1
|
Matsuhisa K, Ogawa K, Komata K, Hirasawa T. Mutations in the ilvN gene mitigate growth inhibitory effect of cysteine in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2025; 109:61. [PMID: 40063103 PMCID: PMC11893703 DOI: 10.1007/s00253-025-13444-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/09/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025]
Abstract
Cysteine, a common amino acid used in food, cosmetic, and pharmaceutical industries, has a growth inhibitory effect. This growth inhibition by cysteine poses a problem, as the production of cysteine using microbial cells results in decreased cell growth and cysteine productivity. The underlying mechanism of growth inhibition by cysteine is unclear. This study aims to understand the mechanism of growth inhibition by cysteine in Corynebacterium glutamicum. To do this, cysteine-resistant mutants of C. glutamicum were isolated based on adaptive laboratory evolution (ALE) and their characteristics were analyzed. Genome resequencing revealed that mutations in the open reading frame of the ilvN gene encoding the regulatory small subunit of acetohydroxyacid synthase (AHAS), which is involved in branched-chain amino acid biosynthesis, were found in ALE cell populations and the isolated cysteine-resistant mutants. The ilvN mutations which are responsible for increased valine production resulted in improved cell growth in the presence of cysteine. Moreover, the addition of valine to the culture medium mitigated growth inhibition by cysteine, whereas the addition of leucine and isoleucine showed a slight mitigation. Additionally, the activity of AHAS from C. glutamicum was inhibited by cysteine, whereas AHAS from the strains carrying ilvN mutations exhibited resistance to cysteine. These results indicate that growth inhibition by cysteine is caused by perturbations in the biosynthesis of branched-chain amino acids, particularly valine in C. glutamicum. Furthermore, the cysteine-resistant mutants obtained by ALE demonstrated enhanced cysteine production as production hosts, suggesting that cysteine resistance is a useful phenotype for cysteine production in C. glutamicum. KEY POINTS: • Cysteine-resistant mutants of C. glutamicum obtained by ALE were analyzed. • Perturbation of valine biosynthesis by cysteine results in growth inhibition in C. glutamicum. • Cysteine resistance is a useful phenotype for cysteine production by C. glutamicum.
Collapse
Affiliation(s)
- Kazuho Matsuhisa
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-Ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Katsuhiro Ogawa
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-Ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Kento Komata
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-Ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Takashi Hirasawa
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-Ku, Yokohama, Kanagawa, 226-8501, Japan.
| |
Collapse
|
2
|
Reifenberg P, Zimmer A. Branched-chain amino acids: physico-chemical properties, industrial synthesis and role in signaling, metabolism and energy production. Amino Acids 2024; 56:51. [PMID: 39198298 PMCID: PMC11358235 DOI: 10.1007/s00726-024-03417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Branched-chain amino acids (BCAAs)-leucine (Leu), isoleucine (Ile), and valine (Val)-are essential nutrients with significant roles in protein synthesis, metabolic regulation, and energy production. This review paper offers a detailed examination of the physico-chemical properties of BCAAs, their industrial synthesis, and their critical functions in various biological processes. The unique isomerism of BCAAs is presented, focusing on analytical challenges in their separation and quantification as well as their solubility characteristics, which are crucial for formulation and purification applications. The industrial synthesis of BCAAs, particularly using bacterial strains like Corynebacterium glutamicum, is explored, alongside methods such as genetic engineering aimed at enhancing production, detailing the enzymatic processes and specific precursors. The dietary uptake, distribution, and catabolism of BCAAs are reviewed as fundamental components of their physiological functions. Ultimately, their multifaceted impact on signaling pathways, immune function, and disease progression is discussed, providing insights into their profound influence on muscle protein synthesis and metabolic health. This comprehensive analysis serves as a resource for understanding both the basic and complex roles of BCAAs in biological systems and their industrial application.
Collapse
Affiliation(s)
- Philipp Reifenberg
- Merck Life Science KGaA, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich‑Weiss‑Strasse 4, 64287, Darmstadt, Germany
| | - Aline Zimmer
- Merck Life Science KGaA, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany.
| |
Collapse
|
3
|
Xu G, Zhang X, Xiao W, Shi J, Xu Z. Production of L-serine and its derivative L-cysteine from renewable feedstocks using Corynebacterium glutamicum: advances and perspectives. Crit Rev Biotechnol 2024; 44:448-461. [PMID: 36944486 DOI: 10.1080/07388551.2023.2170863] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/05/2023] [Indexed: 03/23/2023]
Abstract
L-serine and its derivative L-cysteine have broad industrial applications, and their direct fermentative production from renewable biomass is gaining increasing attention. Corynebacterium glutamicum is an extensively studied and well-established industrial microorganism, which is a predominant microbial host for producing amino acids. In this review, updated information on the genetics and molecular mechanisms underlying L-serine and L-cysteine production using C. glutamicum is presented, including their synthesis and degradation pathways, and other intracellular processes related to their production, as well as the mechanisms underlying substrate import and product export are also analyzed. Furthermore, metabolic strategies for strain improvement are systematically discussed, and conclusions and future perspectives for bio-based L-serine and L-cysteine production using C. glutamicum are presented. This review can provide a thorough understanding of L-serine and L-cysteine metabolic pathways to facilitate metabolic engineering modifications of C. glutamicum and development of more efficient industrial fermentation processes for L-serine and L-cysteine production.
Collapse
Affiliation(s)
- Guoqiang Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, China
| | - Xiaomei Zhang
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, China
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Jiangnan University, Wuxi, China
| | - Wenhan Xiao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, China
| | - Jinsong Shi
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, China
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Jiangnan University, Wuxi, China
| | - Zhenghong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, China
| |
Collapse
|
4
|
Wang HL, Sun HP, Zheng PR, Cheng RT, Liu ZW, Yuan H, Gao WY, Li H. Re-investigation of in vitro activity of acetohydroxyacid synthase I holoenzyme from Escherichia coli. Arch Biochem Biophys 2024; 754:109962. [PMID: 38499055 DOI: 10.1016/j.abb.2024.109962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Acetohydroxyacid synthase (AHAS) is one of the key enzymes of the biosynthesis of branched-chain amino acids, it is also an effective target for the screening of herbicides and antibiotics. In this study we present a method for preparing Escherichia coli AHAS I holoenzyme (EcAHAS I) with exceptional stability, which provides a solid ground for us to re-investigate the in vitro catalytic properties of the protein. The results show EcAHAS I synthesized in this way exhibits similar function to Bacillus subtilis acetolactate synthase in its catalysis with pyruvate and 2-ketobutyrate (2-KB) as dual-substrate, producing four 2-hydroxy-3-ketoacids including (S)-2-acetolactate, (S)-2-aceto-2-hydroxybutyrate, (S)-2-propionyllactate, and (S)-2-propionyl-2-hydroxybutyrate. Quantification of the reaction indicates that the two substrates almost totally consume, and compound (S)-2-aceto-2- hydroxybutyrate forms in the highest yield among the four major products. Moreover, the protein also condenses two molecules of 2-KB to furnish (S)-2-propionyl-2-hydroxybutyrate. Further exploration manifests that EcAHAS I ligates pyruvate/2-KB and nitrosobenzene to generate two arylhydroxamic acids N-hydroxy-N-phenylacetamide and N-hydroxy-N-phenyl- propionamide. These findings enhance our comprehension of the catalytic characteristics of EcAHAS I. Furthermore, the application of this enzyme as a catalyst in construction of C-N bonds displays promising potential.
Collapse
Affiliation(s)
- Hai-Ling Wang
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Hui-Peng Sun
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Pei-Rong Zheng
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Rui-Tong Cheng
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Zhi-Wen Liu
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Heng Yuan
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Wen-Yun Gao
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China.
| | - Heng Li
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
5
|
Wang C, Peng Y, Zhang Y, Xu J, Jiang S, Wang L, Yin Y. The biological functions and metabolic pathways of valine in swine. J Anim Sci Biotechnol 2023; 14:135. [PMID: 37805513 PMCID: PMC10559503 DOI: 10.1186/s40104-023-00927-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/03/2023] [Indexed: 10/09/2023] Open
Abstract
Valine is an essential amino acid and a type of branched-chain amino acid. Due to the involvement of branched-chain amino acids in various metabolic pathways, there has been a surge of interests in valine nutrition and its role in animal physiology. In pigs, the interactions between valine and other branched-chain amino acids or aromatic amino acids are complex. In this review, we delve into the interaction mechanism, metabolic pathways, and biological functions of valine. Appropriate valine supplementation not only enhances growth and reproductive performances, but also modulates gut microbiota and immune functions. Based on past observations and interpretations, we provide recommended feed levels of valine for weaned piglets, growing pigs, gilts, lactating sows, barrows and entire males. The summarized valine nutrient requirements for pigs at different stages offer valuable insights for future research and practical applications in animal husbandry.
