1
|
Pardhi E, Tomar DS, Khemchandani R, Bazaz MR, Dandekar MP, Samanthula G, Singh SB, Mehra NK. Monophasic coamorphous sulpiride: a leap in physicochemical attributes and dual inhibition of GlyT1 and P-glycoprotein, supported by experimental and computational insights. J Biomol Struct Dyn 2025; 43:4297-4326. [PMID: 38299571 DOI: 10.1080/07391102.2024.2308048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024]
Abstract
Study aimed to design and development of a supramolecular formulation of sulpiride (SUL) to enhance its solubility, dissolution and permeability by targeting a novel GlyT1 inhibition mechanism. SUL is commonly used to treat gastric and duodenal ulcers, migraine, anti-emetic, anti-depressive and anti-dyspeptic conditions. Additionally, Naringin (NARI) was incorporated as a co-former to enhance the drug's intestinal permeability by targeting P-glycoprotein (P-gp) efflux inhibition. NARI, a flavonoid has diverse biological activities, including anti-apoptotic, anti-oxidant, and anti-inflammatory properties. This study aims to design and develop a supramolecular formulation of SUL with NARI to enhance its solubility, dissolution, and permeability by targeting a novel GlyT1 inhibition mechanism, extensive experimental characterization was performed using solid-state experimental techniques in conjunction with a computational approach. This approach included quantum mechanics-based molecular dynamics (MD) simulation and density functional theory (DFT) studies to investigate intermolecular interactions, phase transformation and various electronic structure-based properties. The findings of the miscibility study, radial distribution function (RDF) analysis, quantitative simulations of hydrogen/π-π bond interactions and geometry optimization aided in comprehending the coamorphization aspects of SUL-NARI Supramolecular systems. Molecular docking and MD simulation were performed for detailed binding affinity assessment and target validation. The solubility, dissolution and ex-vivo permeability studies demonstrated significant improvements with 31.88-fold, 9.13-fold and 1.83-fold increments, respectively. Furthermore, biological assessments revealed superior neuroprotective effects in the SUL-NARI coamorphous system compared to pure SUL. In conclusion, this study highlights the advantages of a drug-nutraceutical supramolecular formulation for improving the solubility and permeability of SUL, targeting novel schizophrenia treatment approaches through combined computational and experimental analyses.
Collapse
Affiliation(s)
- Ekta Pardhi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Devendra Singh Tomar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Rahul Khemchandani
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mohd Rabi Bazaz
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Manoj P Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Gananadhamu Samanthula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| |
Collapse
|
2
|
Hart XM, Gründer G, Ansermot N, Conca A, Corruble E, Crettol S, Cumming P, Frajerman A, Hefner G, Howes O, Jukic MM, Kim E, Kim S, Maniscalco I, Moriguchi S, Müller DJ, Nakajima S, Osugo M, Paulzen M, Ruhe HG, Scherf-Clavel M, Schoretsanitis G, Serretti A, Spina E, Spigset O, Steimer W, Süzen SH, Uchida H, Unterecker S, Vandenberghe F, Verstuyft C, Zernig G, Hiemke C, Eap CB. Optimisation of pharmacotherapy in psychiatry through therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests: Focus on antipsychotics. World J Biol Psychiatry 2024; 25:451-536. [PMID: 38913780 DOI: 10.1080/15622975.2024.2366235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/12/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND For psychotic disorders (i.e. schizophrenia), pharmacotherapy plays a key role in controlling acute and long-term symptoms. To find the optimal individual dose and dosage strategy, specialised tools are used. Three tools have been proven useful to personalise drug treatments: therapeutic drug monitoring (TDM) of drug levels, pharmacogenetic testing (PG), and molecular neuroimaging. METHODS In these Guidelines, we provide an in-depth review of pharmacokinetics, pharmacodynamics, and pharmacogenetics for 45 antipsychotics. Over 30 international experts in psychiatry selected studies that have measured drug concentrations in the blood (TDM), gene polymorphisms of enzymes involved in drug metabolism, or receptor/transporter occupancies in the brain (positron emission tomography (PET)). RESULTS Study results strongly support the use of TDM and the cytochrome P450 (CYP) genotyping and/or phenotyping to guide drug therapies. Evidence-based target ranges are available for titrating drug doses that are often supported by PET findings. CONCLUSION All three tools discussed in these Guidelines are essential for drug treatment. TDM goes well beyond typical indications such as unclear compliance and polypharmacy. Despite its enormous potential to optimise treatment effects, minimise side effects and ultimately reduce the global burden of diseases, personalised drug treatment has not yet become the standard of care in psychiatry.
