1
|
Najarro G, Brackett K, Woosley H, Dorman LC, Turon-Lagot V, Khadka S, Faeldonea C, Moreno OK, Negron AR, Love C, Ward R, Langelier C, McCarthy F, Gonzalez C, Elias JE, Gardner BM, Arias C. BiP/GRP78 is a pro-viral factor for diverse dsDNA viruses that promotes the survival and proliferation of cells upon KSHV infection. PLoS Pathog 2024; 20:e1012660. [PMID: 39471213 PMCID: PMC11548844 DOI: 10.1371/journal.ppat.1012660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/08/2024] [Accepted: 10/11/2024] [Indexed: 11/01/2024] Open
Abstract
The Endoplasmic Reticulum (ER)-resident HSP70 chaperone BiP (HSPA5) plays a crucial role in maintaining and restoring protein folding homeostasis in the ER. BiP's function is often dysregulated in cancer and virus-infected cells, conferring pro-oncogenic and pro-viral advantages. We explored BiP's functions during infection by the Kaposi's sarcoma-associated herpesvirus (KSHV), an oncogenic gamma-herpesvirus associated with cancers of immunocompromised patients. Our findings reveal that BiP protein levels are upregulated in infected epithelial cells during the lytic phase of KSHV infection. This upregulation occurs independently of the unfolded protein response (UPR), a major signaling pathway that regulates BiP availability. Genetic and pharmacological inhibition of BiP halts KSHV viral replication and reduces the proliferation and survival of KSHV-infected cells. Notably, inhibition of BiP limits the spread of other alpha- and beta-herpesviruses and poxviruses with minimal toxicity for normal cells. Our work suggests that BiP is a potential target for developing broad-spectrum antiviral therapies against double-stranded DNA viruses and a promising candidate for therapeutic intervention in KSHV-related malignancies.
Collapse
Affiliation(s)
- Guillermo Najarro
- University of California, Santa Barbara, California, United States of America
| | - Kevin Brackett
- University of California, Santa Barbara, California, United States of America
| | - Hunter Woosley
- Chan Zuckerberg BioHub, San Francisco, California, United States of America
| | - Leah C. Dorman
- Chan Zuckerberg BioHub, San Francisco, California, United States of America
| | | | - Sudip Khadka
- Chan Zuckerberg BioHub, San Francisco, California, United States of America
| | - Catya Faeldonea
- University of California, Santa Barbara, California, United States of America
| | | | | | - Christina Love
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Ryan Ward
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Charles Langelier
- Chan Zuckerberg BioHub, San Francisco, California, United States of America
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Frank McCarthy
- Chan Zuckerberg BioHub, San Francisco, California, United States of America
| | - Carlos Gonzalez
- Chan Zuckerberg BioHub, San Francisco, California, United States of America
| | - Joshua E. Elias
- Chan Zuckerberg BioHub, San Francisco, California, United States of America
| | - Brooke M. Gardner
- University of California, Santa Barbara, California, United States of America
| | - Carolina Arias
- University of California, Santa Barbara, California, United States of America
- Chan Zuckerberg BioHub, San Francisco, California, United States of America
| |
Collapse
|
2
|
Multiple Herpes Simplex Virus-1 (HSV-1) Reactivations Induce Protein Oxidative Damage in Mouse Brain: Novel Mechanisms for Alzheimer's Disease Progression. Microorganisms 2020; 8:microorganisms8070972. [PMID: 32610629 PMCID: PMC7409037 DOI: 10.3390/microorganisms8070972] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/24/2022] Open
Abstract
Compelling evidence supports the role of oxidative stress in Alzheimer's disease (AD) pathophysiology. Interestingly, Herpes simplex virus-1 (HSV-1), a neurotropic virus that establishes a lifelong latent infection in the trigeminal ganglion followed by periodic reactivations, has been reportedly linked both to AD and to oxidative stress conditions. Herein, we analyzed, through biochemical and redox proteomic approaches, the mouse model of recurrent HSV-1 infection we previously set up, to investigate whether multiple virus reactivations induced oxidative stress in the mouse brain and affected protein function and related intracellular pathways. Following multiple HSV-1 reactivations, we found in mouse brains increased levels of oxidative stress hallmarks, including 4-hydroxynonenal (HNE), and 13 HNE-modified proteins whose levels were found significantly altered in the cortex of HSV-1-infected mice compared to controls. We focused on two proteins previously linked to AD pathogenesis, i.e., glucose-regulated protein 78 (GRP78) and collapsin response-mediated protein 2 (CRMP2), which are involved in the unfolded protein response (UPR) and in microtubule stabilization, respectively. We found that recurrent HSV-1 infection disables GRP78 function and activates the UPR, whereas it prevents CRMP2 function in mouse brains. Overall, these data suggest that repeated HSV-1 reactivation into the brain may contribute to neurodegeneration also through oxidative damage.