Collapse
Affiliation(s)
- Chuni Wang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yao Peng
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yiru Zhang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Juan Xu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Sheng Jiang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Leli Wang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| | - Yulong Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China.
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| |
Collapse
|
6
|
Sheremetieva M, Anufriev K, Khlebodarova T, Kolchanov N, Yanenko A. Rational metabolic engineering of Corynebacterium glutamicum to create a producer of L-valine. Vavilovskii Zhurnal Genet Selektsii 2022; 26:743-757. [PMID: 36694718 PMCID: PMC9834717 DOI: 10.18699/vjgb-22-90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 01/06/2023] Open
Abstract
L-Valine is one of the nine amino acids that cannot be synthesized de novo by higher organisms and must come from food. This amino acid not only serves as a building block for proteins, but also regulates protein and energy metabolism and participates in neurotransmission. L-Valine is used in the food and pharmaceutical industries, medicine and cosmetics, but primarily as an animal feed additive. Adding L-valine to feed, alone or mixed with other essential amino acids, allows for feeds with lower crude protein content, increases the quality and quantity of pig meat and broiler chicken meat, as well as improves reproductive functions of farm animals. Despite the fact that the market for L-valine is constantly growing, this amino acid is not yet produced in our country. In modern conditions, the creation of strains-producers and organization of L-valine production are especially relevant for Russia. One of the basic microorganisms most commonly used for the creation of amino acid producers, along with Escherichia coli, is the soil bacterium Corynebacterium glutamicum. This review is devoted to the analysis of the main strategies for the development of L- valine producers based on C. glutamicum. Various aspects of L-valine biosynthesis in C. glutamicum are reviewed: process biochemistry, stoichiometry and regulation, enzymes and their corresponding genes, export and import systems, and the relationship of L-valine biosynthesis with central cell metabolism. Key genetic elements for the creation of C. glutamicum-based strains-producers are identified. The use of metabolic engineering to enhance L-valine biosynthesis reactions and to reduce the formation of byproducts is described. The prospects for improving strains in terms of their productivity and technological characteristics are shown. The information presented in the review can be used in the production of producers of other amino acids with a branched side chain, namely L-leucine and L-isoleucine, as well as D-pantothenate.
Collapse
Affiliation(s)
| | - K.E. Anufriev
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, Moscow, Russia
| | - T.M. Khlebodarova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, RussiaKurchatov Genomic Center of ICG SB RAS, Novosibirsk, Russia
| | - N.A. Kolchanov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, RussiaKurchatov Genomic Center of ICG SB RAS, Novosibirsk, Russia
| | - A.S. Yanenko
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, Moscow, Russia
| |
Collapse
|
7
|
Golubyatnikov V, Akinshin A, Ayupova N, Minushkina L. Stratifications and foliations in phase portraits of gene network models. Vavilovskii Zhurnal Genet Selektsii 2022; 26:758-764. [PMID: 36694713 PMCID: PMC9837163 DOI: 10.18699/vjgb-22-91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 01/06/2023] Open
Abstract
Periodic processes of gene network functioning are described with good precision by periodic trajectories (limit cycles) of multidimensional systems of kinetic-type differential equations. In the literature, such systems are often called dynamical, they are composed according to schemes of positive and negative feedback between components of these networks. The variables in these equations describe concentrations of these components as functions of time. In the preparation of numerical experiments with such mathematical models, it is useful to start with studies of qualitative behavior of ensembles of trajectories of the corresponding dynamical systems, in particular, to estimate the highest likelihood domain of the initial data, to solve inverse problems of parameter identification, to list the equilibrium points and their characteristics, to localize cycles in the phase portraits, to construct stratification of the phase portraits to subdomains with different qualities of trajectory behavior, etc. Such an à priori geometric analysis of the dynamical systems is quite analogous to the basic section "Investigation of functions and plot of their graphs" of Calculus, where the methods of qualitative studies of shapes of curves determined by equations are exposed. In the present paper, we construct ensembles of trajectories in phase portraits of some dynamical systems. These ensembles are 2-dimensional surfaces invariant with respect to shifts along the trajectories. This is analogous to classical construction in analytic mechanics, i. e. the level surfaces of motion integrals (energy, kinetic moment, etc.). Such surfaces compose foliations in phase portraits of dynamical systems of Hamiltonian mechanics. In contrast with this classical mechanical case, the foliations considered in this paper have singularities: all their leaves have a non-empty intersection, they contain limit cycles on their boundaries. Description of the phase portraits of these systems at the level of their stratifications, and that of ensembles of trajectories allows one to construct more realistic gene network models on the basis of methods of statistical physics and the theory of stochastic differential equations.
Collapse
Affiliation(s)
- V.P. Golubyatnikov
- Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, RussiaNovosibirsk State University, Novosibirsk, Russia
| | - A.A. Akinshin
- Huawei Russian Research Institute, St. Petersburg, Russia
| | - N.B. Ayupova
- Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, RussiaNovosibirsk State University, Novosibirsk, Russia
| | | |
Collapse
|
8
|
Bachhar A, Jablonsky J. Entner-Doudoroff pathway in Synechocystis PCC 6803: Proposed regulatory roles and enzyme multifunctionalities. Front Microbiol 2022; 13:967545. [PMID: 36051759 PMCID: PMC9424857 DOI: 10.3389/fmicb.2022.967545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
The Entner-Doudoroff pathway (ED-P) was established in 2016 as the fourth glycolytic pathway in Synechocystis sp. PCC 6803. ED-P consists of two reactions, the first catalyzed by 6-phosphogluconate dehydratase (EDD), the second by keto3-deoxygluconate-6-phosphate aldolase/4-hydroxy-2-oxoglutarate aldolase (EDA). ED-P was previously concluded to be a widespread (∼92%) pathway among cyanobacteria, but current bioinformatic analysis estimated the occurrence of ED-P to be either scarce (∼1%) or uncommon (∼47%), depending if dihydroxy-acid dehydratase (ilvD) also functions as EDD (currently assumed). Thus, the biochemical characterization of ilvD is a task pending to resolve this uncertainty. Next, we have provided new insights into several single and double glycolytic mutants based on kinetic model of central carbon metabolism of Synechocystis. The model predicted that silencing 6-phosphogluconate dehydrogenase (gnd) could be coupled with ∼90% down-regulation of G6P-dehydrogenase, also limiting the metabolic flux via ED-P. Furthermore, our metabolic flux estimation implied that growth impairment linked to silenced EDA under mixotrophic conditions is not caused by diminished carbon flux via ED-P but rather by a missing mechanism related to the role of EDA in metabolism. We proposed two possible, mutually non-exclusive explanations: (i) Δeda leads to disrupted carbon catabolite repression, regulated by 2-keto3-deoxygluconate-6-phosphate (ED-P intermediate), and (ii) EDA catalyzes the interconversion between glyoxylate and 4-hydroxy-2-oxoglutarate + pyruvate in the proximity of TCA cycle, possibly effecting the levels of 2-oxoglutarate under Δeda. We have also proposed a new pathway from EDA toward proline, which could explain the proline accumulation under Δeda. In addition, the presented in silico method provides an alternative to 13C metabolic flux analysis for marginal metabolic pathways around/below the threshold of ultrasensitive LC-MS. Finally, our in silico analysis provided alternative explanations for the role of ED-P in Synechocystis while identifying some severe uncertainties.
Collapse
|
9
|
Bayaraa T, Gaete J, Sutiono S, Kurz J, Lonhienne T, Harmer JR, Bernhardt PV, Sieber V, Guddat L, Schenk G. Dihydroxy‐Acid Dehydratases From Pathogenic Bacteria: Emerging Drug Targets to Combat Antibiotic Resistance. Chemistry 2022; 28:e202200927. [PMID: 35535733 PMCID: PMC9543379 DOI: 10.1002/chem.202200927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Indexed: 11/30/2022]
Abstract
There is an urgent global need for the development of novel therapeutics to combat the rise of various antibiotic‐resistant superbugs. Enzymes of the branched‐chain amino acid (BCAA) biosynthesis pathway are an attractive target for novel anti‐microbial drug development. Dihydroxy‐acid dehydratase (DHAD) is the third enzyme in the BCAA biosynthesis pathway. It relies on an Fe−S cluster for catalytic activity and has recently also gained attention as a catalyst in cell‐free enzyme cascades. Two types of Fe−S clusters have been identified in DHADs, i.e. [2Fe−2S] and [4Fe−4S], with the latter being more prone to degradation in the presence of oxygen. Here, we characterise two DHADs from bacterial human pathogens, Staphylococcus aureus and Campylobacter jejuni (SaDHAD and CjDHAD). Purified SaDHAD and CjDHAD are virtually inactive, but activity could be reversibly reconstituted in vitro (up to ∼19,000‐fold increase with kcat as high as ∼6.7 s−1). Inductively‐coupled plasma‐optical emission spectroscopy (ICP‐OES) measurements are consistent with the presence of [4Fe−4S] clusters in both enzymes. N‐isopropyloxalyl hydroxamate (IpOHA) and aspterric acid are both potent inhibitors for both SaDHAD (Ki=7.8 and 51.6 μM, respectively) and CjDHAD (Ki=32.9 and 35.1 μM, respectively). These compounds thus present suitable starting points for the development of novel anti‐microbial chemotherapeutics.