Collapse
Affiliation(s)
- Xenia Marlene Hart
- Department of Molecular Neuroimaging, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Gerhard Gründer
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- German Center for Mental Health (DZPG), Partner Site Mannheim, Heidelberg, Germany
| | - Nicolas Ansermot
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Andreas Conca
- Dipartimento di Psichiatria, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Emmanuelle Corruble
- Service Hospitalo-Universitaire de Psychiatrie, Hôpital de Bicêtre, Université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, France
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
| | - Severine Crettol
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
- School of Psychology and Counseling, Queensland University of Technology, Brisbane, Australia
| | - Ariel Frajerman
- Service Hospitalo-Universitaire de Psychiatrie, Hôpital de Bicêtre, Université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, France
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
| | - Gudrun Hefner
- Forensic Psychiatry, Vitos Clinic for Forensic Psychiatry, Eltville, Germany
| | - Oliver Howes
- Department of Psychosis Studies, IoPPN, King's College London, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, UK
| | - Marin M Jukic
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
- Pharmacogenetics Section, Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Euitae Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seoyoung Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Ignazio Maniscalco
- Dipartimento di Psichiatria, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Sho Moriguchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Daniel J Müller
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Martin Osugo
- Department of Psychosis Studies, IoPPN, King's College London, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, UK
| | - Michael Paulzen
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA - Translational Brain Medicine, Alexianer Center for Mental Health, Aachen, Germany
| | - Henricus Gerardus Ruhe
- Department of Psychiatry, Radboudumc, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - Maike Scherf-Clavel
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Georgios Schoretsanitis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | | | - Edoardo Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Olav Spigset
- Department of Clinical Pharmacology, St. Olav University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Werner Steimer
- Institute of Clinical Chemistry and Pathobiochemistry, Technical University Munich, Munich, Germany
| | - Sinan H Süzen
- Department of Pharmaceutic Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Stefan Unterecker
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Frederik Vandenberghe
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Celine Verstuyft
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
- Department of Molecular Genetics, Pharmacogenetics and Hormonology, Bicêtre University Hospital Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Gerald Zernig
- Department of Pharmacology, Medical University Innsbruck, Hall in Tirol, Austria
- Private Practice for Psychotherapy and Court-Certified Witness, Hall in Tirol, Austria
| | - Christoph Hiemke
- Department of Psychiatry and Psychotherapy and Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of Mainz, Mainz, Germany
| | - Chin B Eap
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Tawfeek HM, Mekkawy AI, Abdelatif AAH, Aldosari BN, Mohammed-Saeid WA, Elnaggar MG. Intranasal delivery of sulpiride nanostructured lipid carrier to central nervous system; in vitro characterization and in vivo study. Pharm Dev Technol 2024; 29:841-854. [PMID: 39264666 DOI: 10.1080/10837450.2024.2404034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/05/2024] [Accepted: 09/10/2024] [Indexed: 09/13/2024]
Abstract
The low and erratic oral absorption of sulpiride (SUL) a dopaminergic receptor antagonist, and its P-glycoprotein efflux in the gastrointestinal tract restricted its oral route for central nervous system disorders. An intranasal formulation was formulated based on nanostructured lipid carrier to tackle these obstacles and deliver SUL directly to the brain. Sulipride-loaded nanostructured lipid carrier (SUL-NLC) was prepared using compritol®888 ATO and different types of liquid lipids and emulsifiers. SUL-NLCs were characterized for their particle size, charge, and encapsulation efficiency. Morphology and compatibility with other NLC excipients were also studied. Moreover, SUL in vitro release, nanodispersion stability, in vivo performance and SUL pharmacokinetics were investigated. Results delineates that SUL-NLC have a particle size ranging from 366.2 ± 62.1 to 640.4 ± 50.2 nm and encapsulation efficiency of 75.5 ± 1.5%. SUL showed a sustained release pattern over 24 h and maintained its physical stability for three months. Intranasal SUL-NLC showed a significantly (p < 0.01) higher SUL brain concentration than that found in plasma after oral administration of commercial SUL product with 4.47-fold increase in the relative bioavailability. SUL-NLCs as a nose to brain approach is a promising formulation for enhancing the SUL bioavailability and efficient management of neurological disorders.
Collapse
Affiliation(s)
- Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Aml I Mekkawy
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Ahmed A H Abdelatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Basmah N Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Waleed A Mohammed-Saeid
- Department of Pharmaceutics and Pharmaceutical Industries, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
| | - Marwa G Elnaggar
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
4
|
Abdallah MH, Shahien MM, Alshammari A, Ibrahim S, Ahmed EH, Atia HA, Elariny HA. The Exploitation of Sodium Deoxycholate-Stabilized Nano-Vesicular Gel for Ameliorating the Antipsychotic Efficiency of Sulpiride. Gels 2024; 10:239. [PMID: 38667658 PMCID: PMC11048809 DOI: 10.3390/gels10040239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The present study explored the effectiveness of bile-salt-based nano-vesicular carriers (bilosomes) for delivering anti-psychotic medication, Sulpiride (Su), via the skin. A response surface methodology (RSM), using a 33 Box-Behnken design (BBD) in particular, was employed to develop and optimize drug-loaded bilosomal vesicles. The optimized bilosomes were assessed based on their vesicle size, entrapment efficiency (% EE), and the amount of Sulpiride released. The Sulpiride-loaded bilosomal gel was generated by incorporating the optimized Su-BLs into a hydroxypropyl methylcellulose polymer. The obtained gel was examined for its physical properties, ex vivo permeability, and in vivo pharmacokinetic performance. The optimum Su-BLs exhibited a vesicle size of 211.26 ± 10.84 nm, an encapsulation efficiency of 80.08 ± 1.88% and a drug loading capacity of 26.69 ± 0.63%. Furthermore, the use of bilosomal vesicles effectively prolonged the release of Su over a period of twelve hours. In addition, the bilosomal gel loaded with Su exhibited a three-fold increase in the rate at which Su transferred through the skin, in comparison to oral-free Sulpiride. The relative bioavailability of Su-BL gel was almost four times as high as that of the plain Su suspension and approximately two times as high as that of the Su gel. Overall, bilosomes could potentially serve as an effective technique for delivering drugs through the skin, specifically enhancing the anti-psychotic effects of Sulpiride by increasing its ability to penetrate the skin and its systemic bioavailability, with few adverse effects.
Collapse
Affiliation(s)
- Marwa H. Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia;
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mona M. Shahien
- Department of Pediatrics, College of Medicine, University of Ha’il, Ha’il 81442, Saudi Arabia; (M.M.S.); (S.I.)
| | - Alia Alshammari
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia;
| | - Somaia Ibrahim
- Department of Pediatrics, College of Medicine, University of Ha’il, Ha’il 81442, Saudi Arabia; (M.M.S.); (S.I.)
| | - Enas Haridy Ahmed
- Department of Anatomy, College of Medicine, University of Ha’il, Ha’il 81442, Saudi Arabia;
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Hanan Abdelmawgoud Atia
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (H.A.A.); (H.A.E.)
