1
|
Romon-Ochoa P, Samal P, Kranjec Orlović J, Lewis A, Gorton C, Pérez-Sierra A, Biddle M, Ward L. Transmission of Cryphonectria Hypovirus 1 (CHV1) to Cryphonectria radicalis and In Vitro and In Vivo Testing of Its Potential for Use as Biocontrol Against C. parasitica. Int J Mol Sci 2024; 25:12023. [PMID: 39596093 PMCID: PMC11593397 DOI: 10.3390/ijms252212023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Cryphonectria hypovirus 1 (CHV1) is successful in controlling Cryphonectria parasitica, the causal agent of chestnut blight, but little is known regarding its transmission to other fungi, for example the European Cryphonectria radicalis. In this study, CHV1 was transmitted (circa 200,000-800,000 copies/microliter) to seven C. radicalis isolates from infected C. parasitica. Reverse transmission to virus-free C. parasitica (European 74 testers collection) was achieved, although it was less successful (250-55,000 copies/µL) and was dependent on the vegetative compatibility (VC) group. In C. radicalis, the virus infection led to colony colour change from pink to white and smaller colonies, dependent on the virus concentration. The virus was concentrated in the colony edges, and vertically transmitted to 77% of conidia. However, several in vitro experiments demonstrated that C. radicalis was always outcompeted by the blight fungus, only suppressing the pathogen between its 25-50% inoculum level. It presented good secondary capture only when acting as a pioneer. Two types of in planta assays (individual and challenge inoculations) were undertaken. Cryphonectria radicalis behaved as a saprotroph, while chestnut blight fungus behaved as an aggressive pathogen, and lesions after treatment with C. radicalis were no smaller in general, only when using cut branches. Overall, the results showed that infected C. radicalis was unable to control cankers.
Collapse
Affiliation(s)
- Pedro Romon-Ochoa
- Forest Research, Plant Pathology Department, Alice Holt Lodge, Wrecclesham GU104LH, Surrey, UK; (P.S.); (M.B.); (L.W.)
| | - Pankajini Samal
- Forest Research, Plant Pathology Department, Alice Holt Lodge, Wrecclesham GU104LH, Surrey, UK; (P.S.); (M.B.); (L.W.)
| | - Jelena Kranjec Orlović
- Institute of Forest Protection and Wildlife Management, University of Zagreb Faculty of Forestry and Wood Technology, Svetošimunska Cesta 23, 10000 Zagreb, Croatia;
| | - Alex Lewis
- Forest Research, Tree Health Diagnostics and Advisory Service (THDAS), Alice Holt Lodge, Wrecclesham GU104LH, Surrey, UK; (A.L.); (C.G.); (A.P.-S.)
| | - Caroline Gorton
- Forest Research, Tree Health Diagnostics and Advisory Service (THDAS), Alice Holt Lodge, Wrecclesham GU104LH, Surrey, UK; (A.L.); (C.G.); (A.P.-S.)
| | - Ana Pérez-Sierra
- Forest Research, Tree Health Diagnostics and Advisory Service (THDAS), Alice Holt Lodge, Wrecclesham GU104LH, Surrey, UK; (A.L.); (C.G.); (A.P.-S.)
| | - Mick Biddle
- Forest Research, Plant Pathology Department, Alice Holt Lodge, Wrecclesham GU104LH, Surrey, UK; (P.S.); (M.B.); (L.W.)
| | - Lisa Ward
- Forest Research, Plant Pathology Department, Alice Holt Lodge, Wrecclesham GU104LH, Surrey, UK; (P.S.); (M.B.); (L.W.)
| |
Collapse
|
2
|
Çelik A, Çakar D, Derviş S, Morca AF, Akıllı Şimşek S, Romon-Ochoa P, Özer G. New Detection Methods for Cryphonectria Hypovirus 1 (CHV1) through SYBR Green-Based Real-Time PCR and Loop-Mediated Isothermal Amplification (LAMP). Viruses 2024; 16:1203. [PMID: 39205177 PMCID: PMC11360611 DOI: 10.3390/v16081203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Some mycoviruses can be considered as effective biocontrol agents, mitigating the impact of phytopathogenic fungi and consequently reducing disease outbreaks while promoting plant health. Cryphonectria parasitica, the causal agent of chestnut blight and a highly destructive pathogen, experienced a notable decrease in its virulence with the identification of cryphonectria hypovirus 1 (CHV1), a naturally occurring biocontrol agent. In this study, two innovative diagnostic protocols designed for the accurate and efficient detection of CHV1 are introduced. The ORF A and ORF B regions of CHV1 are targeted by these techniques, which employ colorimetric loop-mediated isothermal amplification (LAMP) with 2 Colorimetric LAMP Master Mix and real-time quantitative PCR (qPCR) with SYBR Green chemistry, respectively. The LAMP assay presents a discernible color transition, changing from pink to yellow after a 35 min incubation period. Comparative analysis, when assessed against two established reverse transcription-PCR (RT-PCR) techniques, reveals a significant enhancement in sensitivity for both the LAMP approach, which offers a tenfold increase, and the qPCR method, which showcases a remarkable 100-fold sensitivity improvement. Throughout the comparison phase, it was evident that the RT-PCR, LAMP, and qPCR procedures displayed superior performance compared to the Bavendamm test, relying on phenol oxidase activity, effectively distinguishing hypovirulent strains. Consequently, this study introduces two pioneer diagnostic assays for highly sensitive CHV1 detection, representing a substantial advancement in the realm of CHV1 surveillance techniques. These methodologies hold significant promise for enhancing research endeavors in the domain of the biological control of C. parasitica.
Collapse
Affiliation(s)
- Ali Çelik
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant İzzet Baysal University, Bolu 14030, Türkiye
| | - Deniz Çakar
- Central Research Laboratory Application and Research Center, Çankırı Karatekin University, Çankırı 18100, Türkiye
| | - Sibel Derviş
- Department of Plant Protection, Faculty of Kızıltepe Agricultural Sciences and Technologies, Mardin Artuklu University, Mardin 47000, Türkiye
- Department of Plant and Animal Production, Vocational School of Kızıltepe, Mardin Artuklu University, Mardin 47000, Türkiye
| | - Ali Ferhan Morca
- Directorate of Plant Protection Central Research Institute, Gayret Mah. Fatih Sultan Mehmet Bulv., Yenimahalle, Ankara 06172, Türkiye
| | - Seçil Akıllı Şimşek
- Department of Biology, Faculty of Sciences, Çankırı Karatekin University, Çankırı 18100, Türkiye
| | - Pedro Romon-Ochoa
- Forest Research, Plant Pathology Department, Alice Holt Research Station, Farnham GU10 4LH, UK
| | - Göksel Özer
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant İzzet Baysal University, Bolu 14030, Türkiye
| |
Collapse
|
3
|
Ahmad F, Tomada S, Poonsiri T, Baric S. Molecular genetic variability of Cryphonectria hypovirus 1 associated with Cryphonectria parasitica in South Tyrol (northern Italy). Front Microbiol 2024; 15:1291542. [PMID: 38476955 PMCID: PMC10927965 DOI: 10.3389/fmicb.2024.1291542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/25/2024] [Indexed: 03/14/2024] Open
Abstract
Cryphonectria hypovirus 1 (CHV-1) has been widely studied and used as a biocontrol agent because of its ability to infect the chestnut blight fungus, Cryphonectria parasitica, and to reduce its virulence. Knowledge about the hypovirus, its presence, and diversity is completely lacking in South Tyrol (northern Italy), which may obstruct biocontrol measures for chestnut blight based on CHV-1. This work aimed to study the occurrence of CHV-1 infecting C. parasitica in South Tyrol and to perform a genetic characterization of the hypovirus. In South Tyrol, CHV-1 was found to occur in 29.2% of the fungal isolates investigated, varying in frequency between different regions and chestnut stands. Twenty-three haplotypes based on partial cDNA (complementary DNA) sequences of open reading frame (ORF)-A and 30 haplotypes based on partial cDNA sequences of ORF-B were identified among 47 and 56 hypovirulent fungal isolates, respectively. Phylogenetic analysis showed that all the haplotypes belonged to the Italian subtype of CHV-1 and that they were closely related to the populations of Italy, Switzerland, Croatia and Slovenia. Evidence of recombination was not found in the sequences and point mutations were the main source of diversity. Overall, this study indicated that the prevalence of CHV-1 in South Tyrol is low compared to many other central and western European populations and determined a need to actively impose biocontrol measures. Using sequence analysis, we identified some variants of interest of CHV-1 that should be studied in detail for their potential use in biocontrol.