Collapse
Affiliation(s)
- Tenuun Bayaraa
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
| | - Jose Gaete
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
| | - Samuel Sutiono
- Chair of Chemistry of Biogenic resources Campus Straubing for Biotechnology and Sustainability Technical University of Munich Schulgasse 16 94315 Straubing Germany
| | - Julia Kurz
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
| | - Thierry Lonhienne
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
| | - Jeffrey R. Harmer
- Centre for Advanced Imaging The University of Queensland Brisbane 4072 Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
| | - Volker Sieber
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
- Chair of Chemistry of Biogenic resources Campus Straubing for Biotechnology and Sustainability Technical University of Munich Schulgasse 16 94315 Straubing Germany
| | - Luke Guddat
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
- Sustainable Minerals Institute The University of Queensland Brisbane 4072 Australia
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane 4072 Australia
| |
Collapse
|
10
|
Shao S, Li B, Sun Q, Guo P, Du Y, Huang J. Acetolactate synthases regulatory subunit and catalytic subunit genes VdILVs are involved in BCAA biosynthesis, microscletotial and conidial formation and virulence in Verticillium dahliae. Fungal Genet Biol 2022; 159:103667. [PMID: 35041986 DOI: 10.1016/j.fgb.2022.103667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/02/2022] [Accepted: 01/11/2022] [Indexed: 11/26/2022]
Abstract
Acetolactate synthase (AHAS) catalyses the first common step in the biosynthesis pathways of three branched-chain amino acids (BCAAs) of valine, isoleucine and leucine. Here, we characterized one regulatory subunit (VdILV6) and three catalytic subunits (VdILV2A, VdILV2B and VdILV2C) of AHAS from the important cotton Verticillium wilt fungus Verticillium dahliae. Phenotypic analysis showed that VdILV6 knockout mutants were auxotrophic for valine and isoleucine and were defective in conidial morphogenesis, hypha penetration and virulence to cotton, and lost ability of microscletotial formation. The growth of single catalytic subunit gene knockout mutants were significantly inhibited by leucine at higher concentration and single catalytic subunit gene knockout mutants showed significantly reduced virulence to cotton. VdILV2B knockout also led to obviously reduced microscletotial formation and conidial production, VdILV2C knockout led to reduced conidial production. Further studies suggested that both feedback inhibition by leucine and the inhibition by AHAS inhibiting herbicides of tribenuron and bispyribac resulted in significantly down-regulated expression of the four subunit VdILVs genes (VdILV2A, VdILV2B, VdILV2C and VdILV6). Any single catalytic subunit gene knockout led to reduced expression of the other three subunit genes, whereas VdILV6 knckout induced increased expression of the three catalytic subunit genes. VdILV2B, VdILV2C and VdILV6 knockout resulted in increased expression of VdCPC1 regulator gene of the cross-pathway control of amino acid biosynthesis. Taken together, these results indicate multiple roles of four VdILVs genes in the biosynthesis of BCAAs, virulence, fungal growth and development in the filamentous fungi V. dahliae.
Collapse
Affiliation(s)
- ShengNan Shao
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, Xinjiang
| | - Biao Li
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, Xinjiang
| | - Qi Sun
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, Xinjiang
| | - PeiRu Guo
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, Xinjiang
| | - YeJuan Du
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, Xinjiang.
| | - JiaFeng Huang
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, Xinjiang.
| |
Collapse
|
11
|
Identification of Phosphorus Stress Related Proteins in the Seedlings of Dongxiang Wild Rice ( Oryza Rufipogon Griff.) Using Label-Free Quantitative Proteomic Analysis. Genes (Basel) 2022; 13:genes13010108. [PMID: 35052448 PMCID: PMC8774503 DOI: 10.3390/genes13010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/01/2023] Open
Abstract
Phosphorus (P) deficiency tolerance in rice is a complex character controlled by polygenes. Through proteomics analysis, we could find more low P tolerance related proteins in unique P-deficiency tolerance germplasm Dongxiang wild rice (Oryza Rufipogon, DXWR), which will provide the basis for the research of its regulation mechanism. In this study, a proteomic approach as well as joint analysis with transcriptome data were conducted to identify potential unique low P response genes in DXWR during seedlings. The results showed that 3589 significant differential accumulation proteins were identified between the low P and the normal P treated root samples of DXWR. The degree of change was more than 1.5 times, including 60 up-regulated and 15 downregulated proteins, 24 of which also detected expression changes of more than 1.5-fold in the transcriptome data. Through quantitative trait locus (QTLs) matching analysis, seven genes corresponding to the significantly different expression proteins identified in this study were found to be uncharacterized and distributed in the QTLs interval related to low P tolerance, two of which (LOC_Os12g09620 and LOC_Os03g40670) were detected at both transcriptome and proteome levels. Based on the comprehensive analysis, it was found that DXWR could increase the expression of purple acid phosphatases (PAPs), membrane location of P transporters (PTs), rhizosphere area, and alternative splicing, and it could decrease reactive oxygen species (ROS) activity to deal with low P stress. This study would provide some useful insights in cloning the P-deficiency tolerance genes from wild rice, as well as elucidating the molecular mechanism of low P resistance in DXWR.
Collapse
|
12
|
Yu S, Zheng B, Chen Z, Huo YX. Metabolic engineering of Corynebacterium glutamicum for producing branched chain amino acids. Microb Cell Fact 2021; 20:230. [PMID: 34952576 PMCID: PMC8709942 DOI: 10.1186/s12934-021-01721-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background Branched chain amino acids (BCAAs) are widely applied in the food, pharmaceutical, and animal feed industries. Traditional chemical synthetic and enzymatic BCAAs production in vitro has been hampered by expensive raw materials, harsh reaction conditions, and environmental pollution. Microbial metabolic engineering has attracted considerable attention as an alternative method for BCAAs biosynthesis because it is environmentally friendly and delivers high yield. Main text Corynebacterium glutamicum (C. glutamicum) possesses clear genetic background and mature gene manipulation toolbox, and has been utilized as industrial host for producing BCAAs. Acetohydroxy acid synthase (AHAS) is a crucial enzyme in the BCAAs biosynthetic pathway of C. glutamicum, but feedback inhibition is a disadvantage. We therefore reviewed AHAS modifications that relieve feedback inhibition and then investigated the importance of AHAS modifications in regulating production ratios of three BCAAs. We have comprehensively summarized and discussed metabolic engineering strategies to promote BCAAs synthesis in C. glutamicum and offer solutions to the barriers associated with BCAAs biosynthesis. We also considered the future applications of strains that could produce abundant amounts of BCAAs. Conclusions Branched chain amino acids have been synthesized by engineering the metabolism of C. glutamicum. Future investigations should focus on the feedback inhibition and/or transcription attenuation mechanisms of crucial enzymes. Enzymes with substrate specificity should be developed and applied to the production of individual BCAAs. The strategies used to construct strains producing BCAAs provide guidance for the biosynthesis of other high value-added compounds.
Collapse
Affiliation(s)
- Shengzhu Yu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Bo Zheng
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Zhenya Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China.
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| |
Collapse
|
13
|
Liang YF, Long ZX, Zhang YJ, Luo CY, Yan LT, Gao WY, Li H. The chemical mechanisms of the enzymes in the branched-chain amino acids biosynthetic pathway and their applications. Biochimie 2021; 184:72-87. [PMID: 33607240 DOI: 10.1016/j.biochi.2021.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/27/2022]
Abstract
l-Valine, l-isoleucine, and l-leucine are three key proteinogenic amino acids, and they are also the essential amino acids required for mammalian growth, possessing important and to some extent, special physiological and biological functions. Because of the branched structures in their carbon chains, they are also named as branched-chain amino acids (BCAAs). This review will highlight the advance in studies of the enzymes involved in the biosynthetic pathway of BCAAs, concentrating on their chemical mechanisms and applications in screening herbicides and antibacterial agents. The uses of some of these enzymes in lab scale organic synthesis are also discussed.