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Hemat A. Elariny
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (H.A.A.); (H.A.E.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| |
Collapse
|
5
|
Enhancing the Low Oral Bioavailability of Sulpiride via Fast Orally Disintegrating Tablets: Formulation, Optimization and In Vivo Characterization. Pharmaceuticals (Basel) 2020; 13:ph13120446. [PMID: 33291402 PMCID: PMC7762047 DOI: 10.3390/ph13120446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 01/15/2023] Open
Abstract
Sulpiride (SUL) is a dopamine D2-receptor antagonist used for management of GIT disturbance and it has anti-psychotic activities based on the administered dose. SUL undergoes P-glycoprotein efflux, which lead to poor bioavailability and erratic absorption. Therefore, the objective of this research was an attempt to enhance the oral bioavailability of SUL via formulation of fast disintegrating tablets (SUL-FDTs) with a rapid onset of action. A 32 full-factorial design was performed for optimization of SUL-FDTs using desirability function. The concentration of superdisintegrant (X1) and Prosolv® (X2) were selected as independent formulation variables for the preparation and optimization of SUL-FDTs using direct compression technique. The prepared SUL-FDTs were investigated regarding their mechanical strength, disintegration time, drug release and in vivo pharmacokinetic analysis in rabbits. The optimized formulation has hardness of 4.58 ± 0.52 KP, friability of 0.73 ± 0.158%, disintegration time of 37.5 ± 1.87 s and drug release of 100.51 ± 1.34% after 30 min. In addition, the optimized SUL-FDTs showed a significant (p < 0.01) increase in Cmax and AUC(0-∞) and a relative bioavailability of about 9.3 fold compared to the commercial product. It could be concluded that SUL-FDTs are a promising formulation for enhancing the oral bioavailability of SUL concomitant with a fast action.
Collapse
|
6
|
Gabbay RS, Kenett RS, Scaffaro R, Rubinstein A. Synchronizing the release rates of salicylate and indomethacin from degradable chitosan hydrogel and its optimization by definitive screening design. Eur J Pharm Sci 2018; 125:102-109. [PMID: 30268894 DOI: 10.1016/j.ejps.2018.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/21/2018] [Accepted: 09/27/2018] [Indexed: 01/31/2023]
Abstract
Three types of ionically crosslinked (with citric acid) chitosan discs were loaded with the highly water- soluble drug, sodium salicylate (SS) and the poorly water-soluble drug, indomethacin (Ind). In separate experiments the hydrated discs were immersed in a de-crosslinking solution comprising of different concentrations of calcium chloride, which induced a controlled erosion of the discs, a process which was optimized to synchronize the release rates of the two drugs over a predetermined period of time. The optimization was accomplished by manipulating six factors: chitosan MW, its amount in the formulation, the concentration of the crosslinker agent, the concentration of the de-crosslinking agent in the dissolution medium, its pH and its temperature. A computerized multifactorial definitive screening design analysis assisted in minimizing the number of experiments. The quotient of the SS to Ind release rates, the difference factor f1, the similarity factor f2 and the combination of f1 and f2 were determined as the experimental responses. The computerized prediction profilers that were used to simulate the contribution of the experimental factors and their effect on the experimental responses led to a successful erodible formulation with a concomitant release of the two drugs over 150 min.
Collapse
Affiliation(s)
- Racheli Sharon Gabbay
- The Hebrew University of Jerusalem, Faculty of Medicine, School of Pharmacy Institute for Drug Research, P.O. Box 12065, Jerusalem 91120, Israel
| | - Ron S Kenett
- The KPA Group, Ra'anana, Israel; The Samuel Neaman Institute, Technion, Haifa 3200003, Israel
| | - Roberto Scaffaro
- Department of civil, environmental and aerospace engineering, University of Palermo, Viale delle Scienze Ed. 6, 90128 Palermo, Italy
| | - Abraham Rubinstein
- The Hebrew University of Jerusalem, Faculty of Medicine, School of Pharmacy Institute for Drug Research, P.O. Box 12065, Jerusalem 91120, Israel.
| |
Collapse
|
7
|
M'bitsi-Ibouily GC, Marimuthu T, Kumar P, du Toit LC, Choonara YE, Kondiah PPD, Pillay V. Outlook on the Application of Metal-Liganded Bioactives for Stimuli-Responsive Release. Molecules 2017; 22:E2065. [PMID: 29186867 PMCID: PMC6149691 DOI: 10.3390/molecules22122065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/13/2017] [Accepted: 11/25/2017] [Indexed: 02/07/2023] Open
Abstract
Direct metal-liganded bioactive coordination complexes are known to be sensitive to stimuli such as pH, light, ion activation, or redox cues. This results in the controlled release of the bioactive(s). Compared to other drug delivery strategies based on metal complexation, this type of coordination negates a multi-step drug loading methodology and offers customized physiochemical properties through judicious choice of modulating ancillary ligands. Bioactive release depends on simple dissociative kinetics. Nonetheless, there are challenges encountered when translating the pure coordination chemistry into the biological and physiological landscape. The stability of the metal-bioactive complex in the biological milieu may be compromised, disrupting the stimuli-responsive release mechanism, with premature release of the bioactive. Research has therefore progressed to the incorporation of metal-liganded bioactives with established drug delivery strategies to overcome these limitations. This review will highlight and critically assess current research interventions in order to predict the direction that pharmaceutical scientists could pursue to arrive at tailored and effective metal-liganded bioactive carriers for stimuli-responsive drug release.