Collapse
Affiliation(s)
- Farooq Ahmad
- Laboratory for Phytopathology, Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Selena Tomada
- Laboratory for Phytopathology, Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Thanalai Poonsiri
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sanja Baric
- Laboratory for Phytopathology, Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
- Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|
4
|
Romon-Ochoa P, Samal P, Gorton C, Lewis A, Chitty R, Eacock A, Krzywinska E, Crampton M, Pérez-Sierra A, Biddle M, Jones B, Ward L. Cryphonectria parasitica Detections in England, Jersey, and Guernsey during 2020-2023 Reveal Newly Affected Areas and Infections by the CHV1 Mycovirus. J Fungi (Basel) 2023; 9:1036. [PMID: 37888292 PMCID: PMC10607933 DOI: 10.3390/jof9101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
In England, Cryphonectria parasitica was detected for the first time in 2011 in a nursery and in 2016 in the wider environment. Surveys between 2017 and 2020 identified the disease at different sites in Berkshire, Buckinghamshire, Cornwall, Derbyshire, Devon, Dorset, London, West Sussex, and the island of Jersey, while the present study comprises the results of the 2020-2023 survey with findings in Derbyshire, Devon, Kent, Nottinghamshire, Herefordshire, Leicestershire, London, West Sussex, and the islands of Jersey and Guernsey. A total of 226 suspected samples were collected from 72 surveyed sites, as far north as Edinburgh and as far west as Plymouth (both of which were negative), and 112 samples tested positive by real-time PCR and isolation from 35 sites. The 112 isolates were tested for the vegetative compatibility group (VCG), mating type, and Cryphonectria hypovirus 1 (CHV1). Twelve VCGs were identified, with two of them (EU-5 and EU-22) being the first records in the UK. Both mating types were present (37% MAT-1 and 63% MAT-2), but only one mating type was present per site and VCG, and perithecia were never observed. Cryphonectria hypovirus 1 (CHV1), consistently subtype-I haplotype E-5, was detected in three isolates at a low concentration (5.9, 21.1, and 33.0 ng/µL) from locations in London, Nottinghamshire, and Devon.
Collapse
Affiliation(s)
- Pedro Romon-Ochoa
- Forest Research, Plant Pathology Department, Alice Holt Research Station, Farnham, Surrey GU10 4LH, UK; (P.S.); (M.B.); (L.W.)
| | - Pankajini Samal
- Forest Research, Plant Pathology Department, Alice Holt Research Station, Farnham, Surrey GU10 4LH, UK; (P.S.); (M.B.); (L.W.)
| | - Caroline Gorton
- Forest Research, THDAS-Tree Health Diagnostics and Advisory Service, Alice Holt Research Station, Farnham, Surrey GU10 4LH, UK; (C.G.); (A.L.); (R.C.); (A.E.); (E.K.); (M.C.); (A.P.-S.)
| | - Alex Lewis
- Forest Research, THDAS-Tree Health Diagnostics and Advisory Service, Alice Holt Research Station, Farnham, Surrey GU10 4LH, UK; (C.G.); (A.L.); (R.C.); (A.E.); (E.K.); (M.C.); (A.P.-S.)
| | - Ruth Chitty
- Forest Research, THDAS-Tree Health Diagnostics and Advisory Service, Alice Holt Research Station, Farnham, Surrey GU10 4LH, UK; (C.G.); (A.L.); (R.C.); (A.E.); (E.K.); (M.C.); (A.P.-S.)
| | - Amy Eacock
- Forest Research, THDAS-Tree Health Diagnostics and Advisory Service, Alice Holt Research Station, Farnham, Surrey GU10 4LH, UK; (C.G.); (A.L.); (R.C.); (A.E.); (E.K.); (M.C.); (A.P.-S.)
| | - Elzbieta Krzywinska
- Forest Research, THDAS-Tree Health Diagnostics and Advisory Service, Alice Holt Research Station, Farnham, Surrey GU10 4LH, UK; (C.G.); (A.L.); (R.C.); (A.E.); (E.K.); (M.C.); (A.P.-S.)
| | - Michael Crampton
- Forest Research, THDAS-Tree Health Diagnostics and Advisory Service, Alice Holt Research Station, Farnham, Surrey GU10 4LH, UK; (C.G.); (A.L.); (R.C.); (A.E.); (E.K.); (M.C.); (A.P.-S.)
| | - Ana Pérez-Sierra
- Forest Research, THDAS-Tree Health Diagnostics and Advisory Service, Alice Holt Research Station, Farnham, Surrey GU10 4LH, UK; (C.G.); (A.L.); (R.C.); (A.E.); (E.K.); (M.C.); (A.P.-S.)
| | - Mick Biddle
- Forest Research, Plant Pathology Department, Alice Holt Research Station, Farnham, Surrey GU10 4LH, UK; (P.S.); (M.B.); (L.W.)
| | - Ben Jones
- Forestry Commission, 620 Bristol Business Park, Bristol BS16 1EJ, UK;
| | - Lisa Ward
- Forest Research, Plant Pathology Department, Alice Holt Research Station, Farnham, Surrey GU10 4LH, UK; (P.S.); (M.B.); (L.W.)
| |
Collapse
|
5
|
Umer M, Mubeen M, Shakeel Q, Ali S, Iftikhar Y, Bajwa RT, Anwar N, Rao MJ, He Y. Mycoviruses: Antagonistic Potential, Fungal Pathogenesis, and Their Interaction with Rhizoctonia solani. Microorganisms 2023; 11:2515. [PMID: 37894173 PMCID: PMC10609472 DOI: 10.3390/microorganisms11102515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Mycoviruses, or fungal viruses, are prevalent in all significant fungal kingdoms and genera. These low-virulence viruses can be used as biocontrol agents to manage fungal diseases. These viruses are divided into 19 officially recognized families and 1 unclassified genus. Mycoviruses alter sexual reproduction, pigmentation, and development. Spores and fungal hypha spread mycoviruses. Isometric particles mostly encapsulate dsRNA mycoviruses. The widespread plant-pathogenic fungus Rhizoctonia solani, which has caused a rice sheath blight, has hosted many viruses with different morphologies. It causes significant crop diseases that adversely affect agriculture and the economy. Rice sheath blight threatens the 40% of the global population that relies on rice for food and nutrition. This article reviews mycovirology research on Rhizoctonia solani to demonstrate scientific advances. Mycoviruses control rice sheath blight. Hypovirulence-associated mycoviruses are needed to control R. solani since no cultivars are resistant. Mycoviruses are usually cryptic, but they can benefit the host fungus. Phytopathologists may use hypovirulent viruses as biological control agents. New tools are being developed based on host genome studies to overcome the intellectual challenge of comprehending the interactions between viruses and fungi and the practical challenge of influencing these interactions to develop biocontrol agents against significant plant pathogens.
Collapse
Affiliation(s)
- Muhammad Umer
- Forestry College, Research Centre of Forest Ecology, Guizhou University, Guiyang 550025, China;
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, China
| | - Mustansar Mubeen
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan; (M.M.); (Y.I.)
| | - Qaiser Shakeel
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (Q.S.); (R.T.B.)
| | - Sajjad Ali
- Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Yasir Iftikhar
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan; (M.M.); (Y.I.)
| | - Rabia Tahir Bajwa
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (Q.S.); (R.T.B.)
| | - Naureen Anwar
- Department of Biology, Virtual University of Pakistan, Lahore 54000, Pakistan;
| | - Muhammad Junaid Rao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yuejun He
- Forestry College, Research Centre of Forest Ecology, Guizhou University, Guiyang 550025, China;
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, China
| |
Collapse
|
6
|
Popović M, Nuskern L, Peranić K, Vuković R, Katanić Z, Krstin L, Ćurković-Perica M, Leigh DM, Poljak I, Idžojtić M, Rigling D, Ježić M. Physiological variations in hypovirus-infected wild and model long-term laboratory strains of Cryphonectria parasitica. Front Microbiol 2023; 14:1192996. [PMID: 37426020 PMCID: PMC10324583 DOI: 10.3389/fmicb.2023.1192996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Forest ecosystems are highly threatened by the simultaneous effects of climate change and invasive pathogens. Chestnut blight, caused by the invasive phytopathogenic fungus Cryphonectria parasitica, has caused severe damage to European chestnut groves and catastrophic dieback of American chestnut in North America. Within Europe, the impacts of the fungus are widely mitigated through biological control that utilizes the RNA mycovirus: Cryphonectria hypovirus 1 (CHV1). Viral infections, similarly to abiotic factors, can cause oxidative stress in their hosts leading to physiological attrition through stimulating ROS (reactive oxygen species) and NOx production. Methods To fully understand the interactions leading to the biocontrol of chestnut blight, it is vital to determine oxidative stress damage arising during CHV1 infection, especially considering that other abiotic factors, like long-term cultivation of model fungal strains, can also impact oxidative stress. Our study compared CHV1-infected C. parasitica isolates from two Croatian wild populations with CHV1-infected model strains (EP713, Euro7 and CR23) that have experienced long-term laboratory cultivation. Results and Discussion We determined the level of oxidative stress in the samples by measuring stress enzymes' activity and oxidative stress biomarkers. Furthermore, for the wild populations, we studied the activity of fungal laccases, expression of the laccase gene lac1, and a possible effect of CHV1 intra-host diversity on the observed biochemical responses. Relative to the wild isolates, the long-term model strains had lower enzymatic activities of superoxide dismutase (SOD) and glutathione S-transferase (GST), and higher content of malondialdehyde (MDA) and total non-protein thiols. This indicated generally higher oxidative stress, likely arising from their decades-long history of subculturing and freeze-thaw cycles. When comparing the two wild populations, differences between them in stress resilience and levels of oxidative stress were also observed, as evident from the different MDA content. The intra-host genetic diversity of the CHV1 had no discernible effect on the stress levels of the virus-infected fungal cultures. Our research indicated that an important determinant modulating both lac1 expression and laccase enzyme activity is intrinsic to the fungus itself, possibly related to the vc type of the fungus, i.e., vegetative incompatibility genotype.