Collapse
Affiliation(s)
- Yan-Fei Liang
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Zi-Xian Long
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Ya-Jian Zhang
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Cai-Yun Luo
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Le-Tian Yan
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Wen-Yun Gao
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China.
| | - Heng Li
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
14
|
Huang Y, Xie Y, Zhong C, Zhou F. Finding branched pathways in metabolic network via atom group tracking. PLoS Comput Biol 2021; 17:e1008676. [PMID: 33529200 PMCID: PMC7880430 DOI: 10.1371/journal.pcbi.1008676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/12/2021] [Accepted: 01/05/2021] [Indexed: 12/27/2022] Open
Abstract
Finding non-standard or new metabolic pathways has important applications in metabolic engineering, synthetic biology and the analysis and reconstruction of metabolic networks. Branched metabolic pathways dominate in metabolic networks and depict a more comprehensive picture of metabolism compared to linear pathways. Although progress has been developed to find branched metabolic pathways, few efforts have been made in identifying branched metabolic pathways via atom group tracking. In this paper, we present a pathfinding method called BPFinder for finding branched metabolic pathways by atom group tracking, which aims to guide the synthetic design of metabolic pathways. BPFinder enumerates linear metabolic pathways by tracking the movements of atom groups in metabolic network and merges the linear atom group conserving pathways into branched pathways. Two merging rules based on the structure of conserved atom groups are proposed to accurately merge the branched compounds of linear pathways to identify branched pathways. Furthermore, the integrated information of compound similarity, thermodynamic feasibility and conserved atom groups is also used to rank the pathfinding results for feasible branched pathways. Experimental results show that BPFinder is more capable of recovering known branched metabolic pathways as compared to other existing methods, and is able to return biologically relevant branched pathways and discover alternative branched pathways of biochemical interest. The online server of BPFinder is available at http://114.215.129.245:8080/atomic/. The program, source code and data can be downloaded from https://github.com/hyr0771/BPFinder. Computational search of branched metabolic pathways is a fundamental problem in metabolic engineering and metabolic network analysis, which provides a systematic way of understanding the metabolism and discovering alternative pathways for synthesis of useful biomolecules. We propose BPFinder, a novel computational approach to identify branched metabolic pathways via atom group tracking. Different from other pathfinding methods using atom tracking, BPFinder tracks the movement of atom groups in metabolic network to find linear atom group conserving pathways, and merge the found linear pathways by the selected branched compounds to generate branched pathways. Based on the structure of conserved atom groups in branched compounds, we design two merging rules for branched compounds: overlapping rule and non-overlapping rule. The user can flexibly adopt these rules to accurately find the branched pathways that contain overlapping/non-overlapping conserved atom groups. BPFinder also enables the user to combine the information of compound similarity, Gibbs free energy of reactions, and conserved atom groups to sort resulting pathways. Compared with other existing methods, BPFinder can more accurately recover the known branched pathways. The alternative branched pathways returned by BPFinder reveal that the user can flexibly utilize our proposed merging rules to discover biochemically meaningful pathways of interest.
Collapse
Affiliation(s)
- Yiran Huang
- School of Computer and Electronics and Information, Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning, China
- * E-mail:
| | - Yusi Xie
- School of Computer and Electronics and Information, Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning, China
| | - Cheng Zhong
- School of Computer and Electronics and Information, Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning, China
| | - Fengfeng Zhou
- College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
15
|
Hasegawa S, Jojima T, Suda M, Inui M. Isobutanol production in Corynebacterium glutamicum: Suppressed succinate by-production by pckA inactivation and enhanced productivity via the Entner–Doudoroff pathway. Metab Eng 2020; 59:24-35. [DOI: 10.1016/j.ymben.2020.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/24/2019] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
|
16
|
Liu Y, Wang X, Zhan J, Hu J. The 138th residue of acetohydroxyacid synthase in Corynebacterium glutamicum is important for the substrate binding specificity. Enzyme Microb Technol 2019; 129:109357. [DOI: 10.1016/j.enzmictec.2019.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/12/2019] [Accepted: 06/01/2019] [Indexed: 11/28/2022]
|
17
|
Chen CY, Chang YC, Lin BL, Lin KF, Huang CH, Hsieh DL, Ko TP, Tsai MD. Use of Cryo-EM To Uncover Structural Bases of pH Effect and Cofactor Bispecificity of Ketol-Acid Reductoisomerase. J Am Chem Soc 2019; 141:6136-6140. [DOI: 10.1021/jacs.9b01354] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Chin-Yu Chen
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | | | | | - Kuan-Fu Lin
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Chun-Hsiang Huang
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Dong-Lin Hsieh
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | | | - Ming-Daw Tsai
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
18
|
Xu L, Shou JY, Gill RA, Guo X, Najeeb U, Zhou WJ. Effects of ZJ0273 on barley and growth recovery of herbicide-stressed seedlings through application of branched-chain amino acids. J Zhejiang Univ Sci B 2019; 20:71-83. [PMID: 30614231 DOI: 10.1631/jzus.b1700375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study, we evaluated the effect of the herbicide propyl 4-(2-(4,6-dimethoxypyrimidin-2-yloxy)benzylamino) benzoate (ZJ0273) on barley growth and explored the potential to trigger growth recovery through the application of branched-chain amino acids (BCAAs). Barley plants were foliar-sprayed with various concentrations of ZJ0273 (100, 500, or 1000 mg/L) at the four-leaf stage. Increasing either the herbicide concentration or measurement time after herbicide treatment significantly impaired plant morphological parameters such as plant height and biomass, and affected physiological indexes, i.e. maximal photochemical efficiency (Fv/Fm), quantum yield of photosystem II (ФPSII), net photosynthetic rate (Pn), and chlorophyll meter value (soil and plant analyzer development (SPAD)). Cellular injury of herbicide-treated plants was also evidenced by increased levels of reactive oxygen species (ROS) and antioxidative enzyme activity. Elevated levels of herbicide significantly reduced the activity of acetolactate synthase (ALS)-a key enzyme in the biosynthesis of BCAAs. In a separate experiment, growth recovery in herbicide-stressed barley plants was studied using various concentrations of BCAAs (10, 50, 100, and 200 mg/L). Increasing BCAA concentration in growth media significantly increased the biomass of herbicide-stressed barley seedlings, but had no significant effect on non-stressed plants. Further, BCAAs (100 mg/L) significantly down-regulated ROS and consequently antioxidant enzyme levels in herbicide-stressed plants. Our results showed that exogenous application of BCAAs could reverse the inhibitory effects of ZJ0273 by restoring protein biosynthesis in barley seedlings.
Collapse
Affiliation(s)
- Ling Xu
- Zhejiang Key Lab of Plant Secondary Metabolism and Regulation and College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jian-Yao Shou
- Zhuji Municipal Agro-Tech Extension Center, Zhuji 311800, China
| | - Rafaqat Ali Gill
- Institute of Crop Science and Zhejiang Key Lab of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Xiang Guo
- Institute of Crop Science and Zhejiang Key Lab of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Ullah Najeeb
- Queensland Alliance for Agriculture and Food Innovation, Centre for Plant Science, the University of Queensland, Toowoomba, QLD 4350, Australia
| | - Wei-Jun Zhou
- Institute of Crop Science and Zhejiang Key Lab of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
19
|
Westbrook AW, Ren X, Moo‐Young M, Chou CP. Metabolic engineering ofBacillus subtilisforl‐valine overproduction. Biotechnol Bioeng 2018; 115:2778-2792. [DOI: 10.1002/bit.26789] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Adam W. Westbrook
- Department of Chemical EngineeringUniversity of WaterlooWaterloo Ontario Canada
| | - Xiang Ren
- Department of Chemical EngineeringUniversity of WaterlooWaterloo Ontario Canada
| | - Murray Moo‐Young
- Department of Chemical EngineeringUniversity of WaterlooWaterloo Ontario Canada
| | - C. Perry Chou
- Department of Chemical EngineeringUniversity of WaterlooWaterloo Ontario Canada
| |
Collapse
|
20
|
Feng LY, Xu JZ, Zhang WG. Improved l-Leucine Production in Corynebacterium glutamicum by Optimizing the Aminotransferases. Molecules 2018; 23:molecules23092102. [PMID: 30134636 PMCID: PMC6225143 DOI: 10.3390/molecules23092102] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 11/16/2022] Open
Abstract
The production of branched-chain amino acids (BCAAs) is still challenging, therefore we rationally engineered Corynebacterium glutamicum FA-1 to increase the l-leucine production by optimizing the aminotransferases. Based on this, we investigated the effects of the native aminotransferases, i.e., branched-chain amino acid aminotransferase (BCAT; encoded by ilvE) and aspartate aminotransferase (AspB; encoded by aspB) on l-leucine production in C. glutamicum. The strain FA-1△ilvE still exhibited significant growth without leucine addition, while FA-1△ilvE△aspB couldn't, which indicated that AspB also contributes to L-leucine synthesis in vivo and the yield of leucine reached 20.81 ± 0.02 g/L. It is the first time that AspB has been characterized for l-leucine synthesis activity. Subsequently, the aromatic aminotransferase TyrB and the putative aspartate aminotransferases, the aspC, yhdR, ywfG gene products, were cloned, expressed and characterized for leucine synthesis activity in FA-1△ilvE△aspB. Only TyrB was able to synthesize l-leucine and the l-leucine production was 18.55 ± 0.42 g/L. The two putative branched-chain aminotransferase genes, ybgE and CaIlvE, were also cloned and expressed. Both genes products function efficiently in BCAAs biosynthesis. This is the first report of a rational modification of aminotransferase activity that improves the l-leucine production through optimizing the aminotransferases.