Collapse
Affiliation(s)
- Gretta C M'bitsi-Ibouily
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Thashree Marimuthu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Pierre P D Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
8
|
Kim DS, Choi JS, Kim DW, Kim KS, Seo YG, Cho KH, Kim JO, Yong CS, Youn YS, Lim SJ, Jin SG, Choi HG. Comparison of solvent-wetted and kneaded l-sulpiride-loaded solid dispersions: Powder characterization and in vivo evaluation. Int J Pharm 2016; 511:351-358. [PMID: 27397868 DOI: 10.1016/j.ijpharm.2016.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/20/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022]
Abstract
The purpose of this study was to compare the powder properties, solubility, dissolution and oral absorption of solvent-wetted (SWSD) and kneaded (KNSD) l-sulpiride-loaded solid dispersions. The SWSD and KNSD were prepared with silicon dioxide, sodium laurylsulfate and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) using a spray dryer and high shear mixer, respectively. Their powder properties, solubility, dissolution and oral absorption were assessed compared to l-sulpiride powder. The drug in SWSD was in the amorphous state; however, in KNSD, it existed in the crystalline state. The SWSD with a drug/sodium laurylsulphate/TPGS/silicon dioxide ratio of 5/1/2/12 gave the higher drug solubility and dissolution compared to the KNSD with the same composition. The oral absorption of drug in the SWSD was 1.4 fold higher than the KNSD and 3.0 fold higher than the l-sulpiride powder (p<0.05) owing to better solubility and reduced crystallinity. Furthermore, the SWSD at the half dose was bioequivalent of commercial l-sulpiride-loaded product in rats. Thus, the SWSD with more improved oral absorption would be recommended as an alternative for the l-sulpiride-loaded oral administration.
Collapse
Affiliation(s)
- Dong Shik Kim
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea
| | - Jong Seo Choi
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea
| | - Dong Wuk Kim
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea
| | - Kyeong Soo Kim
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea
| | - Youn Gee Seo
- College of Pharmacy, Yeungnam University, 214-1, Dae-Dong, Gyongsan 712-749, South Korea
| | - Kwan Hyung Cho
- College of Pharmacy, Inje University, Inje-ro 197, Gimhae 621-749, South Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214-1, Dae-Dong, Gyongsan 712-749, South Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 214-1, Dae-Dong, Gyongsan 712-749, South Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon 440-746, South Korea
| | - Soo-Jeong Lim
- Department of Bioscience and Biotechnology, Sejong University, Gunja-Dong, Seoul 143-747, South Korea
| | - Sung Giu Jin
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea.
| | - Han-Gon Choi
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea.
| |
Collapse
|
9
|
WITHDRAWN: The effect of hydroxypropyl methyl cellulose phthalate coating on digestive stability and intestinal transport of green tea catechins. Integr Med Res 2016. [DOI: 10.1016/j.imr.2013.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Ibrahim WM, AlOmrani AH, Yassin AEB. Novel sulpiride-loaded solid lipid nanoparticles with enhanced intestinal permeability. Int J Nanomedicine 2013; 9:129-44. [PMID: 24379671 PMCID: PMC3872145 DOI: 10.2147/ijn.s54413] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Solid lipid nanoparticles (SLN), novel drug delivery carriers, can be utilized in enhancing both intestinal permeability and dissolution of poorly absorbed drugs. The aim of this work was to enhance the intestinal permeability of sulpiride by loading into SLN. Methods A unique ultrasonic melt-emulsification method with minimum stress conditions was used for the preparation of SLN. The mixture of the drug and the melted lipids was simply dispersed in an aqueous solution of a surfactant at a temperature that was 10°C higher than the melting points of the lipids using probe sonication, and was then simultaneously dispersed in cold water. Several formulation parameters were optimized, including the drug-to-lipid ratio, and the types of lipids and surfactants used. The produced SLN were evaluated for their particle size and shape, surface charge, entrapment efficiency, crystallinity of the drug and lipids, and the drug release profile. The rat everted sac intestine model was utilized to evaluate the change in intestinal permeability of sulpiride by loading into SLN. Results The method adopted allowed successful preparation of SLN with a monodispersed particle size of 147.8–298.8 nm. Both scanning electron microscopic and atomic force microscopic images showed uniform spherical particles and confirmed the sizes determined by the light scattering technique. Combination of triglycerides with stearic acid resulted in a marked increase in zeta potential, entrapment efficiency, and drug loading; however, the particle size was increased. The type of surfactant used was critical for particle size, charge, drug loading, and entrapment efficiency. Generally, the in vitro release profile demonstrated by all formulations showed the common biphasic mode with a varying degree of burst release. The everted sac model showed markedly enhanced sulpiride permeability in the case of the SLN-loaded formulation. The in situ results showed a very good correlation with the in vitro release data. Conclusion Incorporation of sulpiride into SLN results in enhanced intestinal permeability of sulpiride, that may in turn increase overall oral absorption of the drug. The superior attributes of the prepared SLN, specifically the high particle size uniformity and drug loading capacity, is considered novel, especially given the simplicity and modest nature of the sonication method used.
Collapse
Affiliation(s)
- Waheed M Ibrahim
- Drug Sector, Saudi Food and Drug Authority, Riyadh, Saudi Arabia
| | - Abdullah H AlOmrani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Alaa Eldeen B Yassin
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Chung JH, Lee SJ, Chung JO, Oh YJ, Hwang JA, Kim YK, Ko S, Shim SM. Effect of hydroxypropyl methyl cellulose phthalate coating on digestive stability and intestinal transport of green tea catechins. Integr Med Res 2013; 3:34-37. [PMID: 28664076 PMCID: PMC5481709 DOI: 10.1016/j.imr.2013.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 11/22/2013] [Accepted: 11/26/2013] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The purpose of this study was to investigate the effect of hydroxypropyl methyl cellulose phthalate (HPMCP) coating on the digestive stability and intestinal transport of green tea catechins (GTCs). METHODS Two types of HPMCP coating were prepared: one type with size smaller than 500 μm (S-HPMCP) and the other with size larger than 500 μm (L-HPMCP). An in vitro gastrointestinal model system coupled with Caco-2 cells was used for estimating the bioavailability of GTCs. Ultraperformance liquid chromatography with a photodiode array detector was performed to analyze GTCs. RESULTS The digestive stability of GTCs was enhanced up to 33.73% and 35.28% for S-HPMCP and L-HPMCP, respectively. Intestinal transport of the GTCs was increased to 22.98% and 23.23% for S-HPMCP and L-HPMCP, respectively. Overall, the bioavailability of GTCs increased by 4.08 and 11.71 times for S-HPMCP and L-HPMCP, respectively. CONCLUSION The results of this study confirm that coating with HPMCP could be a way to improve the digestive stability and intestinal transport of GTCs.