Collapse
Affiliation(s)
- Maja Popović
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Lucija Nuskern
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Karla Peranić
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Rosemary Vuković
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Zorana Katanić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Ljiljana Krstin
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | | | | | - Igor Poljak
- Faculty of Forestry and Wood Technology, University of Zagreb, Zagreb, Croatia
| | - Marilena Idžojtić
- Faculty of Forestry and Wood Technology, University of Zagreb, Zagreb, Croatia
| | - Daniel Rigling
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Marin Ježić
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
7
|
Canker Development and Biocontrol Potential of CHV-1 Infected English Isolates of Cryphonectria parasitica Is Dependent on the Virus Concentration and the Compatibility of the Fungal Inoculums. Viruses 2022; 14:v14122678. [PMID: 36560682 PMCID: PMC9785502 DOI: 10.3390/v14122678] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Biological control of Cryphonectria parasitica fungus, causal agent of chestnut blight, by virus infection (hypovirulence) has been shown to be an effective control strategy against chestnut blight in Europe and some parts of North America. The most studied mycovirus is the Cryphonectria hypovirus 1 (CHV-1) type species of the Hypoviridae family. To efficiently provide biocontrol, the virus must be able to induce hypovirulence in its fungal host in chestnut trees. Here, two different CHV-1 subtype I virus strains (E-5 and L-18), gained by transmissions, were tested for their hypovirulence induction, biocontrol potential, and transmission between vegetatively compatible (VCG) and incompatible fungal isolate groups in sweet chestnut seedlings and branches. Both strains of CHV-1 showed great biocontrol potential and could protect trees by efficiently transmitting CHV-1 by hyphal anastomosis between fungal isolates of the same VCG and converting virulent to hypovirulent cankers. The hypovirulent effect was positively correlated with the virus concentration, tested by four different reverse-transcription PCRs, two end-point and two real-time methods, one of which represents a newly developed real-time PCR for the detection and quantification of CHV-1.
Collapse
|
8
|
Jiang Y, Yang B, Liu X, Tian X, Wang Q, Wang B, Zhang Q, Yu W, Qi X, Jiang Y, Hsiang T. A Satellite dsRNA Attenuates the Induction of Helper Virus-Mediated Symptoms in Aspergillus flavus. Front Microbiol 2022; 13:895844. [PMID: 35711767 PMCID: PMC9195127 DOI: 10.3389/fmicb.2022.895844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Aspergillus flavus is an important fungal pathogen of animals and plants. Previously, we reported a novel partitivirus, Aspergillus flavus partitivirus 1 (AfPV1), infecting A. flavus. In this study, we obtained a small double-stranded (ds) RNA segment (734 bp), which is a satellite RNA of the helper virus, AfPV1. The presence of AfPV1 altered the colony morphology, decreased the number of conidiophores, created significantly larger vacuoles, and caused more sensitivity to osmotic, oxidative, and UV stresses in A. flavus, but the small RNA segment could attenuate the above symptoms caused by the helper virus AfPV1 in A. flavus. Moreover, AfPV1 infection reduced the pathogenicity of A. flavus in corn (Zea mays), honeycomb moth (Galleria mellonella), mice (Mus musculus), and the adhesion of conidia to host epithelial cells, and increased conidial death by macrophages. However, the small RNA segment could also attenuate the above symptoms caused by the helper virus AfPV1 in A. flavus, perhaps by reducing the genomic accumulation of the helper virus AfPV1 in A. flavus. We used this model to investigate transcriptional genes regulated by AfPV1 and the small RNA segment in A. flavus, and their role in generating different phenotypes. We found that the pathways of the genes regulated by AfPV1 in its host were similar to those of retroviral viruses. Therefore, some pathways may be of benefit to non-retroviral viral integration or endogenization into the genomes of its host. Moreover, some potential antiviral substances were also found in A. flavus using this system.
Collapse
Affiliation(s)
- Yinhui Jiang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Bi Yang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Xiang Liu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Xun Tian
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Bi Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Qifang Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Yanping Jiang
- Department of Dermatology, The Affiliated Hospital, Guizhou Medical University, Guiyang, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
9
|
Nuskern L, Stojanović M, Milanović-Litre M, Šibenik T, Ježić M, Poljak I, Ćurković-Perica M. Filling the Gap in Southern Europe—Diversity of Cryphonectria parasitica and Associated Mycovirus (Cryphonectria hypovirus 1) in Montenegro. J Fungi (Basel) 2022; 8:jof8060552. [PMID: 35736034 PMCID: PMC9224863 DOI: 10.3390/jof8060552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Cryphonectria parasitica is an invasive fungal pathogen that causes blight disease on chestnut trees. Its destructive effect can be controlled with naturally occurring mycovirus Cryphonectria hypovirus 1 (CHV1). To date, the spread of C. parasitica and CHV1 in Europe is fairly well documented, but there are still several unexplored regions. Thus, we sampled blight cankers from four sweet chestnut populations in Bay of Kotor and Lake Skadar regions in Montenegro. We determined vegetative compatibility (vc) type and mating-type diversity using molecular vic and MAT1 genotyping, as well as confirming the presence of CHV1 by RT-PCR. We identified 11 vc types, with EU-12 being the dominant one represented by 58.2% of all fungal isolates. The Shannon diversity index ranged from 0.93 to 1.47. Both mating types of C. parasitica were found in all four populations. The prevalence of CHV1 ranged from 15% to 40%. All CHV1 isolates belonged to Italian subtype I of CHV1 and were closely related, with relatively recent common ancestors. Our results indicate a longer presence of C. parasitica and CHV1 in Montenegro than previously thought. Natural biocontrol with CHV1 seems to be well established. However, it has the potential for deterioration; thus, close monitoring is required.
Collapse
Affiliation(s)
- Lucija Nuskern
- Division of Microbiology, Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, 10000 Zagreb, Croatia; (L.N.); (M.M.-L.); (T.Š.); (M.J.)
| | - Milena Stojanović
- Biotechnical Faculty, University of Montenegro, Mihaila Lalića Br. 15, 81000 Podgorica, Montenegro;
| | - Marija Milanović-Litre
- Division of Microbiology, Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, 10000 Zagreb, Croatia; (L.N.); (M.M.-L.); (T.Š.); (M.J.)
| | - Tena Šibenik
- Division of Microbiology, Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, 10000 Zagreb, Croatia; (L.N.); (M.M.-L.); (T.Š.); (M.J.)
| | - Marin Ježić
- Division of Microbiology, Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, 10000 Zagreb, Croatia; (L.N.); (M.M.-L.); (T.Š.); (M.J.)
| | - Igor Poljak
- Department of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, 10000 Zagreb, Croatia;
| | - Mirna Ćurković-Perica
- Division of Microbiology, Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, 10000 Zagreb, Croatia; (L.N.); (M.M.-L.); (T.Š.); (M.J.)
- Correspondence: ; Tel.: +385-(0)1-4898-076
| |
Collapse
|
10
|
Stauber L, Croll D, Prospero S. Temporal changes in pathogen diversity in a perennial plant-pathogen-hyperparasite system. Mol Ecol 2022; 31:2073-2088. [PMID: 35122694 PMCID: PMC9540319 DOI: 10.1111/mec.16386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 11/27/2022]
Abstract
Hyperparasites can affect the evolution of pathosystems by influencing the stability of both pathogen and host populations. However, how pathogens of perennial hosts evolve in the presence of a hyperparasite has rarely been studied. Here, we investigated temporal changes in genetic diversity of the invasive chestnut blight pathogen Cryphonectria parasitica in the presence of its parasitic mycovirus Cryphonectria hypovirus 1 (CHV1). The virus reduces fungal virulence and represents an effective natural biocontrol agent against chestnut blight in Europe. We analysed genome-wide diversity and CHV1 prevalence in C. parasitica populations in southern Switzerland that were sampled twice at an interval of about 30 years. Overall, we found that both pathogen population structure and CHV1 prevalence were retained over time. The results suggest that recent bottlenecks have influenced the structure of C. parasitica populations in southern Switzerland. Strong balancing selection signals were found at a single vegetative incompatibility (vic) locus, consistent with negative frequency-dependent selection imposed by the vegetative incompatibility system. High levels of mating among related individuals (i.e., inbreeding) and genetic drift are probably at the origin of imbalanced allele ratios at vic loci and subsequently low vc type diversity. Virus infection rates were stable at ~30% over the study period and we found no significant impact of the virus on fungal population diversity. Consequently, the efficacy of CHV1-mediated biocontrol was probably retained.
Collapse
Affiliation(s)
- Lea Stauber
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- Laboratory of Evolutionary GeneticsInstitute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
- Department of Environmental SciencesUniversity of BaselBaselSwitzerland
| | - Daniel Croll
- Laboratory of Evolutionary GeneticsInstitute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Simone Prospero
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
| |
Collapse
|
11
|
Ježić M, Schwarz JM, Prospero S, Sotirovski K, Risteski M, Ćurković-Perica M, Nuskern L, Krstin L, Katanić Z, Maleničić E, Poljak I, Idžojtić M, Rigling D. Temporal and Spatial Genetic Population Structure of Cryphonectria parasitica and Its Associated Hypovirus Across an Invasive Range of Chestnut Blight in Europe. PHYTOPATHOLOGY 2021; 111:1327-1337. [PMID: 33417482 DOI: 10.1094/phyto-09-20-0405-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chestnut blight has spread throughout Europe since the introduction of its causal agent, Cryphonectria parasitica, >70 years ago. In our study, we analyzed the diversity of vegetative compatibility (vc) and microsatellite genotypes of C. parasitica, as well as sequence diversity of Cryphonectria hypovirus 1 (CHV1) in six populations from Switzerland, Croatia, and North Macedonia. Resampling of local populations that were already investigated more than a decade ago allowed us to analyze the spatial and temporal population structure across an invasive range of the pathogen in Europe. Regardless of which genetic marker was used, the >60-year-old Swiss and Croatian populations had high population diversity, whereas more recent North Macedonian populations were mostly clonal. These diversity differences between the investigated populations remained stable over time. A high diversity of CHV1 was observed in all three countries, with North Macedonian strains forming a separate cluster from strains obtained in other countries. No correlation between vc diversity and CHV1 prevalence was observed, suggesting a well-established and maintained natural hypovirulence in all countries, further corroborated by an observed increase in genetic diversity of Croatian C. parasitica populations over time, without collapse of CHV1 prevalence.