Collapse
|
3
|
Neerukonda SN, Katneni UK, Bott M, Golovan SP, Parcells MS. Induction of the unfolded protein response (UPR) during Marek's disease virus (MDV) infection. Virology 2018; 522:1-12. [PMID: 29979959 DOI: 10.1016/j.virol.2018.06.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/14/2018] [Accepted: 06/27/2018] [Indexed: 12/22/2022]
Abstract
Marek's disease (MD) is a pathology of chickens associated with paralysis, immune suppression, and the rapid formation of T-cell lymphomas. MD is caused by the herpesvirus, Marek's disease virus (MDV). We examined endoplasmic reticulum (ER) stress and the activation of unfolded protein response (UPR) pathways during MDV infection of cells in culture and lymphocytes in vivo. MDV strains activate the UPR as measured by increased mRNA expression of GRP78/BiP with concomitant XBP1 splicing and induction of its target gene, EDEM1. Cell culture replication of virulent, but not vaccine MDVs, activated the UPR at late in infection. Pathotype-associated UPR activation was induced to a greater level by a vv + MDV. Discrete UPR activation was observed during MDV in vivo infection, with the level of UPR modulation being affected by the MDV oncoprotein Meq. Finally, ATF6 was found to be activated in vv + MDV-induced primary lymphomas, suggesting a possible role in tumor progression.
Collapse
Affiliation(s)
- Sabari Nath Neerukonda
- Department of Animal and Food Sciences, University of Delaware, 052 Townsend Hall, 531 South College Ave, Newark, DE 19716, United States.
| | - Upendra K Katneni
- Department of Animal and Food Sciences, University of Delaware, 052 Townsend Hall, 531 South College Ave, Newark, DE 19716, United States.
| | - Matthew Bott
- Department of Animal and Food Sciences, University of Delaware, 052 Townsend Hall, 531 South College Ave, Newark, DE 19716, United States.
| | | | - Mark S Parcells
- Department of Animal and Food Sciences, University of Delaware, 052 Townsend Hall, 531 South College Ave, Newark, DE 19716, United States.
| |
Collapse
|
4
|
Berard AR, Coombs KM, Severini A. Quantification of the host response proteome after herpes simplex virus type 1 infection. J Proteome Res 2015; 14:2121-42. [PMID: 25815715 DOI: 10.1021/pr5012284] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Viruses employ numerous host cell metabolic functions to propagate and manage to evade the host immune system. For herpes simplex virus type 1 (HSV1), a virus that has evolved to efficiently infect humans without seriously harming the host in most cases, the virus-host interaction is specifically interesting. This interaction can be best characterized by studying the proteomic changes that occur in the host during infection. Previous studies have been successful at identifying numerous host proteins that play important roles in HSV infection; however, there is still much that we do not know. This study identifies host metabolic functions and proteins that play roles in HSV infection, using global quantitative stable isotope labeling by amino acids in cell culture (SILAC) proteomic profiling of the host cell combined with LC-MS/MS. We showed differential proteins during early, mid and late infection, using both cytosolic and nuclear fractions. We identified hundreds of differentially regulated proteins involved in fundamental cellular functions, including gene expression, DNA replication, inflammatory response, cell movement, cell death, and RNA post-transcriptional modification. Novel differentially regulated proteins in HSV infections include some previously identified in other virus systems, as well as fusion protein, involved in malignant liposarcoma (FUS) and hypoxia up-regulated 1 protein precursor (HYOU1), which have not been identified previously in any virus infection.
Collapse
Affiliation(s)
- Alicia R Berard
- †Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0J9.,‡Manitoba Center for Proteomics and Systems Biology, University of Manitoba, Room 799 John Buhler Research Centre, Winnipeg, Manitoba, Canada R3E 3P4
| | - Kevin M Coombs
- †Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0J9.,‡Manitoba Center for Proteomics and Systems Biology, University of Manitoba, Room 799 John Buhler Research Centre, Winnipeg, Manitoba, Canada R3E 3P4.,§Manitoba Institute of Child Health, University of Manitoba, Room 641 John Buhler Research Centre, Winnipeg, Manitoba, Canada R3E 3P4
| | - Alberto Severini
- †Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0J9.,∥National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, Canada R3E 3P6
| |
Collapse
|
5
|
Li G, Scull C, Ozcan L, Tabas I. NADPH oxidase links endoplasmic reticulum stress, oxidative stress, and PKR activation to induce apoptosis. Crit Rev Microbiol 2010; 41:150-64. [PMID: 25168431 PMCID: PMC7113905 DOI: 10.3109/1040841x.2013.813899] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The endoplasmic reticulum (ER) is a cellular membrane organelle that plays important roles in virus replication and maturation. Accumulating evidence indicates that virus infection often disturbs ER homeostasis and leads to ER stress, which is associated with a variety of prevalent diseases. To cope with the deleterious effects of virus-induced ER stress, cells activate critical signaling pathways including the unfolded protein response (UPR) and intrinsic mitochondrial apoptosis, which have complex effects on virus replication and pathogenesis. In this review, we present a comprehensive summary of recent research in this field, which revealed that about 36 viruses trigger ER stress and differentially activate ER stress-related signaling pathways. We also highlight the strategies evolved by viruses to modulate ER stress-related signaling networks including immune responses in order to ensure their survival and pathogenesis. Together, the knowledge gained from this field will shed light on unveiling the mechanisms of virus replication and pathogenesis and provide insight for future research as well as antiviral development.