Collapse
Affiliation(s)
- Li-Yan Feng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
21
|
Wang X, Zhang H, Quinn PJ. Production of l-valine from metabolically engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 2018; 102:4319-4330. [DOI: 10.1007/s00253-018-8952-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 01/25/2023]
|
22
|
Biofuel production with a stress-resistant and growth phase-independent promoter: mechanism revealed by in vitro transcription assays. Appl Microbiol Biotechnol 2018; 102:2929-2940. [DOI: 10.1007/s00253-018-8809-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 12/13/2022]
|
23
|
Dash S, Khodayari A, Zhou J, Holwerda EK, Olson DG, Lynd LR, Maranas CD. Development of a core Clostridium thermocellum kinetic metabolic model consistent with multiple genetic perturbations. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:108. [PMID: 28469704 PMCID: PMC5414155 DOI: 10.1186/s13068-017-0792-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Clostridium thermocellum is a Gram-positive anaerobe with the ability to hydrolyze and metabolize cellulose into biofuels such as ethanol, making it an attractive candidate for consolidated bioprocessing (CBP). At present, metabolic engineering in C. thermocellum is hindered due to the incomplete description of its metabolic repertoire and regulation within a predictive metabolic model. Genome-scale metabolic (GSM) models augmented with kinetic models of metabolism have been shown to be effective at recapitulating perturbed metabolic phenotypes. RESULTS In this effort, we first update a second-generation genome-scale metabolic model (iCth446) for C. thermocellum by correcting cofactor dependencies, restoring elemental and charge balances, and updating GAM and NGAM values to improve phenotype predictions. The iCth446 model is next used as a scaffold to develop a core kinetic model (k-ctherm118) of the C. thermocellum central metabolism using the Ensemble Modeling (EM) paradigm. Model parameterization is carried out by simultaneously imposing fermentation yield data in lactate, malate, acetate, and hydrogen production pathways for 19 measured metabolites spanning a library of 19 distinct single and multiple gene knockout mutants along with 18 intracellular metabolite concentration data for a Δgldh mutant and ten experimentally measured Michaelis-Menten kinetic parameters. CONCLUSIONS The k-ctherm118 model captures significant metabolic changes caused by (1) nitrogen limitation leading to increased yields for lactate, pyruvate, and amino acids, and (2) ethanol stress causing an increase in intracellular sugar phosphate concentrations (~1.5-fold) due to upregulation of cofactor pools. Robustness analysis of k-ctherm118 alludes to the presence of a secondary activity of ketol-acid reductoisomerase and possible regulation by valine and/or leucine pool levels. In addition, cross-validation and robustness analysis allude to missing elements in k-ctherm118 and suggest additional experiments to improve kinetic model prediction fidelity. Overall, the study quantitatively assesses the advantages of EM-based kinetic modeling towards improved prediction of C. thermocellum metabolism and develops a predictive kinetic model which can be used to design biofuel-overproducing strains.
Collapse
Affiliation(s)
- Satyakam Dash
- Department of Chemical Engineering, The Pennsylvania State University, 126 Land and Water Research Building, University Park, PA 16802 USA
| | - Ali Khodayari
- Department of Chemical Engineering, The Pennsylvania State University, 126 Land and Water Research Building, University Park, PA 16802 USA
| | - Jilai Zhou
- Thayer School of Engineering at Dartmouth College, Hanover, NH USA
| | | | - Daniel G. Olson
- Thayer School of Engineering at Dartmouth College, Hanover, NH USA
| | - Lee R. Lynd
- Thayer School of Engineering at Dartmouth College, Hanover, NH USA
| | - Costas D. Maranas
- Department of Chemical Engineering, The Pennsylvania State University, 126 Land and Water Research Building, University Park, PA 16802 USA
| |
Collapse
|
24
|
Harst A, Albaum SP, Bojarzyn T, Trötschel C, Poetsch A. Proteomics of FACS-sorted heterogeneous Corynebacterium glutamicum populations. J Proteomics 2017; 160:1-7. [PMID: 28323243 DOI: 10.1016/j.jprot.2017.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/26/2017] [Accepted: 03/13/2017] [Indexed: 01/20/2023]
Abstract
The metabolic status of individual cells in microbial cultures can differ, being relevant for biotechnology, environmental and medical microbiology. However, it is hardly understood in molecular detail due to limitations of current analytical tools. Here, we demonstrate that FACS in combination with proteomics can be used to sort and analyze cell populations based on their metabolic state. A previously established GFP reporter system was used to detect and sort single Corynebacterium glutamicum cells based on the concentration of branched chain amino acids (BCAA) using FACS. A proteomics workflow optimized for small cell numbers was used to quantitatively compare proteomes of a ΔaceE mutant, lacking functional pyruvate dehydrogenase (PD), and the wild type. About 800 proteins could be quantified from 1,000,000 cells. In the ΔaceE mutant BCAA production was coordinated with upregulation of the glyoxylate cycle and TCA cycle to counter the lack of acetyl CoA resulting from the deletion of aceE. BIOLOGICAL SIGNIFICANCE Metabolic pathways in C. glutamicum WT and ΔaceE, devoid of functional pyruvate dehydrogenase, were compared to understand proteome changes that contribute to the high production of branched chain amino acids (BCAA) in the ΔaceE strain. The data complements previous metabolome studies and corroborates the role of malate provided by the glyoxylate cycle and increased activity of glycolysis and pyruvate carboxylase reaction to replenish the TCA cycle. A slight increase in acetohydroxyacid synthase (ILV subunit B) substantiates the previously reported increased pyruvate pool in C. glutamicumΔaceE, and the benefit of additional ilv gene cluster overexpression for BCAA production.
Collapse
Affiliation(s)
- Andreas Harst
- Department of Plant Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Stefan P Albaum
- Bioinformatics Resource Facility, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Tanja Bojarzyn
- Department of Plant Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Christian Trötschel
- Department of Plant Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany.
| | - Ansgar Poetsch
- Department of Plant Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany; School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth PL4 8AA, United Kingdom.
| |
Collapse
|
25
|
Yamamoto K, Tsuchisaka A, Yukawa H. Branched-Chain Amino Acids. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 159:103-128. [PMID: 27872960 DOI: 10.1007/10_2016_28] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Branched-chain amino acids (BCAAs), viz., L-isoleucine, L-leucine, and L-valine, are essential amino acids that cannot be synthesized in higher organisms and are important nutrition for humans as well as livestock. They are also valued as synthetic intermediates for pharmaceuticals. Therefore, the demand for BCAAs in the feed and pharmaceutical industries is increasing continuously. Traditional industrial fermentative production of BCAAs was performed using microorganisms isolated by random mutagenesis. A collection of these classical strains was also scientifically useful to clarify the details of the BCAA biosynthetic pathways, which are tightly regulated by feedback inhibition and transcriptional attenuation. Based on this understanding of the metabolism of BCAAs, it is now possible for us to pursue strains with higher BCAA productivity using rational design and advanced molecular biology techniques. Additionally, systems biology approaches using augmented omics information help us to optimize carbon flux toward BCAA production. Here, we describe the biosynthetic pathways of BCAAs and their regulation and then overview the microorganisms developed for BCAA production. Other chemicals, including isobutanol, i.e., a second-generation biofuel, can be synthesized by branching the BCAA biosynthetic pathways, which are also outlined.
Collapse
Affiliation(s)
- Keisuke Yamamoto
- Green Earth Institute Co., Ltd, Hongo, Tokyo, Japan
- Green Earth Research Center, Kisarazu, Chiba, Japan
| | - Atsunari Tsuchisaka
- Green Earth Institute Co., Ltd, Hongo, Tokyo, Japan
- Green Earth Research Center, Kisarazu, Chiba, Japan
| | - Hideaki Yukawa
- Green Earth Institute Co., Ltd, Hongo, Tokyo, Japan.