Collapse
Affiliation(s)
- Marin Ježić
- University of Zagreb, Faculty of Science, Department of Biology, Division of Microbiology, Zagreb, Croatia
| | | | - Simone Prospero
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
| | - Kiril Sotirovski
- Ss Cyril and Methodius University in Skopje, Hans Em Faculty of Forest Sciences, Landscape Architecture and Environmental Engineering, 1000 Skopje, North Macedonia
| | - Mihajlo Risteski
- Ss Cyril and Methodius University in Skopje, Hans Em Faculty of Forest Sciences, Landscape Architecture and Environmental Engineering, 1000 Skopje, North Macedonia
| | - Mirna Ćurković-Perica
- University of Zagreb, Faculty of Science, Department of Biology, Division of Microbiology, Zagreb, Croatia
| | - Lucija Nuskern
- University of Zagreb, Faculty of Science, Department of Biology, Division of Microbiology, Zagreb, Croatia
| | - Ljiljana Krstin
- University J. J. Strossmayer of Osijek, Department of Biology, 31000 Osijek, Croatia
| | - Zorana Katanić
- University J. J. Strossmayer of Osijek, Department of Biology, 31000 Osijek, Croatia
| | - Ema Maleničić
- University of Zagreb, Faculty of Science, Department of Biology, Division of Microbiology, Zagreb, Croatia
| | - Igor Poljak
- University of Zagreb, Faculty of Forestry and Wood Technology, Department of Forest Genetics, Dendrology and Botany, 10000 Zagreb, Croatia
| | - Marilena Idžojtić
- University of Zagreb, Faculty of Forestry and Wood Technology, Department of Forest Genetics, Dendrology and Botany, 10000 Zagreb, Croatia
| | - Daniel Rigling
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
| |
Collapse
|
12
|
Determining the Suitability of MinION's Direct RNA and DNA Amplicon Sequencing for Viral Subtype Identification. Viruses 2020; 12:v12080801. [PMID: 32722480 PMCID: PMC7472323 DOI: 10.3390/v12080801] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
The MinION sequencer is increasingly being used for the detection and outbreak surveillance of pathogens due to its rapid throughput. For RNA viruses, MinION's new direct RNA sequencing is the next significant development. Direct RNA sequencing studies are currently limited and comparisons of its diagnostic performance relative to different DNA sequencing approaches are lacking as a result. We sought to address this gap and sequenced six subtypes from the mycovirus CHV-1 using MinION's direct RNA sequencing and DNA sequencing based on a targeted viral amplicon. Reads from both techniques could correctly identify viral presence and species using BLAST, though direct RNA reads were more frequently misassigned to closely related CHV species. De novo consensus sequences were error prone but suitable for viral species identification. However, subtype identification was less accurate from both reads and consensus sequences. This is due to the high sequencing error rate and the limited sequence divergence between some CHV-1 subtypes. Importantly, neither RNA nor amplicon sequencing reads could be used to obtain reliable intra-host variants. Overall, both sequencing techniques were suitable for virus detection, though limitations are present due to the error rate of MinION reads.
Collapse
|
13
|
Romon-Ochoa P, Gorton C, Lewis A, van der Linde S, Webber J, Pérez-Sierra A. Hypovirulent effect of the Cryphonectria hypovirus 1 in British isolates of Cryphonectria parasitica. PEST MANAGEMENT SCIENCE 2020; 76:1333-1343. [PMID: 31603609 DOI: 10.1002/ps.5644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Chestnut blight, caused by Cryphonectria parasitica, is controlled in many European countries by the naturally occurring mycovirus Cryphonectria hypovirus 1 (CHV-1). During surveys of recently identified chestnut blight outbreak in England, CHV-1 was detected in several individuals of the pathogen isolated from affected trees. We investigated two of these CHV-1-infected isolates (L-6 and Db-1) as potential biocontrol agents for deployment in the UK comparing their virulence against virus-free (M1275) and hypovirulent (M784) European isolates by inoculating sweet chestnut seedlings. RESULTS Both the European CHV-1 M784 hypovirulent isolate and UK L-6 isolate formed significantly smaller lesions in sweet chestnut seedling bark than the other three isolates (Db-1, and virulent isolates FTC121 and M1275). The highest virus concentration was detected in isolate M784, followed by L-6, with the lowest concentration in isolate Db-1. White colony colouration indicative of hypovirulence was common in colonies re-isolated from smaller lesions, and the same isolates also tended to be slower growing in culture, have a higher virus concentration, and caused less epicormic growth and fewer stromata to be present in plants. L-6 and Db-1 virus sequences, respectively, matched the virus haplotype E-5 detected previously in Switzerland and a mutation of the same subtype I haplotype. CONCLUSION Isolate L-6 could potentially act as biocontrol for chestnut blight outbreaks in the UK but further laboratory and field experiments are needed. © 2019 Crown copyright. Pest Management Science © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pedro Romon-Ochoa
- Forest Research, Tree Health Diagnostics and Advisory Service (THDAS), Farnham, UK
| | - Caroline Gorton
- Forest Research, Tree Health Diagnostics and Advisory Service (THDAS), Farnham, UK
| | - Alex Lewis
- Forest Research, Tree Health Diagnostics and Advisory Service (THDAS), Farnham, UK
| | - Sietse van der Linde
- Forest Research, Tree Health Diagnostics and Advisory Service (THDAS), Farnham, UK
| | - Joan Webber
- Forest Research, Tree Health Diagnostics and Advisory Service (THDAS), Farnham, UK
| | - Ana Pérez-Sierra
- Forest Research, Tree Health Diagnostics and Advisory Service (THDAS), Farnham, UK
| |
Collapse
|
14
|
Krstin L, Katanić Z, Repar J, Ježić M, Kobaš A, Ćurković-Perica M. Genetic Diversity of Cryphonectria hypovirus 1, a Biocontrol Agent of Chestnut Blight, in Croatia and Slovenia. MICROBIAL ECOLOGY 2020; 79:148-163. [PMID: 31053974 DOI: 10.1007/s00248-019-01377-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Transmissible hypovirulence associated with Cryphonectria hypovirus 1 (CHV1) has been used for biological control of chestnut blight, devastating disease of chestnut caused by the fungus Cryphonectria parasitica. The main aims of this study were to provide molecular characterization of CHV1 from Croatia and Slovenia and to reveal its genetic variability, phylogeny, and diversification of populations. Fifty-one CHV1 haplotypes were detected among 54 partially sequenced CHV1 isolates, all belonging to Italian subtype (I). Diversity was mainly generated by point mutations while evidence of recombination was not found. The level of conservation over analyzed parts of ORF-A proteins p29 and p40 varied, but functional sites were highly conserved. Phylogenetic analysis revealed close relatedness and intermixing of Croatian and Slovenian CHV1 populations. Our CHV1 isolates were also related to Swiss and Bosnian hypoviruses supporting previously suggested course of CHV1 invasion in Europe. Overall, this study indicates that phylogeny of CHV1 subtype I in Europe is complex and characterized with frequent point mutations resulting in many closely related variants of the virus. Possible association between variations within CHV1 ORF-A and growth of the hypovirulent fungal isolates is tested and presented.
Collapse
Affiliation(s)
- Ljiljana Krstin
- Department of Biology, Josip Juraj Strossmayer University of Osijek, HR-31000, Osijek, Croatia
| | - Zorana Katanić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, HR-31000, Osijek, Croatia
| | - Jelena Repar
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Marin Ježić
- Department of Biology, Faculty of Science, University of Zagreb, HR-10000, Zagreb, Croatia
| | - Ana Kobaš
- Department of Biology, Josip Juraj Strossmayer University of Osijek, HR-31000, Osijek, Croatia
| | - Mirna Ćurković-Perica
- Department of Biology, Faculty of Science, University of Zagreb, HR-10000, Zagreb, Croatia.
| |
Collapse
|
15
|
Dennert F, Meyer JB, Rigling D, Prospero S. Assessing the Phytosanitary Risk Posed by an Intraspecific Invasion of Cryphonectria parasitica in Europe. PHYTOPATHOLOGY 2019; 109:2055-2063. [PMID: 31411547 DOI: 10.1094/phyto-06-19-0197-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Intraspecific cryptic invasions may occur when new strains of an invasive species are introduced into an area where this species had already been introduced previously. In plant pathogens, such invasions are not well studied, even if, potentially, they can have severe consequences. Here, we investigated the effects of a potential intraspecific invasion in Europe of Cryphonectria parasitica, the causal agent of chestnut blight. Specifically, we tested the hypotheses that (i) non-European strains are more virulent on Castanea sativa than those already present in Europe because they have never encountered this new host, and (ii) the variation in virulence among strains is higher within native than within introduced populations. In a greenhouse, 2-year-old C. sativa seedlings were inoculated with Cryphonectria parasitica strains from South Korea, the United States, and Switzerland, and lesion development and seedling mortality were recorded weekly. Additionally, growth and sporulation of the strains were measured in vitro on agar medium at 15 and 24°C. Although lesion growth was similar for all strains, seedlings inoculated with strains from South Korea and Switzerland died faster than seedlings inoculated with strains from the United States. Moreover, in vitro strains from South Korea grew faster and produced more spores at both temperatures than the strains from the other two countries. In conclusion, our results did not support the two hypotheses. All strains, regardless of their origin, were found to be highly virulent on the inoculated chestnut seedlings. Nevertheless, current phytosanitary measures to avoid the introduction of new genotypes of C. parasitica into Europe should be further implemented.