Collapse
Affiliation(s)
- Gang Li
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
6
|
Santamaría E, Mora MI, Carro-Roldán E, Molina M, Fernández-Irigoyen J, Marconi P, Manservigi R, Greco A, Epstein AL, Prieto J, Hernández-Alcoceba R, Corrales FJ. Identification of replication-competent HSV-1 Cgal+ strain targets in a mouse model of human hepatocarcinoma xenograft. J Proteomics 2009; 73:153-160. [PMID: 19540947 DOI: 10.1016/j.jprot.2009.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/08/2009] [Accepted: 06/10/2009] [Indexed: 12/17/2022]
Abstract
Recent studies based on animal models have shown the advantages and potential of oncolytic viral therapy using HSV-1 -based replication-competent vectors in the treatment of liver tumors, but little is known about the cellular targets that are modulated during viral infection. In the present work, we have studied the effects of intratumoral injections of HSV-1 Cgal(+) strain in a murine model of human hepatoma xenografts. Viral replication was assessed for more than 1month, leading to a significant reduction of tumor growth rate mediated, in part, by a cyclin B dependent cell proliferation arrest. Early events resulting in this effect were analyzed using a proteomic approach. Protein extracts from xenografted human hepatomas treated with saline or HSV-1 Cgal(+) strain during 24h were compared by 2-D DIGE and differential spots were identified by nanoLC-ESI-MS/MS. Alterations on glutathione S transferase 1 Omega, and ERp29 suggest novel HSV-1 Cgal(+) targets in solid liver tumors. Additionally, ERp29 showed a complex differential isoform pattern upon HSV-1 Cgal(+) infection, suggesting regulatory mechanisms based on post-translational modification events.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Chlorocebus aethiops
- Female
- Herpesvirus 1, Human/metabolism
- Herpesvirus 1, Human/physiology
- Humans
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/therapy
- Mice
- Mice, Nude
- Mutagenesis, Insertional/physiology
- Neoplasm Proteins/analysis
- Neoplasm Proteins/metabolism
- Oncolytic Virotherapy/methods
- Tumor Cells, Cultured
- Vero Cells
- Viral Proteins/metabolism
- Virus Replication/physiology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Enrique Santamaría
- Division of Hepatology and Gene Therapy, Proteomics Unit. Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Antrobus R, Grant K, Gangadharan B, Chittenden D, Everett RD, Zitzmann N, Boutell C. Proteomic analysis of cells in the early stages of herpes simplex virus type-1 infection reveals widespread changes in the host cell proteome. Proteomics 2009; 9:3913-27. [PMID: 19670248 DOI: 10.1002/pmic.200900207] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 05/11/2009] [Indexed: 01/20/2023]
Abstract
During infection by herpes simplex virus type-1 (HSV-1) the host cell undergoes widespread changes in gene expression and morphology in response to viral replication and release. However, relatively little is known about the specific proteome changes that occur during the early stages of HSV-1 replication prior to the global damaging effects of virion maturation and egress. To investigate pathways that may be activated or utilised during the early stages of HSV-1 replication, 2-DE and LC-MS/MS were used to identify cellular proteome changes at 6 h post infection. Comparative analysis of multiple gels representing whole cell extracts from mock- and HSV-1-infected HEp-2 cells revealed a total of 103 protein spot changes. Of these, 63 were up-regulated and 40 down-regulated in response to infection. Changes in selected candidate proteins were verified by Western blot analysis and their respective cellular localisations analysed by confocal microscopy. We have identified differential regulation and modification of proteins with key roles in diverse cellular pathways, including DNA replication, chromatin remodelling, mRNA stability and the ER stress response. This work represents the first global comparative analysis of HSV-1 infected cells and provides an important insight into host cell proteome changes during the early stages of HSV-1 infection.