- Green Earth Research Center, Kisarazu, Chiba, Japan.
| |
Collapse
|
26
|
Xu L, Zhang W, Ali B, Islam F, Zhu J, Zhou W. Synergism of herbicide toxicity by 5-aminolevulinic acid is related to physiological and ultra-structural disorders in crickweed (Malachium aquaticum L.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 125:53-61. [PMID: 26615151 DOI: 10.1016/j.pestbp.2015.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/03/2015] [Accepted: 06/03/2015] [Indexed: 05/20/2023]
Abstract
Selection of effective herbicides to control weeds has been one of the major objectives of scientists. This study determines the differential tolerance or susceptibility of crickweed (Malachium aquaticum L.) to various concentration combinations of 5-aminolevulinic acid (ALA) (1, 10 and 100mg/L) and propyl 4-(2-(4,6-dimethoxypyrimidin-2-yloxy)benzylamino)benzoate (ZJ0273) (100, 200, and 500mg/L). ALA was applied as pre- and post-treatment alone or in combination with ZJ0273. Results showed that ZJ0273 stress alone imposed negative effects on M. aquaticum seedling's growth, net photosynthetic rates and SPAD values, and the rate of decline was consistently increased with the increase in ZJ0273 concentration. The ZJ0273 treatment showed a gradual decrease in the activities of antioxidant enzymes peroxidase (POD), superoxide dismutase (SOD), and ascorbate peroxidase (APX), and increase in the accumulation of malondialdehyde (MDA). Changes in chloroplast swelling, increased number of plastoglobuli, disruption of thylakoid, disintegrated mitochondria and turbid nucleoplasm were noticed. Moreover, SDS-PAGE analysis of total proteins revealed that herbicide stress in the leaves was associated with the decrease or disappearance of some protein bands. Further, two-dimensional gel electrophoresis (2-DE) results showed that proteins in different spots were classified into three types for M. aquaticum. These results indicate that the combined treatment of ALA and ZJ0273 synergizes the herbicide toxicity which is different from its independent effects on M. aquaticum and thus, could improve weed control efficacy.
Collapse
Affiliation(s)
- Ling Xu
- College of Life Sciences and Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, Zhejiang Sci-Tech University, Hangzhou 310018, China; College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wenfang Zhang
- Jiading District Agro-Technology Extension Service Center, Shanghai 201800, China
| | - Basharat Ali
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Faisal Islam
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jinwen Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Weijun Zhou
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
27
|
Xu G, Zhu Q, Luo Y, Zhang X, Guo W, Dou W, Li H, Xu H, Zhang X, Xu Z. Enhanced production of l-serine by deleting sdaA combined with modifying and overexpressing serA in a mutant of Corynebacterium glutamicum SYPS-062 from sucrose. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
28
|
Guo Y, Han M, Xu J, Zhang W. Analysis of acetohydroxyacid synthase variants from branched-chain amino acids-producing strains and their effects on the synthesis of branched-chain amino acids in Corynebacterium glutamicum. Protein Expr Purif 2015; 109:106-12. [DOI: 10.1016/j.pep.2015.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/03/2015] [Accepted: 02/06/2015] [Indexed: 11/29/2022]
|
29
|
Identification and optimization of a novel thermo- and solvent stable ketol-acid reductoisomerase for cell free isobutanol biosynthesis. Biochimie 2015; 108:76-84. [DOI: 10.1016/j.biochi.2014.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 10/27/2014] [Indexed: 11/22/2022]
|
30
|
L-Serine overproduction with minimization of by-product synthesis by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 2014; 99:1665-73. [PMID: 25434811 DOI: 10.1007/s00253-014-6243-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/16/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
The direct fermentative production of L-serine by Corynebacterium glutamicum from sugars is attractive. However, superfluous by-product accumulation and low L-serine productivity limit its industrial production on large scale. This study aimed to investigate metabolic and bioprocess engineering strategies towards eliminating by-products as well as increasing L-serine productivity. Deletion of alaT and avtA encoding the transaminases and introduction of an attenuated mutant of acetohydroxyacid synthase (AHAS) increased both L-serine production level (26.23 g/L) and its productivity (0.27 g/L/h). Compared to the parent strain, the by-products L-alanine and L-valine accumulation in the resulting strain were reduced by 87 % (from 9.80 to 1.23 g/L) and 60 % (from 6.54 to 2.63 g/L), respectively. The modification decreased the metabolic flow towards the branched-chain amino acids (BCAAs) and induced to shift it towards L-serine production. Meanwhile, it was found that corn steep liquor (CSL) could stimulate cell growth and increase sucrose consumption rate as well as L-serine productivity. With addition of 2 g/L CSL, the resulting strain showed a significant improvement in the sucrose consumption rate (72 %) and the L-serine productivity (67 %). In fed-batch fermentation, 42.62 g/L of L-serine accumulation was achieved with a productivity of 0.44 g/L/h and yield of 0.21 g/g sucrose, which was the highest production of L-serine from sugars to date. The results demonstrated that combined metabolic and bioprocess engineering strategies could minimize by-product accumulation and improve L-serine productivity.
Collapse
|
31
|
Characterization and modification of enzymes in the 2-ketoisovalerate biosynthesis pathway of Ralstonia eutropha H16. Appl Microbiol Biotechnol 2014; 99:761-74. [DOI: 10.1007/s00253-014-5965-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 11/27/2022]
|
32
|
Generation of branched-chain amino acids resistant Corynebacterium glutamicum acetohydroxy acid synthase by site-directed mutagenesis. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0843-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Enhanced Valine Production inCorynebacterium glutamicumwith Defective H+-ATPase and C-Terminal Truncated Acetohydroxyacid Synthase. Biosci Biotechnol Biochem 2014; 72:2959-65. [DOI: 10.1271/bbb.80434] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Detection ofD-Ornithine Extracellularly Produced byCorynebacterium glutamicumATCC 13032::argF. Biosci Biotechnol Biochem 2014; 74:2507-10. [DOI: 10.1271/bbb.100523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Application of metabolic engineering for the biotechnological production of l-valine. Appl Microbiol Biotechnol 2014; 98:5859-70. [DOI: 10.1007/s00253-014-5782-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/17/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
|
36
|
Metabolic engineering of Pseudomonas sp. strain VLB120 as platform biocatalyst for the production of isobutyric acid and other secondary metabolites. Microb Cell Fact 2014; 13:2. [PMID: 24397404 PMCID: PMC3897908 DOI: 10.1186/1475-2859-13-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/29/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Over the recent years the production of Ehrlich pathway derived chemicals was shown in a variety of hosts such as Escherichia coli, Corynebacterium glutamicum, and yeast. Exemplarily the production of isobutyric acid was demonstrated in Escherichia coli with remarkable titers and yields. However, these examples suffer from byproduct formation due to the fermentative growth mode of the respective organism. We aim at establishing a new aerobic, chassis for the synthesis of isobutyric acid and other interesting metabolites using Pseudomonas sp. strain VLB120, an obligate aerobe organism, as host strain. RESULTS The overexpression of kivd, coding for a 2-ketoacid decarboxylase from Lactococcus lactis in Ps. sp. strain VLB120 enabled for the production of isobutyric acid and isobutanol via the valine synthesis route (Ehrlich pathway). This indicates the existence of chromosomally encoded alcohol and aldehyde dehydrogenases catalyzing the reduction and oxidation of isobutyraldehyde. In addition we showed that the strain possesses a complete pathway for isobutyric acid metabolization, channeling the compound via isobutyryl-CoA into valine degradation. Three key issues were addressed to allow and optimize isobutyric acid synthesis: i) minimizing isobutyric acid degradation by host intrinsic enzymes, ii) construction of suitable expression systems and iii) streamlining of central carbon metabolism finally leading to production of up to 26.8 ± 1.5 mM isobutyric acid with a carbon yield of 0.12 ± 0.01 g g(glc)⁻¹. CONCLUSION The combination of an increased flux towards isobutyric acid using a tailor-made expression system and the prevention of precursor and product degradation allowed efficient production of isobutyric acid in Ps. sp. strain VLB120. This will be the basis for the development of a continuous reaction process for this bulk chemicals.
Collapse
|
37
|
Tong W, Chen Z, Cao Z, Wang Q, Zhang J, Bai X, Wang R, Liu S. Robustness analysis of a constraint-based metabolic model links cell growth and proteomics of Thermoanaerobacter tengcongensis under temperature perturbation. MOLECULAR BIOSYSTEMS 2013; 9:713-22. [PMID: 23396507 DOI: 10.1039/c3mb25278g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The integration of omic data with metabolic networks has been demonstrated to be an effective approach to elucidate the underlying metabolic mechanisms in life. Because the metabolic pathways of Thermoanaerobacter tengcongensis (T. tengcongensis) are incomplete, we used a 1-(13)C-glucose culture to monitor intracellular isotope-labeled metabolites by GC/MS and identified the gap gene in glucose catabolism, Re-citrate synthase. Based on genome annotation and biochemical information, we reconstructed the metabolic network of glucose metabolism and amino acid synthesis in T. tengcongensis, including 253 reactions, 227 metabolites, and 236 genes. Furthermore, we performed constraint based modeling (CBM)-derived robustness analysis on the model to study the dynamic changes of the metabolic network. By perturbing the culture temperature from 75 to 55 °C, we collected the bacterial growth rates and differential proteomes. Assuming that protein abundance changes represent metabolic flux variations, we proposed that the robustness analysis of the CBM model could decipher the effect of proteome change on the bacterial growth under perturbation. For approximately 73% of the reactions, the predicted cell growth changes due to such reaction flux variations matched the observed cell growth data. Our study, therefore, indicates that differential proteome data can be integrated with metabolic network modeling and that robustness analysis is a strong method for representing the dynamic change in cell phenotypes under perturbation.