Collapse
Affiliation(s)
- Francesca Dennert
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903 Birmensdorf, Switzerland
| | - Joana Beatrice Meyer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903 Birmensdorf, Switzerland
- Forest Protection and Forest Health Section, Federal Office for the Environment FOEN, CH-3003 Bern, Switzerland
| | - Daniel Rigling
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903 Birmensdorf, Switzerland
| | - Simone Prospero
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903 Birmensdorf, Switzerland
| |
Collapse
|
16
|
Enhanced hypovirus transmission by engineered super donor strains of the chestnut blight fungus, Cryphonectria parasitica, into a natural population of strains exhibiting diverse vegetative compatibility genotypes. Virology 2019; 528:1-6. [DOI: 10.1016/j.virol.2018.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 11/22/2022]
|
17
|
Rigling D, Borst N, Cornejo C, Supatashvili A, Prospero S. Genetic and Phenotypic Characterization of Cryphonectria hypovirus 1 from Eurasian Georgia. Viruses 2018; 10:v10120687. [PMID: 30513977 PMCID: PMC6315935 DOI: 10.3390/v10120687] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 01/18/2023] Open
Abstract
Cryphonectria hypovirus 1 (CHV-1) infects the chestnut blight fungus Cryphonectria parasitica and acts as a biological control agent against this harmful tree disease. In this study, we screened the recently characterized C. parasitica population in Eurasian Georgia for the presence of CHV-1. We found 62 CHV-1 infected C. parasitica isolates (9.3%) among a total of 664 isolates sampled in 14 locations across Georgia. The prevalence of CHV-1 at the different locations ranged from 0% in the eastern part of the country to 29% in the western part. Sequencing of two specific regions of the viral genome one each in ORFA and ORFB revealed a unique CHV-1 subtype in Georgia. This subtype has a recombinant pattern combining the ORFA region from the subtype F2 and the ORFB region from subtype D. All 62 viral strains belonged to this Georgian CHV-1 subtype (subtype G). The CHV-1 subtype G strongly reduced the parasitic growth of C. parasitica isolates from Georgia, with a more severe effect on the European genepool compared to the Georgian genepool. The CHV-1 subtype detected in Georgia provides a valuable candidate for biological control applications in the Caucasus region.
Collapse
Affiliation(s)
- Daniel Rigling
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, 8903 Birmensdorf; Switzerland.
| | - Nora Borst
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, 8903 Birmensdorf; Switzerland.
| | - Carolina Cornejo
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, 8903 Birmensdorf; Switzerland.
| | - Archil Supatashvili
- Vasil Gulisashvili Forestry Institute, Agricultural University of Georgia, 0186 Tbilisi, Georgia.
| | - Simone Prospero
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, 8903 Birmensdorf; Switzerland.
| |
Collapse
|
18
|
Nuskern L, Ježić M, Liber Z, Mlinarec J, Ćurković-Perica M. Cryphonectria hypovirus 1-Induced Epigenetic Changes in Infected Phytopathogenic Fungus Cryphonectria parasitica. MICROBIAL ECOLOGY 2018; 75:790-798. [PMID: 28865007 DOI: 10.1007/s00248-017-1064-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/24/2017] [Indexed: 06/07/2023]
Abstract
Biotic stress caused by virus infections induces epigenetic changes in infected plants and animals, but this is the first report on methylation pattern changes in a fungus after mycovirus infection. As a model pathosystem for mycovirus-host interactions, we used Cryphonectria hypovirus 1 (CHV1) and its host fungus Cryphonectria parasitica, in which deregulation of methylation cycle enzymes upon virus infection was observed previously. Six CHV1 strains of different subtypes were transferred into three different C. parasitica isolates in order to assess the effect of different CHV1 strains and/or subtypes on global cytosine methylation level in infected fungus, using methylation-sensitive amplification polymorphism (MSAP). Infection with CHV1 affected the methylation pattern of the C. parasitica genome; it increased the number and diversity of methylated, hemi-methylated, and total MSAP markers found in infected fungal isolates compared to virus-free controls. The increase in methylation levels correlated well with the CHV1-induced reduction of fungal growth in vitro, indicating that C. parasitica genome methylation upon CHV1 infection, rather than being the defensive mechanism of the fungus, is more likely to be the virulence determinant of the virus. Furthermore, the severity of CHV1 effect on methylation levels of infected C. parasitica isolates depended mostly on individual CHV1 strains and on the combination of host and virus genomes, rather than on the virus subtype. These novel findings broaden our knowledge about CHV1 strains which could potentially be used in human-aided biocontrol of chestnut blight, a disease caused by C. parasitica in chestnut forest ecosystems and orchards.
Collapse
Affiliation(s)
- Lucija Nuskern
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10 000, Zagreb, Croatia
| | - Marin Ježić
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10 000, Zagreb, Croatia
| | - Zlatko Liber
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10 000, Zagreb, Croatia
| | - Jelena Mlinarec
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10 000, Zagreb, Croatia
| | - Mirna Ćurković-Perica
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10 000, Zagreb, Croatia.
| |
Collapse
|
19
|
Mlinarec J, Nuskern L, Ježić M, Rigling D, Ćurković-Perica M. Molecular evolution and invasion pattern of Cryphonectria hypovirus 1 in Europe: Mutation rate, and selection pressure differ between genome domains. Virology 2018; 514:156-164. [PMID: 29179038 DOI: 10.1016/j.virol.2017.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 01/08/2023]
Abstract
Understanding virus evolution is a fundamental goal of virology, evolutionary biology, and disease epidemiology. We provide a detailed analysis of evolution and origin of Cryphonectria hypovirus 1 (CHV1) populations in Europe, based on the complete genome sequence of all European subtypes. Phylogenetic analyses divided European strains into two closely related clades. Strains of the subtype I belong to the first, while strains of the subtypes F1, D and E belong to the second clade suggesting that the subtypes F1, D and E are more closely related than previously thought. Strains of the subtype F2 appeared to be recombinant; subtypes F1/D/E contributed a larger fraction of sequence while subtype I contributed a smaller fraction. The p29 was the most variable domain, while the replication-associated large ORF B protein was the most conserved domain within the CHV1. Low sequence similarity, predominant negative selection and frequent recombination characterise the evolution of CHV1.
Collapse
Affiliation(s)
- Jelena Mlinarec
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10 000 Zagreb, Croatia
| | - Lucija Nuskern
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10 000 Zagreb, Croatia
| | - Marin Ježić
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10 000 Zagreb, Croatia
| | - Daniel Rigling
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Mirna Ćurković-Perica
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10 000 Zagreb, Croatia.
| |
Collapse
|
20
|
Rigling D, Prospero S. Cryphonectria parasitica, the causal agent of chestnut blight: invasion history, population biology and disease control. MOLECULAR PLANT PATHOLOGY 2018; 19:7-20. [PMID: 28142223 PMCID: PMC6638123 DOI: 10.1111/mpp.12542] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 12/19/2016] [Accepted: 01/26/2017] [Indexed: 05/25/2023]
Abstract
Chestnut blight, caused by Cryphonectria parasitica, is a devastating disease infecting American and European chestnut trees. The pathogen is native to East Asia and was spread to other continents via infected chestnut plants. This review summarizes the current state of research on this pathogen with a special emphasis on its interaction with a hyperparasitic mycovirus that acts as a biological control agent of chestnut blight. TAXONOMY Cryphonectria parasitica (Murr.) Barr. is a Sordariomycete (ascomycete) fungus in the family Cryphonectriaceae (Order Diaporthales). Closely related species that can also be found on chestnut include Cryphonectria radicalis, Cryphonectria naterciae and Cryphonectria japonica. HOST RANGE Major hosts are species in the genus Castanea (Family Fagaceae), particularly the American chestnut (C. dentata), the European chestnut (C. sativa), the Chinese chestnut (C. mollissima) and the Japanese chestnut (C. crenata). Minor incidental hosts include oaks (Quercus spp.), maples (Acer spp.), European hornbeam (Carpinus betulus) and American chinkapin (Castanea pumila). DISEASE SYMPTOMS Cryphonectria parasitica causes perennial necrotic lesions (so-called cankers) on the bark of stems and branches of susceptible host trees, eventually leading to wilting of the plant part distal to the infection. Chestnut blight cankers are characterized by the presence of mycelial fans and fruiting bodies of the pathogen. Below the canker the tree may react by producing epicormic shoots. Non-lethal, superficial or callusing cankers on susceptible host trees are usually associated with mycovirus-induced hypovirulence. DISEASE CONTROL After the introduction of C. parasitica into a new area, eradication efforts by cutting and burning the infected plants/trees have mostly failed. In Europe, the mycovirus Cryphonectria hypovirus 1 (CHV-1) acts as a successful biological control agent of chestnut blight by causing so-called hypovirulence. CHV-1 infects C. parasitica and reduces its parasitic growth and sporulation capacity. Individual cankers can be therapeutically treated with hypovirus-infected C. parasitica strains. The hypovirus may subsequently spread to untreated cankers and become established in the C. parasitica population. Hypovirulence is present in many chestnut-growing regions of Europe, either resulting naturally or after biological control treatments. In North America, disease management of chestnut blight is mainly focused on breeding with the goal to backcross the Chinese chestnut's blight resistance into the American chestnut genome.