Collapse
Affiliation(s)
- Jae-Hwan Chung
- Department of Food Science and Technology and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, Korea
| | - Sang-Jun Lee
- Health Science Research Institute, AmorePacific R&D Center, Yongin, Korea
| | - Jin-Oh Chung
- Health Science Research Institute, AmorePacific R&D Center, Yongin, Korea
| | - Yu-Jin Oh
- Health Science Research Institute, AmorePacific R&D Center, Yongin, Korea
| | - Jeong-Ah Hwang
- Health Science Research Institute, AmorePacific R&D Center, Yongin, Korea
| | - Young-Kyung Kim
- Health Science Research Institute, AmorePacific R&D Center, Yongin, Korea
| | - Sanghoon Ko
- Department of Food Science and Technology and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, Korea
| | - Soon-Mi Shim
- Department of Food Science and Technology and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, Korea
| |
Collapse
|
12
|
Helmy SA. Therapeutic drug monitoring and pharmacokinetic compartmental analysis of sulpiride double-peak absorption profile after oral administration to human volunteers. Biopharm Drug Dispos 2013; 34:288-301. [PMID: 23585286 DOI: 10.1002/bdd.1843] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/17/2013] [Accepted: 04/05/2013] [Indexed: 11/06/2022]
Abstract
BACKGROUND The pharmacokinetics of oral drugs that exhibit double peaks cannot be described adequately by using conventional compartmental models. OBJECTIVE The aim of this study was to describe the double-peak plasma pharmacokinetic profile of sulpiride after oral administration to healthy volunteers based on physiological and biopharmaceutical considerations. METHODS A single 100 mg dose of sulpiride was given to 16 healthy volunteers. Blood samples were drawn at different times and analysed by a validated HPLC assay method. Plasma profiles were evaluated by non-compartmental and compartmental approaches. RESULTS The non-compartmental parameters determined were k (0.079±0.008 h(-1)), t1/2 (9.0±2.9 h), Vd /F (330.5±87.3 L), Cl/F (38.2±9.8 L/h) and AUC0→∞ (1402.5±404.7 ng.h/mL). The compartmental analysis was described appropriately using a two-compartment body model, with first order absorption from two different sites in the gut. The parameters determined were k21 (0.68±0.2 h(-1)), ka1 (0.7±0.27 h(-1)), ka2 (2.7±1.8 h(-1)) Vc/F (45.1±15.7 L), α (33.3±1.5 h(-1)), β (0.11±0.03 h(-1)) and time for the beginning of the absorption from the second site (4.4±2.1 h). CONCLUSION The developed analytical method was suitable for use in pharmacokinetic studies and therapeutic drug monitoring implementation. Sulpiride was well tolerated by the patients without any serious adverse events being observed. The double peaks in the serum concentration-time profiles could be due to differential rates of absorption along the gastrointestinal tract. The discontinuous absorption model with two sites of absorption was adequate to describe the double-peak of the sulpiride plasma profile. ClinicalTrials. gov identifiers: NCT01777685.
Collapse
Affiliation(s)
- Sally A Helmy
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt.
| |
Collapse
|
13
|
Xie Y, Lu Y, Qi J, Li X, Zhang X, Han J, Jin S, Yuan H, Wu W. Synchronized and controlled release of multiple components in silymarin achieved by the osmotic release strategy. Int J Pharm 2013; 441:111-20. [DOI: 10.1016/j.ijpharm.2012.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/13/2012] [Accepted: 12/07/2012] [Indexed: 10/27/2022]
|
14
|
Maher S, Ryan KB, Ahmad T, O'driscoll CM, Brayden* DJ. Nanostructures Overcoming the Intestinal Barrier: Physiological Considerations and Mechanistic Issues. NANOSTRUCTURED BIOMATERIALS FOR OVERCOMING BIOLOGICAL BARRIERS 2012. [DOI: 10.1039/9781849735292-00039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
15
|
Nadler-Milbauer M, Apter L, Haupt Y, Haupt S, Barenholz Y, Minko T, Rubinstein A. Synchronized release of Doxil and Nutlin-3 by remote degradation of polysaccharide matrices and its possible use in the local treatment of colorectal cancer. J Drug Target 2012; 19:859-73. [PMID: 22082104 DOI: 10.3109/1061186x.2011.622401] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A novel approach to the prevention of colorectal cancer (CRC) recurrence by the local, luminal application of the combined therapies: Nutlin-3 (NUT) and the liposomal preparation of doxorubicin, Doxil(*) (Doxil) is presented here. The two drug entities were loaded into calcium alginate beads, engineered to erode upon exposure to a de-crosslinking agent, to allow for the controlled, concomitant release of the two. The synchronized release-driven improved cytotoxicity of NUT and Doxil was tested in vitro in RKO (wild-type p53) and HT-29 (mutant p53) CRC cells, by measuring intracellular expression of p53, p21 and Mdm2, as well as monitoring cell proliferation and viable cell numbers. NUT treatment alone was identified to be cytotoxic exclusively towards RKO cells. However, coadministration of NUT enhanced Doxil's anti-proliferative effects and cell death induction in a synergistic manner in both cell types. It was also identified that combinatorial treatment in a wt p53 context affected the p53 pathway by elevating the expression of p53 and its target p21. The capability of the formulation to erode in the presence of a de-crosslinking agent was demonstrated in vivo in the cecum of the anesthetized rat using indomethacin as a poorly water-soluble PK probe.