Collapse
Affiliation(s)
- Wei Tong
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 101300, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Vasco-Cárdenas MF, Baños S, Ramos A, Martín JF, Barreiro C. Proteome response of Corynebacterium glutamicum to high concentration of industrially relevant C₄ and C₅ dicarboxylic acids. J Proteomics 2013; 85:65-88. [PMID: 23624027 DOI: 10.1016/j.jprot.2013.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 03/05/2013] [Accepted: 04/09/2013] [Indexed: 12/11/2022]
Abstract
UNLABELLED More than fifty years of industrial and scientific developments on the amino acid-producer strain Corynebacterium glutamicum has generated an extremely huge knowledge highly applicable to the development of new products. Despite the production of dicarboxylic acids has already been engineered in C. glutamicum, the effect caused by these acids at competitive industrial levels has not yet been described. Thus, aspartic, fumaric, itaconic, malic and succinic acids have been tested on the growth of C. glutamicum to obtain their minimal inhibitory concentrations and their intracellular effects analyzed by 2D-DIGE. This analysis showed the modification of the central metabolism of C. glutamicum, the cross-regulation between malic acid and glucose as well as the aspartic acid utilization as nitrogen source. The analysis of the transcriptional regulators involved in the control of the detected proteins pointed to the ramB gene as a candidate for strain improvement. The analysis of the ΔramB mutant demonstrated its function as an enhancer of the growth speed or resistance level against aspartic, fumaric, itaconic and malic acids in C. glutamicum. BIOLOGICAL SIGNIFICANCE The effect of dicarboxylic acids addition to the C. glutamicum culture broth has been described. This proteome response is detailed and the deletion of a global regulator (ramB) has been described as a possible improving method for industrial strains. In addition, the consumption of aspartic acid as nitrogen source has been described for the first time in C. glutamicum, as well as, the cross-regulation between malic acid and glucose through the F0F1 respiratory system.
Collapse
Affiliation(s)
- María F Vasco-Cárdenas
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | | | | | | | | |
Collapse
|
39
|
Phosphotransferase system-mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains. Appl Environ Microbiol 2013; 79:2588-95. [PMID: 23396334 DOI: 10.1128/aem.03231-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Corynebacterium glutamicum is particularly known for its industrial application in the production of amino acids. Amino acid overproduction comes along with a high NADPH demand, which is covered mainly by the oxidative part of the pentose phosphate pathway (PPP). In previous studies, the complete redirection of the carbon flux toward the PPP by chromosomal inactivation of the pgi gene, encoding the phosphoglucoisomerase, has been applied for the improvement of C. glutamicum amino acid production strains, but this was accompanied by severe negative effects on the growth characteristics. To investigate these effects in a genetically defined background, we deleted the pgi gene in the type strain C. glutamicum ATCC 13032. The resulting strain, C. glutamicum Δpgi, lacked detectable phosphoglucoisomerase activity and grew poorly with glucose as the sole substrate. Apart from the already reported inhibition of the PPP by NADPH accumulation, we detected a drastic reduction of the phosphotransferase system (PTS)-mediated glucose uptake in C. glutamicum Δpgi. Furthermore, Northern blot analyses revealed that expression of ptsG, which encodes the glucose-specific EII permease of the PTS, was abolished in this mutant. Applying our findings, we optimized l-lysine production in the model strain C. glutamicum DM1729 by deletion of pgi and overexpression of plasmid-encoded ptsG. l-Lysine yields and productivity with C. glutamicum Δpgi(pBB1-ptsG) were significantly higher than those with C. glutamicum Δpgi(pBB1). These results show that ptsG overexpression is required to overcome the repressed activity of PTS-mediated glucose uptake in pgi-deficient C. glutamicum strains, thus enabling efficient as well as fast l-lysine production.
Collapse
|
40
|
Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions. Appl Environ Microbiol 2012; 79:1250-7. [PMID: 23241971 DOI: 10.1128/aem.02806-12] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated efficient L-valine production by metabolically engineered Corynebacterium glutamicum under oxygen deprivation. To achieve the high productivity, a NADH/NADPH cofactor imbalance during the synthesis of l-valine was overcome by engineering NAD-preferring mutant acetohydroxy acid isomeroreductase (AHAIR) and using NAD-specific leucine dehydrogenase from Lysinibacillus sphaericus. Lactate as a by-product was largely eliminated by disrupting the lactate dehydrogenase gene ldhA. Nonetheless, a few other by-products, particularly succinate, were still produced and acted to suppress the L-valine yield. Eliminating these by-products therefore was deemed key to improving theL-valine yield. By additionally disrupting the phosphoenolpyruvate carboxylase gene ppc, succinate production was effectively suppressed, but both glucose consumption and L-valine production dropped considerably due to the severely elevated intracellular NADH/NAD(+) ratio. In contrast, this perturbed intracellular redox state was more than compensated for by deletion of three genes associated with NADH-producing acetate synthesis and overexpression of five glycolytic genes, including gapA, encoding NADH-inhibited glyceraldehyde-3-phosphate dehydrogenase. Inserting feedback-resistant mutant acetohydroxy acid synthase and NAD-preferring mutant AHAIR in the chromosome resulted in higher L-valine yield and productivity. Deleting the alanine transaminase gene avtA suppressed alanine production. The resultant strain produced 1,280 mM L-valine at a yield of 88% mol mol of glucose(-1) after 24 h under oxygen deprivation, a vastly improved yield over our previous best.
Collapse
|
41
|
Improved 2-methyl-1-propanol production in an engineered Bacillus subtilis by constructing inducible pathways. Biotechnol Lett 2012; 34:2253-8. [PMID: 22941373 DOI: 10.1007/s10529-012-1041-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 07/16/2012] [Indexed: 12/15/2022]
Abstract
High-level constitutive gene expression can result in cellular metabolic imbalance and limit production. To circumvent these problems, a P(alsSD)-controlled auto-inducible 2-ketoisovalerate biosynthetic pathway and a P(spac)-controlled IPTG-inducible Ehrlich pathway were constructed in Bacillus subtilis to modulate gene expression. Based on the precise gene expression characteristics of the two inducible pathways, the optimal IPTG induction time point and dose for 2-methyl-1-propanol biosynthesis were determined as 9.5 h and 300 μM, respectively. Under the optimized conditions, strain BSUΔL-03 with inducible pathways produced up to 3.83 ± 0.46 g 2-methyl-1-propanol/l, which was about 60 % higher than BSUL04 with constitutive pathways.
Collapse
|
42
|
Lu J, Brigham CJ, Gai CS, Sinskey AJ. Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha. Appl Microbiol Biotechnol 2012; 96:283-97. [DOI: 10.1007/s00253-012-4320-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 11/25/2022]
|
43
|
Co-expression of feedback-resistant threonine dehydratase and acetohydroxy acid synthase increase L-isoleucine production in Corynebacterium glutamicum. Metab Eng 2012; 14:542-50. [PMID: 22771937 DOI: 10.1016/j.ymben.2012.06.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 05/19/2012] [Accepted: 06/26/2012] [Indexed: 11/24/2022]
Abstract
Threonine dehydratase and acetohydroxy acid synthase are critical enzymes in the L-isoleucine biosynthesis pathway of Corynebacterium glutamicum, but their activities are usually feedback-inhibited. In this study, we characterized a feedback-resistant threonine dehydratase and an acetohydroxy acid synthase from an L-isoleucine producing strain C. glutamicum JHI3-156. Sequence analysis showed that there was only a single amino acid substitution (Phe383Val) in the feedback-resistant threonine dehydratase, and there were three mutated amino acids (Pro176Ser, Asp426Glu, and Leu575Trp) in the big subunit of feedback-resistant acetohydroxy acid synthase. The mutated threonine dehydratase over-expressed in E. coli not only showed completely resistance to L-isoleucine inhibition, but also showed enhanced activity. The mutated acetohydroxy acid synthase over-expressed in E. coli showed more resistance to L-isoleucine inhibition than the wild type. Over-expression of the feedback-resistant threonine dehydratase or acetohydroxy acid synthase in C. glutamicum JHI3-156 led to increase of L-isoleucine production; co-expression of them in C. glutamicum JHI3-156 led to 131.7% increase in flask cultivation, and could produce 30.7g/L L-isoleucine in 72-h fed-batch fermentation. These results would be useful to enhance L-isoleucine production in C. glutamicum.