Collapse
Affiliation(s)
- Daniel Rigling
- Swiss Federal Institute for ForestSnow and Landscape Research (WSL)Birmensdorf8903Switzerland
| | - Simone Prospero
- Swiss Federal Institute for ForestSnow and Landscape Research (WSL)Birmensdorf8903Switzerland
| |
Collapse
|
21
|
Nuskern L, Tkalec M, Ježić M, Katanić Z, Krstin L, Ćurković-Perica M. Cryphonectria hypovirus 1-Induced Changes of Stress Enzyme Activity in Transfected Phytopathogenic Fungus Cryphonectria parasitica. MICROBIAL ECOLOGY 2017; 74:302-311. [PMID: 28160056 DOI: 10.1007/s00248-017-0945-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/22/2017] [Indexed: 06/06/2023]
Abstract
Cryphonectria parasitica is a phytopathogenic fungus introduced from Eastern Asia to North America and to Europe, where it causes chestnut blight, a devastating disease of chestnut trees. The disease can be biologically controlled utilising the mycovirus Cryphonectria hypovirus 1 (CHV1), which changes the physiology of the host, reducing its virulence towards chestnut. We measured fungal growth in vitro and activities of glutathione S-transferase, catalase and superoxide dismutase, enzymes involved in oxidative stress response, to elucidate the effects of CHV1 infection on the host. Six CHV1 strains of different subtypes and three fungal isolates were used in different combinations to better represent natural conditions, where higher genetic diversity of both fungus and virus is expected. The infection with different CHV1 strains decreased in vitro growth rate of infected fungal isolates and increased activity of their stress enzymes in most of the studied fungus/virus combinations, indicating increased oxidative stress following CHV1 infection. All our field CHV1 strains belong to the Italian subtype, but while strain M56-1 had equal or even stronger effect on its fungal host than prototypic strain EP713 of French subtype F1, strain B11 had no effect. Thus, the severity of the observed effects depended on a particular virus strain, fungal isolate, and the combination of the two, rather than solely on the virus subtype. Since previous research showed discordance between accumulation of mRNA and stress-related proteins in CHV1 infected C. parasitica, our results emphasise the importance of enzymes' activity measurements as an invaluable extension of transcriptomic and proteomic analyses.
Collapse
Affiliation(s)
- Lucija Nuskern
- Department of Biology, Faculty of Science, University of Zagreb, Marulicev trg 9a, 10000, Zagreb, Croatia
| | - Mirta Tkalec
- Department of Biology, Faculty of Science, University of Zagreb, Marulicev trg 9a, 10000, Zagreb, Croatia
| | - Marin Ježić
- Department of Biology, Faculty of Science, University of Zagreb, Marulicev trg 9a, 10000, Zagreb, Croatia
| | - Zorana Katanić
- Department of Biology, University of Josip Juraj Strossmayer in Osijek, Ulica cara Hadrijana 8A, 31000, Osijek, Croatia
| | - Ljiljana Krstin
- Department of Biology, University of Josip Juraj Strossmayer in Osijek, Ulica cara Hadrijana 8A, 31000, Osijek, Croatia
| | - Mirna Ćurković-Perica
- Department of Biology, Faculty of Science, University of Zagreb, Marulicev trg 9a, 10000, Zagreb, Croatia.
| |
Collapse
|
22
|
Du Y, Lin Y, Zhou X, Wang K, Fang S, Deng Q. Full-length sequence and genome analysis of CHV1-CN280, a North China isolate of cryphonectria hypovirus 1. Arch Virol 2017; 162:1811-1818. [PMID: 28247097 DOI: 10.1007/s00705-017-3296-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/13/2017] [Indexed: 11/29/2022]
Abstract
CHV1-CN280 is a North China isolate of cryphonectria hypovirus 1 (CHV1), which has high horizontal transmission ability. The complete genomic sequence of CHV1-CN280 was determined and analyzed. Compared with other reported CHV1s, the genome of CHV1-CN280 shows some significantly different characteristics. The junction of the two open reading frames (ORFs) of CHV1-CN280 is AUGUAUAA, while in other reported CHV1s, it is UAAUG. The genomic sequence of CHV1-CN280 shows a high level of similarity to other reported CHV1s in the 3' portion, but in some sections of the 5' portion (the region around the start codon of ORFA, the region around the predicted cleavage site of p29 and p40, and the 5'-portion of p48 coding region), the nucleotide sequence identity is lower than 50%. The p29 of CHV1-CN280 shares only about 60% identity with other sequenced CHV1 isolates at the amino acid level. Full-length genomic recombination analysis suggests that several recombination events have occurred in the ORFB coding region between CHV1-CN280 and two subtype I CHV1 isolates (CHV1-Euro7 or CHV1-EP721). RT-PCR primers were designed according to the genomic sequence of CHV1-CN280 to study the genetic diversity of CHV1 in East Asia. Phylogenetic analysis showed that the East Asian CHV1s were quite different from the five assigned subtypes in Europe, and seven new CHV1 subtypes were identified in this study.
Collapse
Affiliation(s)
- Yanan Du
- Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Ministry of Education, Jingzhou, 434025, Hubei, China
| | - Yuan Lin
- Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Ministry of Education, Jingzhou, 434025, Hubei, China
| | - Xuan Zhou
- Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Ministry of Education, Jingzhou, 434025, Hubei, China
| | - Kerong Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shouguo Fang
- Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Ministry of Education, Jingzhou, 434025, Hubei, China
| | - Qingchao Deng
- Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Ministry of Education, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
23
|
Krstin L, Katanić Z, Ježić M, Poljak I, Nuskern L, Matković I, Idžojtić M, Ćurković-Perica M. Biological control of chestnut blight in Croatia: an interaction between host sweet chestnut, its pathogen Cryphonectria parasitica and the biocontrol agent Cryphonectria hypovirus 1. PEST MANAGEMENT SCIENCE 2017; 73:582-589. [PMID: 27288259 DOI: 10.1002/ps.4335] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Chestnut blight, caused by the fungus Cryphonectria parasitica, is a severe chestnut disease that can be controlled with naturally occurring hypoviruses in many areas of Europe. The aim of this research was to measure the effect of different Cryphonectria hypovirus 1 (CHV1) strains on the growth of the fungal host and select strains that could potentially be used for human-mediated biocontrol in forests and orchards, and to investigate whether and how chestnut-fungus-virus interactions affect the development and growth of the lesion area on cut stems. RESULTS Two Croatian CHV1 strains (CR23 and M56/1) were selected as potential biocontrol agents. The sequencing of CHV1/ORF-A showed that both of these virus strains belonged to the Italian subtype of CHV1. In vitro transfection of selected virus strains from hypovirulent to genetically diverse virus-free fungal isolates and subsequent inoculation of all virus/fungus combinations on stems of genetically diverse sweet chestnut trees revealed that Croatian virus strain CR23 had an equally hypovirulent effect on the host as the strong French strain CHV1-EP713, while M56/1 had a weaker effect. Furthermore, it was shown that in some cases the same hypovirus/fungus combinations induced various degrees of canker development on different chestnut genotypes. CONCLUSION Some CHV1 strains belonging to the Italian subtype have similar hypovirulent effects on C. parasitica to those belonging to the French subtype. Furthermore, chestnut susceptibility and recovery could be influenced by the response of chestnut trees to particular hypovirulent C. parasitica isolates, and virus-fungus-chestnut interactions could have significant implications for the success of chestnut blight biocontrol. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ljiljana Krstin
- Department of Biology, University of J. J. Strossmayer in Osijek, Osijek, Croatia
| | - Zorana Katanić
- Department of Biology, University of J. J. Strossmayer in Osijek, Osijek, Croatia
| | - Marin Ježić
- Division of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Igor Poljak
- Department of Forest Genetics, Dendrology and Botany, Faculty of Forestry, University of Zagreb, Zagreb, Croatia
| | - Lucija Nuskern
- Division of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Ivana Matković
- Department of Biology, University of J. J. Strossmayer in Osijek, Osijek, Croatia
| | - Marilena Idžojtić
- Department of Forest Genetics, Dendrology and Botany, Faculty of Forestry, University of Zagreb, Zagreb, Croatia
| | | |
Collapse
|
24
|
|
25
|
Arthur K, Pearson M. Geographic distribution and sequence diversity of the mycovirus Botrytis virus F. Mycol Prog 2014. [DOI: 10.1007/s11557-014-1000-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Feau N, Dutech C, Brusini J, Rigling D, Robin C. Multiple introductions and recombination in Cryphonectria hypovirus 1: perspective for a sustainable biological control of chestnut blight. Evol Appl 2014; 7:580-96. [PMID: 24944571 PMCID: PMC4055179 DOI: 10.1111/eva.12157] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 11/26/2022] Open
Abstract
Cryphonectria hypovirus 1 (CHV1) is a mycovirus which decreases the virulence of its fungal host Cryphonectria parasitica, the causal agent of chestnut blight recently introduced in Europe. The understanding of the evolutionary processes which have shaped CHV1 populations in Europe is required to develop a sustainable biocontrol strategy targeting chestnut blight and effective in European chestnut forests. To retrace the evolutionary history of CHV1, we analyzed sequences from two genomic regions on a collection of 55 CHV1 strains from France and northern Spain, two countries where multiple introductions of C. parasitica occurred. Several recombination events and variable selection pressures contributed to CHV1 evolution, agreeing with a non-clock-like diversification rate. These two mechanisms may be at the origin of CHV1 population diversity observed in western Europe. Considering the actual prevalence of CHV1 and its association with host genotypes, multiple introductions of CHV1 may have occurred in Europe, some of them directly from Asia and some of them through North America. Although some viral strains remained with low frequency in their introduction area, multiple infections might have allowed homologous recombination within parental sequences. Some of these recombinant lineages are associated with the spread of CHV1 in European regions.