Collapse
Affiliation(s)
- Robin Antrobus
- Oxford Glycobiology Institute, Department of Biochemistry, Oxford University, UK
| | | | | | | | | | | | | |
Collapse
|
8
|
Mulvey M, Arias C, Mohr I. Resistance of mRNA translation to acute endoplasmic reticulum stress-inducing agents in herpes simplex virus type 1-infected cells requires multiple virus-encoded functions. J Virol 2006; 80:7354-63. [PMID: 16840316 PMCID: PMC1563692 DOI: 10.1128/jvi.00479-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Via careful control of multiple kinases that inactivate the critical translation initiation factor eIF2 by phosphorylation of its alpha subunit, the cellular translation machinery can rapidly respond to a spectrum of environmental stresses, including viral infection. Indeed, virus replication produces a battery of stresses, such as endoplasmic reticulum (ER) stress resulting from misfolded proteins accumulating within the lumen of this organelle, which could potentially result in eIF2alpha phosphorylation and inhibit translation. While cellular translation is exquisitely sensitive to ER stress-inducing agents, protein synthesis in herpes simplex virus type 1 (HSV-1)-infected cells is notably resistant. Sustained translation in HSV-1-infected cells exposed to acute ER stress does not involve the interferon-induced, double-stranded RNA-responsive eIF2alpha kinase PKR, and it does not require either the PKR inhibitor encoded by the Us11 gene or the eIF2alpha phosphatase component specified by the gamma(1)34.5 gene, the two viral functions known to regulate eIF2alpha phosphorylation. In addition, although ER stress potently induced the GADD34 cellular eIF2alpha phosphatase subunit in uninfected cells, it did not accumulate to detectable levels in HSV-1-infected cells under identical exposure conditions. Significantly, resistance of translation to the acute ER stress observed in infected cells requires HSV-1 gene expression. Whereas blocking entry into the true late phase of the viral developmental program does not abrogate ER stress-resistant translation, the presence of viral immediate-early proteins is sufficient to establish a state permissive of continued polypeptide synthesis in the presence of ER stress-inducing agents. Thus, one or more previously uncharacterized viral functions exist to counteract the accumulation of phosphorylated eIF2alpha in response to ER stress in HSV-1-infected cells.
Collapse
Affiliation(s)
- Matthew Mulvey
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
9
|
DenBoer LM, Hardy-Smith PW, Hogan MR, Cockram GP, Audas TE, Lu R. Luman is capable of binding and activating transcription from the unfolded protein response element. Biochem Biophys Res Commun 2005; 331:113-9. [PMID: 15845366 DOI: 10.1016/j.bbrc.2005.03.141] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2005] [Indexed: 11/20/2022]
Abstract
Luman (or LZIP, CREB3) is a transcription factor with an endoplasmic reticulum (ER)-transmembrane domain. Due to its structural similarities with ATF6, it is thought that Luman might also be involved in cellular stress responses. Here we report that Luman can bind and activate transcription from the consensus unfolded protein response element (UPRE). Mutations that disrupted the binding of Luman to the UPREs impaired its ability to activate transcription from these sites. Overexpression of Luman stimulated transcription of EDEM, a downstream effector of the mammalian unfolded protein response involved in ER-associated degradation (ERAD). Unlike ATF6, however, Luman was not activated by proteolytic cleavage in response to endoplasmic reticulum stressors such as tunicamycin and thapsigargin. These results suggest that the activation of ERAD by Luman is likely through a pathway different from the common ER stress response, and that additional factor(s) are required for the activation of this Luman-mediated pathway.
Collapse
Affiliation(s)
- Lisa M DenBoer
- Department of Molecular and Cellular Biology, University of Guelph, Ont., Canada N1G 2W1
| | | | | | | | | | | |
Collapse
|
10
|
Mayer MP. Recruitment of Hsp70 chaperones: a crucial part of viral survival strategies. Rev Physiol Biochem Pharmacol 2004; 153:1-46. [PMID: 15243813 DOI: 10.1007/s10254-004-0025-5] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Virus proliferation depends on the successful recruitment of host cellular components for their own replication, protein synthesis, and virion assembly. In the course of virus particle production a large number of proteins are synthesized in a relatively short time, whereby protein folding can become a limiting step. Most viruses therefore need cellular chaperones during their life cycle. In addition to their own protein folding problems viruses need to interfere with cellular processes such as signal transduction, cell cycle regulation and induction of apoptosis in order to create a favorable environment for their proliferation and to avoid premature cell death. Chaperones are involved in the control of these cellular processes and some viruses reprogram their host cell by interacting with them. Hsp70 chaperones, as central components of the cellular chaperone network, are frequently recruited by viruses. This review focuses on the function of Hsp70 chaperones at the different stages of the viral life cycle emphasizing mechanistic aspects.
Collapse
Affiliation(s)
- M P Mayer
- Zentrum für Molekulare Biologie, Universität Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.
| |
Collapse
|