Collapse
Affiliation(s)
- Mirela Nadler-Milbauer
- The Hebrew University of Jerusalem, School of Pharmacy, Research Institute for Drug Research, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
16
|
Laroui H, Wilson DS, Dalmasso G, Salaita K, Murthy N, Sitaraman SV, Merlin D. Nanomedicine in GI. Am J Physiol Gastrointest Liver Physiol 2011; 300:G371-83. [PMID: 21148398 PMCID: PMC3064120 DOI: 10.1152/ajpgi.00466.2010] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recent advances in nanotechnology offer new hope for disease detection, prevention, and treatment. Nanomedicine is a rapidly evolving field wherein targeted therapeutic approaches using nanotechnology based on the pathophysiology of gastrointestinal diseases are being developed. Nanoparticle vectors capable of delivering drugs specifically and exclusively to regions of the gastrointestinal tract affected by disease for a prolonged period of time are likely to significantly reduce the side effects of existing otherwise effective treatments. This review aims at integrating various applications of the most recently developed nanomaterials that have tremendous potential for the detection and treatment of gastrointestinal diseases.
Collapse
Affiliation(s)
- Hamed Laroui
- 1Department of Medicine, Division of Digestive Diseases, Emory University School of Medicine, Atlanta;
| | - David S. Wilson
- 2School of Chemical and Bimolecular Engineering, Georgia Institute of Technology, Atlanta;
| | - Guillaume Dalmasso
- 1Department of Medicine, Division of Digestive Diseases, Emory University School of Medicine, Atlanta;
| | - Khalid Salaita
- 3Department of Chemistry, Emory University, Atlanta; and
| | - Niren Murthy
- 2School of Chemical and Bimolecular Engineering, Georgia Institute of Technology, Atlanta;
| | - Shanthi V. Sitaraman
- 1Department of Medicine, Division of Digestive Diseases, Emory University School of Medicine, Atlanta;
| | - Didier Merlin
- 1Department of Medicine, Division of Digestive Diseases, Emory University School of Medicine, Atlanta; ,4Veterans Affairs Medical Center, Decatur, Georgia
| |
Collapse
|
17
|
Oral absorption enhancement: taking the next steps in therapeutic delivery. Ther Deliv 2010; 1:5-9. [DOI: 10.4155/tde.10.14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
18
|
Cho HY, Yoo HD, Lee YB. Influence of ABCB1 genetic polymorphisms on the pharmacokinetics of levosulpiride in healthy subjects. Neuroscience 2010; 169:378-87. [PMID: 20438811 DOI: 10.1016/j.neuroscience.2010.04.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/20/2010] [Accepted: 04/26/2010] [Indexed: 01/11/2023]
Abstract
The purposes of this study were to clarify the involvement of P-glycoprotein in the absorption of levosulpiride in knockout mice that lack the Abcb1a/ 1b gene, and to evaluate the relationship between genetic polymorphisms in ABCB1 (exon 12, 21 and 26) and levosulpiride disposition in healthy subjects. The plasma and brain samples were obtained after oral administration (10 microg/g) of levosulpiride to abcb1a/1b(-/-) and wild-type mice (n=3 approximately 6 at each time point). The average brain-to-plasma concentration ratio and blood-brain barrier partitioning of levosulpiride were 2.3- and 2.0-fold higher in Abcb1a/1b(-/-) mice than in wild-type mice, respectively. A total of 58 healthy Korean volunteers receiving a single oral dose of 25 mg levosulpiride participated in this study. The subjects were evaluated for polymorphisms of the ABCB1 exon 12 C1236T, exon 21 G2677A/T (Ala893Ser/Thr) and exon 26 C3435T using polymerase chain reaction restriction fragment length polymorphism. The PK parameters (AUC(0-4h), AUC(0-infinity) and C(max.)) of ABCB1 2677TT and 3435TT subjects were significantly higher than those of subjects with at least one wild-type allele (P<0.05). The results indicate that levosulpiride is a P-glycoprotein substrate in vivo, which is supported by the effects of SNPs 2677G>A/T in exon 21 and 3435C>T in exon 26 of ABCB1 on levosulpiride disposition.
Collapse
Affiliation(s)
- H Y Cho
- Clinical Trials Management Division, Korea Food & Drug Administration, 194 Tongilro, Eunpyeong-gu, Seoul, 122-704, Republic of Korea
| | | | | |
Collapse
|
19
|
Nadler-Milbauer M, Azab A, Kleinstern J, Barenholz Y, Rubinstein A. In vitro and in vivo analysis of pulsatile biodegradation of mucoadhesive hydrogels. J Drug Deliv Sci Technol 2009. [DOI: 10.1016/s1773-2247(09)50048-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Abstract
Transmembrane located transporter proteins can be responsible for the low bioavailability of orally administered drugs. Drug delivery systems which can overcome this barrier caused by efflux pumps are therefore highly on demand. Within the current review, intestinal located efflux transporters, methods to identify efflux pump substrates and inhibitors as well as strategies to minimize efflux pump mediated transport of drugs are discussed. Methods include in silico screening, transport and accumulation studies and monitoring of the ATPase activity. An emphasis has been placed on efflux pump inhibitors including low molecular mass inhibitors such as cyclosporine, PSC833 or KR30031 and polymeric inhibitors such as myrj, thiomers and cremophor EL. Also formulation approaches to circumvent intestinal segments with high efflux pump expression are briefly addressed.