Collapse
Affiliation(s)
- Nicolas Feau
- INRA, UMR1202 BIOGECO F-33610, Cestas, France ; University Bordeaux, BIOGECO, UMR 1202 F-33400, Talence, France ; TAIGA-Lab, Forest Sciences Centre, University of British Columbia #3618-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Cyril Dutech
- INRA, UMR1202 BIOGECO F-33610, Cestas, France ; University Bordeaux, BIOGECO, UMR 1202 F-33400, Talence, France
| | - Jérémie Brusini
- INRA, UMR1202 BIOGECO F-33610, Cestas, France ; University Bordeaux, BIOGECO, UMR 1202 F-33400, Talence, France ; Department of Ecology and Evolutionary Biology, Earth and Marine Sciences Building, University of California Santa Cruz, CA, 95064, USA
| | - Daniel Rigling
- WSL Swiss Federal Research Institute CH-8903, Birmensdorf, Switzerland
| | - Cécile Robin
- INRA, UMR1202 BIOGECO F-33610, Cestas, France ; University Bordeaux, BIOGECO, UMR 1202 F-33400, Talence, France
| |
Collapse
|
27
|
Springer JC, Davelos Baines AL, Fulbright DW, Chansler MT, Jarosz AM. Hyperparasites influence population structure of the chestnut blight pathogen, Cryphonectria parasitica. PHYTOPATHOLOGY 2013; 103:1280-1286. [PMID: 23819549 DOI: 10.1094/phyto-10-12-0273-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Vegetative compatibility (VC) is commonly used to characterize structure and diversity in fungal populations. In the chestnut blight fungus, Cryphonectria parasitica, high VC diversity is hypothesized to be responsible for the failure of hyperparasitic mycoviruses to spread through pathogen populations in North America. To test this hypothesis, we assessed VC diversity at three recovering sites in Michigan where mycoviruses had invaded and compared them with four epidemic population sites where mycoviruses were absent. VC diversity was assessed for samples collected in 1996 and 2009, which allowed us to determine how C. parasitica populations changed with time. Twelve VC types were found in 1996 while 29 were found in 2009; 75% of types overlapped between the sample dates. Sites where mycoviruses were present had unique VC structures with the exception of the recovering population site at County Line where the main VC group was also detected at two epidemic sites. With one exception, epidemic sites contained more VC groups and displayed higher population level diversity than recovering sites. Mating-type analyses of blight populations revealed that two of three recovering populations were significantly skewed for MAT2 suggesting asexual reproduction, while epidemic sites with a long history of blight infection had ratios near 50:50 suggesting sexual reproduction. We propose that selection in the largely asexual C. parasitica populations at two recovering sites favors the most-fit fungal genotype by mycovirus combination and results in reduced diversity relative to the sexually reproducing pathogen populations at epidemic sites.
Collapse
|
28
|
Peters FS, Busskamp J, Prospero S, Rigling D, Metzler B. Genetic diversification of the chestnut blight fungus Cryphonectria parasitica and its associated hypovirus in Germany. Fungal Biol 2013; 118:193-210. [PMID: 24528641 DOI: 10.1016/j.funbio.2013.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 11/06/2013] [Accepted: 11/20/2013] [Indexed: 10/25/2022]
Abstract
Chestnut blight in south-western Germany was first reported in 1992 and is since expanding in distribution. Here we investigated the invasion history of Cryphonectria parasitica and its associated hypovirus. For this, we characterized 284 isolates collected between 1992 and 2012 for hypovirulence, vegetative compatibility (vc), mating type, and microsatellite haplotype. A total of 27 haplotypes and 15 vc types were observed, although the C. parasitica population analyzed is currently dominated to 50 % by one haplotype and to 64 % by the vc type EU-2. Structure analysis indicated two divergent genetic pools. Over 66 % of the haplotypes belonged to a pool probably originating from northern Italy. Further diversification is expected due to ongoing sexual recombination, but also to new migration and additional introductions. Cryphonectria hypovirus 1 (CHV-1) was found in four of five C. parasitica populations from Baden-Württemberg. Genetic analysis of the 35 CHV-1 isolates obtained revealed that they all belong to the German subtype, although they have clearly diverged from the first German hypovirus isolated in 1992. Our study suggests that C. parasitica has been introduced into Germany several times from two different gene pools, whereas the hypovirus most probably has a single origin.
Collapse
Affiliation(s)
- Franziska S Peters
- FVA Forest Research Institute of Baden-Württemberg (FVA-BW), Dept. Forest Protection, Wonnhaldestr. 4, D-79100 Freiburg, Germany.
| | - Johanna Busskamp
- FVA Forest Research Institute of Baden-Württemberg (FVA-BW), Dept. Forest Protection, Wonnhaldestr. 4, D-79100 Freiburg, Germany.
| | - Simone Prospero
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland.
| | - Daniel Rigling
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland.
| | - Berthold Metzler
- FVA Forest Research Institute of Baden-Württemberg (FVA-BW), Dept. Forest Protection, Wonnhaldestr. 4, D-79100 Freiburg, Germany.
| |
Collapse
|
29
|
Vainio EJ, Piri T, Hantula J. Virus community dynamics in the conifer pathogenic fungus Heterobasidion parviporum following an artificial introduction of a partitivirus. MICROBIAL ECOLOGY 2013; 65:28-38. [PMID: 22961364 DOI: 10.1007/s00248-012-0118-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/20/2012] [Indexed: 06/01/2023]
Abstract
Viruses infecting the conifer pathogenic fungus Heterobasidion annosum sensu lato are intracellular and spread via anastomosis contacts. In the laboratory, these viruses transmit readily even between somatically incompatible isolates, but their dispersal capacity in natural conditions has not been previously studied. We introduced a mycovirus to a heavily diseased forest site by inoculating Norway spruce stumps with heartrot decay using a mycelial suspension of Heterobasidion parviporum strain RT3.49C hosting the partitivirus strain HetRV4-pa1. The Heterobasidion population at the sample plot was screened for mycoviruses prior to and after the inoculation. Based on sequence analysis, the resident H. parviporum strains harbored six different strains of the virus species Heterobasidion RNA virus 6 (HetRV6) and one strain of HetRV4 prior to the inoculation. After three growth seasons, the inoculated H. parviporum host strain was not detected, but the introduced virus had infected two resident H. parviporum genets. The presence of a preexisting HetRV6 infection did not hinder spread of the introduced partitivirus but resulted in coinfections instead. The resident HetRV6 virus population seemed to be highly stable during the incubation period, while the single indigenous HetRV4 infection was not detected after the inoculation. In laboratory infection experiments, the introduced virus could be transmitted successfully into all of the resident H. parviporum genets. This study shows for the first time transmission of a Heterobasidion virus between somatically incompatible hosts in natural conditions.
Collapse
Affiliation(s)
- Eeva J Vainio
- Vantaa Research Unit, Finnish Forest Research Institute, PO Box 18, 01301, Vantaa, Finland.
| | | | | |
Collapse
|
30
|
Bryner SF, Rigling D. Hypovirus virulence and vegetative incompatibility in populations of the chestnut blight fungus. PHYTOPATHOLOGY 2012; 102:1161-1167. [PMID: 22857516 DOI: 10.1094/phyto-01-12-0013-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cryphonectria hypovirus 1 hyperparasitizes the chestnut blight fungus Cryphonectria parasitica and acts as a biocontrol agent for this serious tree disease. The virus is transmitted cytoplasmatically between fungal individuals. However, highly virulent viruses strongly debilitate their host and, thus, reduce their own transmission probability. Furthermore, vegetative incompatibility between fungi is an important transmission barrier. Therefore, virulent viruses are expected to be strongly selected against in fungal populations with high levels of vegetative incompatibility, eventually leading to the erosion of biocontrol. To test this prediction, we assessed the virulence of the virus in four European C. parasitica populations with high diversity of vegetative compatibility types and in four populations with low diversity. We expected the degree of virus virulence to be lower in fungal populations with high levels of vegetative incompatibility. However, our results did not reveal such a trend. No significant differences in virus virulence between populations with low versus high diversity of vegetative compatibility types were observed. There was no evidence for an erosion of disease control due to the presence of these transmission barriers. Thus, the findings of this study are promising for the sustainability of Cryphonectria hypovirus 1 as a biocontrol agent for chestnut blight in Europe.
Collapse
|
31
|
Bryner SF, Rigling D, Brunner PC. Invasion history and demographic pattern of Cryphonectria hypovirus 1 across European populations of the chestnut blight fungus. Ecol Evol 2012; 2:3227-41. [PMID: 23301186 PMCID: PMC3539014 DOI: 10.1002/ece3.429] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/09/2012] [Accepted: 10/13/2012] [Indexed: 01/16/2023] Open
Abstract
We reconstructed the invasion history of the fungal virus Cryphonectria hypovirus 1 (CHV-1) in Europe, which infects the chestnut blight fungus Cryphonectria parasitica. The pattern of virus evolution was inferred based on nucleotide sequence variation from isolates sampled across a wide area in Europe at different points in time. Phylogeny and time estimates suggested that CHV-1 was introduced together with its fungal host to Europe and that it rapidly colonized the central range along the south facing slopes of the Alps and the north-east facing slopes of the Dinaric Alps. These central populations were the source for two waves of simultaneous invasions toward the southern Balkans and Turkey, as indicated by migration rates. Our results showed that the evolutionary scenarios for CHV-1 and C. parasitica were spatially congruent. As infection with CHV-1 reduces the pathogenicity of C. parasitica toward the chestnut tree, CHV-1 invasions of the newly established C. parasitica populations probably prevented the development of devastating chestnut blight epidemics in Europe. We propose that in this, and supposedly in other pathosystems, geographic, vegetation-related, demographic, economic, and political factors may help explain the correlated invasion pattern of a parasite and its host.