Collapse
|
44
|
Barak Z, Chipman DM. Allosteric regulation in Acetohydroxyacid Synthases (AHASs) – Different structures and kinetic behavior in isozymes in the same organisms. Arch Biochem Biophys 2012; 519:167-74. [DOI: 10.1016/j.abb.2011.11.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/25/2011] [Accepted: 11/29/2011] [Indexed: 10/14/2022]
|
45
|
Gedi V, Yoon MY. Bacterial acetohydroxyacid synthase and its inhibitors - a summary of their structure, biological activity and current status. FEBS J 2012; 279:946-63. [DOI: 10.1111/j.1742-4658.2012.08505.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Improvement of the redox balance increases L-valine production by Corynebacterium glutamicum under oxygen deprivation conditions. Appl Environ Microbiol 2011; 78:865-75. [PMID: 22138982 DOI: 10.1128/aem.07056-11] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Production of L-valine under oxygen deprivation conditions by Corynebacterium glutamicum lacking the lactate dehydrogenase gene ldhA and overexpressing the L-valine biosynthesis genes ilvBNCDE was repressed. This was attributed to imbalanced cofactor production and consumption in the overall L-valine synthesis pathway: two moles of NADH was generated and two moles of NADPH was consumed per mole of L-valine produced from one mole of glucose. In order to solve this cofactor imbalance, the coenzyme requirement for L-valine synthesis was converted from NADPH to NADH via modification of acetohydroxy acid isomeroreductase encoded by ilvC and introduction of Lysinibacillus sphaericus leucine dehydrogenase in place of endogenous transaminase B, encoded by ilvE. The intracellular NADH/NAD(+) ratio significantly decreased, and glucose consumption and L-valine production drastically improved. Moreover, L-valine yield increased and succinate formation decreased concomitantly with the decreased intracellular redox state. These observations suggest that the intracellular NADH/NAD(+) ratio, i.e., reoxidation of NADH, is the primary rate-limiting factor for L-valine production under oxygen deprivation conditions. The L-valine productivity and yield were even better and by-products derived from pyruvate further decreased as a result of a feedback resistance-inducing mutation in the acetohydroxy acid synthase encoded by ilvBN. The resultant strain produced 1,470 mM L-valine after 24 h with a yield of 0.63 mol mol of glucose(-1), and the L-valine productivity reached 1,940 mM after 48 h.
Collapse
|
47
|
Hou X, Ge X, Wu D, Qian H, Zhang W. Improvement of L-valine production at high temperature in Brevibacterium flavum by overexpressing ilvEBNrC genes. J Ind Microbiol Biotechnol 2011; 39:63-72. [PMID: 21706252 DOI: 10.1007/s10295-011-1000-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
Abstract
Brevibacterium flavum ATCC14067 was engineered for L: -valine production by overexpression of different ilv genes; the ilvEBN(r)C genes from B. flavum NV128 provided the best candidate for L: -valine production. In traditional fermentation, L: -valine production reached 30.08 ± 0.92 g/L at 31°C in 72 h with a low conversion efficiency of 0.129 g/g. To further improve the L: -valine production and conversion efficiency based on the optimum temperatures of L: -valine biosynthesis enzymes (above 35°C) and the thermotolerance of B. flavum, the fermentation temperature was increased to 34, 37, and 40°C. As a result, higher metabolic rate and L: -valine biosynthesis enzymes activity were obtained at high temperature, and the maximum L: -valine production, conversion efficiency, and specific L: -valine production rate reached 38.08 ± 1.32 g/L, 0.241 g/g, and 0.133 g g(-1) h(-1), respectively, at 37°C in 48 h fermentation. The strategy for enhancing L: -valine production by overexpression of key enzymes in thermotolerant strains may provide an alternative approach to enhance branched-chain amino acids production with other strains.
Collapse
Affiliation(s)
- Xiaohu Hou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, JiangNan University, 1800# Lihu Road, Wuxi, 214122, JiangSu Province, People's Republic of China.
| | | | | | | | | |
Collapse
|
48
|
Jia X, Li S, Xie S, Wen J. Engineering a metabolic pathway for isobutanol biosynthesis in Bacillus subtilis. Appl Biochem Biotechnol 2011; 168:1-9. [PMID: 21537892 DOI: 10.1007/s12010-011-9268-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 04/18/2011] [Indexed: 11/28/2022]
Abstract
Isobutanol can be biosynthesized via α-ketoisovalerate catalyzed by heterologous keto acid decarboxylase (KDC) and alcohol dehydrogenase (ADH). In this work, isobutanol biosynthesis pathway was designed in Bacillus subtilis, a notable solvent-tolerant host. In order to do that, a plasmid pPKA expressing KDC and ADH under the control of a B. subtilis strong promoter P(43) was constructed. Isobutanol was detected in the products of the recombinant B. subtilis harboring pPKA plasmid, whereas none was detected by the wild-type strain. Effects of the medium ingredients such as glucose concentration and valine addition, and operating parameters such as initial pH, inoculation volume, and medium work volume on isobutanol production were also investigated. Isobutanol production reached to the maximum of 0.607 g/L after 35-h cultivation under the conditions: glucose concentration of 3%, valine addition of 2%, initial pH of 7.0, inoculum of 1%, and work volume of 50 mL/250 mL. Though the isobutanol production by the recombinant was low, it was the first successful attempt to produce isobutanol in engineered B. subtilis, and the results showed its great potential as an isobutanol-producing cell factory.
Collapse
Affiliation(s)
- Xiaoqiang Jia
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China.
| | | | | | | |
Collapse
|
49
|
Li S, Wen J, Jia X. Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Appl Microbiol Biotechnol 2011; 91:577-89. [PMID: 21533914 DOI: 10.1007/s00253-011-3280-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/24/2011] [Accepted: 03/26/2011] [Indexed: 12/14/2022]
Abstract
In the present work, Bacillus subtilis was engineered as the cell factory for isobutanol production due to its high tolerance to isobutanol. Initially, an efficient heterologous Ehrlich pathway controlled by the promoter P(43) was introduced into B. subtilis for the isobutanol biosynthesis. Further, investigation of acetolactate synthase of B. subtilis, ketol-acid reductoisomerase, and dihydroxy-acid dehydratase of Corynebacterium glutamicum responsible for 2-ketoisovalerate precursor biosynthesis showed that acetolactate synthase played an important role in isobutanol biosynthesis. The overexpression of acetolactate synthase led to a 2.8-fold isobutanol production compared with the control. Apart from isobutanol, alcoholic profile analysis also confirmed the existence of 1.21 g/L ethanol, 1.06 g/L 2-phenylethanol, as well as traces of 2-methyl-1-butanol and 3-methyl-1-butanol in the fermentation broth. Under microaerobic condition, the engineered B. subtilis produced up to 2.62 g/L isobutanol in shake-flask fed-batch fermentation, which was 21.3% higher than that in batch fermentation.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | | | | |
Collapse
|
50
|
Metabolic engineering of Corynebacterium glutamicum for 2-ketoisovalerate production. Appl Environ Microbiol 2010; 76:8053-61. [PMID: 20935122 DOI: 10.1128/aem.01710-10] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
2-Ketoisovalerate is used as a therapeutic agent, and a 2-ketoisovalerate-producing organism may serve as a platform for products deriving from this 2-keto acid. We engineered the wild type of Corynebacterium glutamicum for the growth-decoupled production of 2-ketoisovalerate from glucose by deletion of the aceE gene encoding the E1p subunit of the pyruvate dehydrogenase complex, deletion of the transaminase B gene ilvE, and additional overexpression of the ilvBNCD genes, encoding the l-valine biosynthetic enzymes acetohydroxyacid synthase (AHAS), acetohydroxyacid isomeroreductase, and dihydroxyacid dehydratase. 2-Ketoisovalerate production was further improved by deletion of the pyruvate:quinone oxidoreductase gene pqo. In fed-batch fermentations at high cell densities, the newly constructed strains produced up to 188 ± 28 mM (21.8 ± 3.2 g liter(-1)) 2-ketoisovalerate and showed a product yield of about 0.47 ± 0.05 mol per mol (0.3 ± 0.03 g per g) of glucose and a volumetric productivity of about 4.6 ± 0.6 mM (0.53 ± 0.07 g liter(-1)) 2-ketoisovalerate per h in the overall production phase. In studying the influence of the three branched-chain 2-keto acids 2-ketoisovalerate, 2-ketoisocaproate, and 2-keto-3-methylvalerate on the AHAS activity, we observed a competitive inhibition of the AHAS enzyme by 2-ketoisovalerate.
Collapse
|