Collapse
Affiliation(s)
- Martin Werle
- ThioMatrix GmbH, Research Center Innsbruck, Mitterweg 24, A-6020 Innsbruck, Austria.
| |
Collapse
|
21
|
Fotaki N, Symillides M, Reppas C. Canine versus in vitro data for predicting input profiles of L-sulpiride after oral administration. Eur J Pharm Sci 2005; 26:324-33. [PMID: 16139490 DOI: 10.1016/j.ejps.2005.07.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 05/31/2005] [Accepted: 07/08/2005] [Indexed: 02/02/2023]
Abstract
The objective of this study was to assess the relative usefulness of canine versus in vitro data sets in the prediction of absorption of L-sulpiride (a low permeability compound) from an immediate and an extended release formulation. To reduce species differences on upper gastrointestinal residence times, human and canine data were collected in the fed state. In vitro permeability data (that were additionally confirmed by rat perfusion data) were obtained from the literature. In vitro release data were obtained in media simulating the gastric composition (without and with simultaneous protein digestion) and intestinal composition in the fed state. The results showed that, regardless of the formulation, canine input profiles were vastly different from human profiles at times longer than 2h after administration and led to 2.7 times higher total amount absorbed in dogs. In contrast, reliable in vitro permeability data in combination with in vitro release data collected in biorelevant media led to successful prediction of the human input profile; regardless of the dosage form, simulated and actual mean input profiles differed by less than 20%.
Collapse
Affiliation(s)
- Nikoletta Fotaki
- School of Pharmacy, Laboratory of Biopharmaceutics and Pharmacokinetics, University of Athens, Panepistimiopolis, 157 71 Zografou, Athens, Greece
| | | | | |
Collapse
|
22
|
|
23
|
Yamamoto E, Sakaguchi T, Kajima T, Mano N, Asakawa N. Novel methylcellulose-immobilized cation-exchange precolumn for on-line enrichment of cationic drugs in plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 807:327-34. [PMID: 15203047 DOI: 10.1016/j.jchromb.2004.04.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Revised: 04/27/2004] [Accepted: 04/27/2004] [Indexed: 11/19/2022]
Abstract
We developed a novel methylcellulose-immobilized strong cation-exchange (MC-SCX) precolumn for direct analysis of drugs in plasma. MC-SCX consists of silica gel with a methylcellulose outer-surface and a 2-(4-sulfophenyl) ethyl phase inner-surface. The MC-SCX precolumn was evaluated by direct analysis using pyridoxine, atenolol and sulpiride spiked in plasma, using a column-switching HPLC system. Each drug was retained and enriched on MC-SCX using an acidic mobile phase, which resulted in good linearity, sufficient reproducibility, intra- and inter day precision, and accuracy in analytical ion-pair LC with trifluoroacetic acid. The analytical methods for model drugs were applied to pharmacokinetics of atenolol and sulpiride in rats.
Collapse
Affiliation(s)
- Eiichi Yamamoto
- Analytical Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan.
| | | | | | | | | |
Collapse
|
24
|
Cornaire G, Woodley J, Hermann P, Cloarec A, Arellano C, Houin G. Impact of excipients on the absorption of P-glycoprotein substrates in vitro and in vivo. Int J Pharm 2004; 278:119-31. [PMID: 15158955 DOI: 10.1016/j.ijpharm.2004.03.001] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Revised: 02/24/2004] [Accepted: 03/03/2004] [Indexed: 10/26/2022]
Abstract
The efflux transporter, P-glycoprotein (P-gp), located in the apical membranes of intestinal absorptive cells, can reduce the bioavailability of a wide range of orally administered drugs. A number of surfactants/excipients have been shown to inhibit P-gp, and thus potentially enhance drug absorption. In this study, the improved everted gut sac technique was used to screen excipients for their ability to enhance the absorption of digoxin and celiprolol in vitro. The most effective excipients with digoxin were (at 0.5%, w/v): Labrasol > Imwitor 742 > Acconon E = Softigen 767 > Cremophor EL > Miglyol > Solutol HS 15 > Sucrose monolaurate > Polysorbate 20 > TPGS > Polysorbate 80. With celiprolol, Cremophor EL and Acconon E had no effect, but transport was enhanced by Softigen 767 > TPGS > Imwitor 742. In vivo, the excipients changed the pharmacokinetic profile of orally administered digoxin or celiprolol, but without increasing the overall AUC. The most consistent change was an early peak of absorption, probably due to the higher concentration of excipient in the proximal intestine where the expression of P-gp is lower. These studies show that many excipients/surfactants can modify the pharmacokinetics of orally administered drugs that are P-gp substrates.
Collapse
Affiliation(s)
- Gilles Cornaire
- Laboratoire de Cinétique des Xénobiotiques, UMR 181 Physiopathologie et Toxicologie Expérimentale (UPTE INRA-ENVT), Faculté des Sciences Pharmaceutiques, 35 chemin des Maraîchers, 31062 Toulouse, France
| | | | | | | | | | | |
Collapse
|
25
|
Watanabe K, Sawano T, Jinriki T, Sato J. Studies on Intestinal Absorption of Sulpiride (3): Intestinal Absorption of Sulpiride in Rats. Biol Pharm Bull 2004; 27:77-81. [PMID: 14709903 DOI: 10.1248/bpb.27.77] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate whether the concomitant administration of the substrates or inhibitors of PEPT1, OCTN1, OCTN2, and P-glycoprotein affects the intestinal absorption of sulpiride in rats. The absorption of sulpiride from rat intestine was decreased by the substrates or inhibitors of PEPT1, OCTN1, and OCTN2. On the other hand, the absorption was increased by the substrates of P-glycoprotein. The effects of these concomitantly administered drugs on the pharmacokinetic behavior of sulpiride after oral administration in rats were investigated. Peak concentration (C(max)) and area under the plasma concentration-time curve (AUC(0-8 h)) of sulpiride were decreased by the concomitant administration of the substrates or inhibitors of PEPT1, OCTN1, and OCTN2. However, the same parameters were significantly increased by the concomitant administration of the substrates of P-glycoprotein. The present results suggest the possibility of drug-drug interaction during the absorption process in the small intestine due to the coadministration of sulpiride and these agents. These findings provide important information for preventing adverse effects and for ensuring the effectiveness of sulpiride and concomitantly administered drugs.