Collapse
Affiliation(s)
- Sarah F Bryner
- WSL Swiss Federal Research Institute CH-8903, Birmensdorf, Switzerland
| | | | | |
Collapse
|
32
|
Bryner SF, Rigling D. Virulence not only costs but also benefits the transmission of a fungal virus. Evolution 2012; 66:2540-50. [PMID: 22834751 DOI: 10.1111/j.1558-5646.2012.01637.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Current theory suggests that cost-benefit relationships govern the evolution of parasite virulence. The cost of virulence is expected to be high for fungal viruses, which are obligate parasites and completely dependent on their hosts. The majority of fungal viruses infect their hosts without any apparent symptoms. Cryphonectria hypovirus 1 (CHV-1), in contrast, is virulent and debilitates its host, Cryphonectria parasitica. However, the virulence of CHV-1 is associated with high costs for virus transmission, such as an attenuated fungal growth and reduced production of the fungal spores spreading the virus. In this study, we tested the hypothesis that virulence may not only have costs but also benefits for transmitting CHV-1 across vegetative incompatibility barriers between fungi. We investigated viruses with low, medium, and high virulence, and determined their transmission rate per host-to-host contact (transmissibility). The average transmission rate across all combinations tested was 53% for the most virulent virus, 37% for the virus with intermediate virulence, and 20% for the virus with lowest virulence. These results showed that increased virulence was strongly correlated with increased transmissibility, potentially counterbalancing virulence costs. This association of virulence and transmissibility may explain why CHV-1 spread widely and evolved higher virulence than most other fungal viruses.
Collapse
|
33
|
Bryner SF, Rigling D. Temperature-dependent genotype-by-genotype interaction between a pathogenic fungus and its hyperparasitic virus. Am Nat 2010; 177:65-74. [PMID: 21117965 DOI: 10.1086/657620] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The outcome of host-parasite interactions may depend not only on the genotypes of the species involved but also on environmental factors. We used the fungus Cryphonectria parasitica, the causal agent of chestnut blight, and its hyperparasitic virus, Cryphonectria hypovirus-1 (CHV1), to test for genotype-by-genotype-by-environment interactions in a host-parasite system. In C. parasitica, infection with CHV1 induces a hypovirulent phenotype with reduced virulence toward the chestnut tree (Castanea spp.) and thus controls chestnut blight in many European regions. In contrast, uninfected virulent C. parasitica have nearly eradicated the American chestnut in North America. We applied a full factorial design and assessed the fungal growth and sporulation of four C. parasitica strains, uninfected and infected with each of the four known CHV1 subtypes, at 12°, 18°, 24°, and 30°C. We found a significant (P ≤ .00001) genotype-by-genotype-by-environment interaction, demonstrating the potential for a selection mosaic. As a consequence, different host and parasite genotypes would be selected under different climatic conditions, affecting the coevolutionary dynamics of the host-parasite interaction and the course of chestnut blight epidemics. Genotype-by-genotype-by-environment interactions are essential to take into account when designing biological control strategies.
Collapse
Affiliation(s)
- Sarah Franziska Bryner
- Swiss Federal Institute for Forest, Snow, and Landscape Research (WSL), CH-8903 Birmensdorf, Switzerland.
| | | |
Collapse
|
34
|
Dutech C, Fabreguettes O, Capdevielle X, Robin C. Multiple introductions of divergent genetic lineages in an invasive fungal pathogen, Cryphonectria parasitica, in France. Heredity (Edinb) 2009; 105:220-8. [PMID: 19997121 DOI: 10.1038/hdy.2009.164] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The occurrence of multiple introductions may be a crucial factor in the successful establishment of invasive species, but few studies focus on the introduction of fungal pathogens, despite their significant effect on invaded habitats. Although Cryphonectria parasitica, the chestnut blight fungus introduced in North America and Europe from Asia during the 20th century, caused dramatic changes in its new range, the history of its introduction is not well retraced in Europe. Using 10 microsatellite loci, we investigated the genetic diversity of 583 isolates in France, where several introductions have been hypothesized. Our analyses showed that the seven most frequent multilocus genotypes belonged to three genetic lineages, which had a different and geographically limited distribution. These results suggest that different introduction events occurred in France. Genetic recombination was low among these lineages, despite the presence of the two mating types in each chestnut stand analysed. The spatial distribution of lineages suggests that the history of introductions in France associated with the slow expansion of the disease has contributed to the low observed rate of recombination among the divergent lineages. However, we discuss the possibility that environmental conditions or viral interactions could locally reduce recombination among genotypes.
Collapse
Affiliation(s)
- C Dutech
- INRA, UMR 1202 BIOGECO, Equipe de Pathologie Forestière, Domaine de Pierroton, Cestas, France.
| | | | | | | |
Collapse
|
35
|
Perica MĆ, Šola I, Urbas L, Smrekar F, Krajačić M. Separation of hypoviral double-stranded RNA on monolithic chromatographic supports. J Chromatogr A 2009; 1216:2712-6. [DOI: 10.1016/j.chroma.2008.10.115] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 10/14/2008] [Accepted: 10/17/2008] [Indexed: 10/21/2022]
|
36
|
Prospero S, Conedera M, Heiniger U, Rigling D. Saprophytic Activity and Sporulation of Cryphonectria parasitica on Dead Chestnut Wood in Forests with Naturally Established Hypovirulence. PHYTOPATHOLOGY 2006; 96:1337-44. [PMID: 18943666 DOI: 10.1094/phyto-96-1337] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
ABSTRACT Sustainable biological control of the chestnut blight fungus Crypho-nectria parasitica with hypovirulence depends on the production and dissemination of hypovirus-infected propagules of the pathogen. We investigated the ability of C. parasitica to sporulate and produce hypo-virus-infected spores on recently dead chestnut wood in coppice stands in southern Switzerland where hypovirulence has been naturally established. The number and type (active, inactive, or none) of cankers was assessed on experimentally cut and stacked stems, firewood stacks, and natural dead wood. Hypovirus-free and hypovirus-infected strains readily survived for more than 1 year in the chestnut blight cankers of the stacked stems. Sporulation of C. parasitica was observed on the surface of preexisting inactive and active cankers, as well as on newly colonized bark areas and was significantly more abundant than on comparable cankers on living stems. On all types of dead wood, we observed more stromata with perithecia than with pycnidia; however, a large proportion of the stromata was not differentiated. All perithecia examined yielded only hypovirus-free ascospores. The incidence of pycnidia that produced hypovirus-infected conidia ranged from 5% on natural dead wood to 41% on the experimental stacks. The mean virus transmission rate into conidia was 69%. Our study demonstrates a considerable saprophytic activity of C. parasitica on recently dead chestnut wood and supports the hypothesis of a role of this saprophytic phase in the epidemiology of hypovirulence.
Collapse
|
37
|
Abstract
Whereas most mycoviruses lead 'secret lives', some reduce the ability of their fungal hosts to cause disease in plants. This property, known as hypovirulence, has attracted attention owing to the importance of fungal diseases in agriculture and the limited strategies that are available for the control of these diseases. Using one pathogen to control another is appealing, both intellectually and ecologically. The recent development of an infectious cDNA-based reverse genetics system for members of the Hypoviridae mycovirus family has enabled the analysis of basic aspects of this fascinating virus-fungus-plant interaction, including virus-host interactions, the mechanisms underlying fungal pathogenesis, fungal signalling pathways and the evolution of RNA silencing. Such systems also provide a means for engineering mycoviruses for enhanced biocontrol potential.
Collapse
Affiliation(s)
- Donald L Nuss
- Center for Biosystems Research, 5115 Plant Sciences Building, University of Maryland Biotechnology Institute, College Park, Maryland 20742, USA.
| |
Collapse
|
38
|
Milgroom MG, Cortesi P. Biological control of chestnut blight with hypovirulence: a critical analysis. ANNUAL REVIEW OF PHYTOPATHOLOGY 2004; 42:311-38. [PMID: 15283669 DOI: 10.1146/annurev.phyto.42.040803.140325] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Most hypovirulence in the chestnut blight fungus, Cryphonectria parasitica, is associated with infection by fungal viruses in the family Hypoviridae. Hypovirulence has controlled chestnut blight well in some locations in Europe and in Michigan in the United States. In contrast, with few exceptions, biological control has failed almost completely in eastern North America. Therapeutic treatment of individual cankers is successful in most cases, but the success of hypovirulence at the population level depends on the natural spread of viruses. Characteristics of three interacting trophic levels (virus, fungus, and tree), plus the environment, determine the success or failure of hypovirulence. Vegetative incompatibility restricts virus transmission, but this factor alone is a poor predictor of biological control. Any factor reducing the rate of chestnut blight epidemics enhances hypovirus invasion. Overall, however, not enough is understood about the epidemiological dynamics of this system to determine the crucial factors regulating the establishment of hypovirulence in chestnut forests.
Collapse
Affiliation(s)
- Michael G Milgroom
- Department of Plant Pathology, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|