fragment of the Sftps1 gene in this strain was also cloned by degenerate PCR using the CoDeHOP strategy and multiply-aligned Tps1 sequences. This sequence allowed us to investigate the expression of the Sftps1 gene, which was also kept constant under the various stress conditions. Altogether, these results indicate that trehalose metabolism in S. fibuligera A11 in response to stress conditions clearly differs from that of Saccharomyces cerevisiae and most other fungi. The expression of the Sftps1 gene was not responsive to different stress treatments.
Collapse
Affiliation(s)
- L K Liang
- Department of Biochemistry, Yantai University, Yantai, 264005, China.
| | | | | | | |
Collapse
|
36
|
Properties of trehalose-6-phosphate synthase fromSaccharomycopsis fibuligera. ANN MICROBIOL 2006. [DOI: 10.1007/bf03175012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
37
|
Jung GY, Stephanopoulos G. A functional protein chip for pathway optimization and in vitro metabolic engineering. Science 2004; 304:428-31. [PMID: 15087547 DOI: 10.1126/science.1096920] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Pathway optimization is difficult to achieve owing to complex, nonlinear, and largely unknown interactions of enzymes, regulators, and metabolites. We report a pathway reconstruction using RNA display-derived messenger RNA-enzyme fusion molecules. These chimeras are immobilized by hybridization of their messenger RNA end with homologous capture DNA spotted on a substrate surface. Enzymes thus immobilized retain activity proportional to the amount of capture DNA, allowing modulation of the relative activity of pathway enzymes. Entire pathways can thus be reconstructed and optimized in vitro from genomic information. We provide concept validation with the sequential reactions catalyzed by luciferase and nucleoside diphosphate kinase and further illustrate this method with the optimization of the five-step pathway for trehalose synthesis.
Collapse
Affiliation(s)
- Gyoo Yeol Jung
- Department of Chemical Engineering, Massachusetts Institute of Technology, Room 56-469, Cambridge, MA 02139, USA
| | | |
Collapse
|
38
|
Current awareness on yeast. Yeast 2003; 20:1151-8. [PMID: 14598808 DOI: 10.1002/yea.949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|