Collapse
Affiliation(s)
- Kazuhiro Watanabe
- Hokkaido College of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan.
| | | | | | | |
Collapse
|
26
|
Härtter S, Hüwel S, Lohmann T, Abou El Ela A, Langguth P, Hiemke C, Galla HJ. How does the benzamide antipsychotic amisulpride get into the brain?--An in vitro approach comparing amisulpride with clozapine. Neuropsychopharmacology 2003; 28:1916-22. [PMID: 12865899 DOI: 10.1038/sj.npp.1300244] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This study evaluated the disposition of the two atypical antipsychotics, amisulpride (AMS) and clozapine (CLZ), and its main metabolite N-desmethylclozapine (DCLZ), to their target structures in the central nervous system by applying an in vitro blood-brain barrier and blood-cerebrospinal fluid (CSF) barrier based on monolayers of porcine brain microvessel endothelial cells (PMEC) or porcine choroid plexus epithelial cells (PCEC). Permeation studies through PMEC- and PCEC-monolayers were conducted for 60 min at drug concentrations of 1, 5, 10, and 30 muM applied to the donor compartment. PMEC were almost impermeable for AMS (permeation coefficient, P<1 x 10(-7) cm/s) in the resorptive direction, whereas transport in the secretory direction was observed with a P (+/-SD) of 5.2+/-3.6 x 10(-6) cm/s. The resorptive P of CLZ and DCLZ were 2.3+/-1.2 x 10(-4) and 9.6+/-5.0 x 10(-5) cm/s, respectively. For the permeation across PCEC in the resorptive direction, a P of 1.7+/-2.5 x 10(-6) cm/s was found for AMS and a P of 1.6+/-0.9 x 10(-4) and 2.3+/-1.3 x 10(-5) cm/s was calculated for CLZ and DCLZ, respectively. Both, CLZ and DCLZ, could easily pass both barriers with about a five-fold higher permeation rate of CLZ at the PCEC. The permeation of AMS across the BBB was restricted partly due to an efflux transport. It is thus suggested that AMS reaches its target structures via transport across the blood-CSF barrier.
Collapse
|
27
|
Watanabe K, Sawano T, Endo T, Sakata M, Sato J. Studies on intestinal absorption of sulpiride (2): transepithelial transport of sulpiride across the human intestinal cell line Caco-2. Biol Pharm Bull 2002; 25:1345-50. [PMID: 12392092 DOI: 10.1248/bpb.25.1345] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine the transport mechanism of sulpiride in an in vitro model of the human intestine, we investigated the transepithelial transport of this agent in Caco-2 cells. The transepithelial transport and intracellular accumulation of sulpiride were measured using Caco-2 cell monolayers cultured on a permeable membrane. The transepithelial transport of sulpiride in Caco-2 cells showed temperature dependence, and the transport was enhanced at weakly acidic pH on the apical side. These results demonstrate that the transepithelial transport of sulpiride is carrier mediated. To identify the drug transporter species that take part in the transepithelial transport of sulpiride, we examined the effects with the addition and preloading with specific substrates and inhibitors of various drug transporters. The results obtained from these examinations indicated that the apical-to-basolateral transport of sulpiride is mediated by the peptide transporter PEPT1, organic cation transporters OCTN1 and OCTN2 on the apical membrane, and the basolateral peptide transporter on the basolateral membrane. The basolateral-to-apical transport is mediated by the basolateral peptide transporter and organic cation transporter OCT1 on the basolateral membrane and by P-glycoprotein on the apical membrane. A decrease in the absorption of sulpiride may occur in coadministration protocols involving PEPT1-, OCTN1-, and OCTN2-transported drugs. Coadministration using the P-glycoprotein-transported drugs, in contrast, may enhance the absorption of sulpiride.
Collapse
|
28
|
Watanabe K, Sawano T, Terada K, Endo T, Sakata M, Sato J. Studies on intestinal absorption of sulpiride (1): carrier-mediated uptake of sulpiride in the human intestinal cell line Caco-2. Biol Pharm Bull 2002; 25:885-90. [PMID: 12132663 DOI: 10.1248/bpb.25.885] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated whether the uptake of a specific antipsychotic agent, sulpiride, in Caco-2 cells is mediated by a carrier-mediated system. Caco-2 cell monolayers were cultured in plastic culture dishes and uptake and efflux studies were conducted. The determination of sulpiride was performed by HPLC. At 37 degrees C, sulpiride uptake in pH 6.0 was twice as much as in pH 7.4. At 4 degrees C, however, no significant difference was observed between pH 6.0 and 7.4. The uptake at 4 degrees C was markedly lower than that obtained at 37 degrees C. The subtraction of the uptake at 4 degrees C from the uptake at 37 degrees C indicated a saturable process, and the result of the Eadie-Hofstee plot analysis indicated that the uptake consists of two or more saturable components. The uptake was significantly inhibited by uncoupler, protonophore, amino acid modifying agent and proteinase. Sulpiride efflux was temperature-dependent and was significantly inhibited by uncoupler and amino acid modifying agent. These findings indicate that sulpiride uptake and efflux in Caco-2 cells are carrier-mediated. Furthermore, the uptake was significantly decreased by some substrates and inhibitors of peptide transporter, PEPT1, and organic cation transporters, OCTN1 and OCTN2, and was significantly increased by preloading with them. The uptake was also significantly increased by a typical substrate of P-glycoprotein. From these findings, we presumed that peptide transporter PEPT1 and organic cation transporters OCTN1 and OCTN2 are involved with this uptake. P-glycoprotein may also contribute to the efflux of sulpiride.
Collapse
|