1
|
You J, Ye L, Zhang S, Zhao J, Zhao Y, He Y, Chen J, Kennes C, Chen D. Electrode functional microorganisms in bioelectrochemical systems and its regulation: A review. Biotechnol Adv 2025; 79:108521. [PMID: 39814087 DOI: 10.1016/j.biotechadv.2025.108521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 12/03/2024] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Bioelectrochemical systems (BES) as environmental remediation biotechnologies have boomed in the last two decades. Although BESs combined technologies with electro-chemistry, -biology, and -physics, microorganisms and biofilms remain at their core. In this review, various functional microorganisms in BESs for CO2 reduction, dehalogenation, nitrate, phosphate, and sulfate reduction, metal removal, and volatile organic compound oxidation are summarized and compared in detail. Moreover, interrelationship regulation approaches for functional microorganisms and methods for electroactive biofilm development, such as targeted electrode surface modification, chemical treatment, physical revealing, biological optimization, and genetic programming are pointed out. This review provides promising guidance and suggestions for the selection of microbial inoculants and provides an analysis of the role of individual microorganisms in mixed microbial communities and its metabolisms.
Collapse
Affiliation(s)
- Juping You
- Zhejiang Key Laboratory of Pullution control for Port-Petrochemical Industry, Zhejiang Ocean University, Zhoushan 316022, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Zhejiang Shuren University, Hangzhou 312028, China
| | - Lei Ye
- Zhejiang Key Laboratory of Pullution control for Port-Petrochemical Industry, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shihan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingkai Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yan Zhao
- Zhejiang Key Laboratory of Pullution control for Port-Petrochemical Industry, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yaxue He
- Zhejiang Key Laboratory of Pullution control for Port-Petrochemical Industry, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jianmeng Chen
- School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310018, China
| | - Christian Kennes
- Chemical Engineering Laboratory and Center for Advance Scientific Research (CICA), Faculty of Sciences, Universidade da Coruña, Spain
| | - Dongzhi Chen
- Zhejiang Key Laboratory of Pullution control for Port-Petrochemical Industry, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
2
|
Schacksen PS, Nielsen JL. Unraveling the genetic potential of nitrous oxide reduction in wastewater treatment: insights from metagenome-assembled genomes. Appl Environ Microbiol 2024; 90:e0217723. [PMID: 39136491 PMCID: PMC11409646 DOI: 10.1128/aem.02177-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/22/2024] [Indexed: 09/19/2024] Open
Abstract
This study explores the genetic landscape of nitrous oxide (N2O) reduction in wastewater treatment plants (WWTPs) by profiling 1,083 high-quality metagenome-assembled genomes (HQ MAGs) from 23 Danish full-scale WWTPs. The focus is on the distribution and diversity of nitrous oxide reductase (nosZ) genes and their association with other nitrogen metabolism pathways. A custom pipeline for clade-specific nosZ gene identification with higher sensitivity revealed 503 nosZ sequences in 489 of these HQ MAGs, outperforming existing Kyoto Encyclopedia of Genes and Genomes (KEGG) module-based methods. Notably, 48.7% of the total 1,083 HQ MAGs harbored nosZ genes, with clade II being predominant, accounting for 93.7% of these genes. Taxonomic profiling highlighted the prevalence of nosZ-containing taxa within Bacteroidota and Pseudomonadota. Chloroflexota exhibited unexpected affiliations with both the sec and tat secretory pathways, and all were found to contain the accessory nosB gene, underscoring the importance of investigating the secretory pathway. The majority of non-denitrifying N2O reducers were found within Bacteroidota and Chloroflexota. Additionally, HQ MAGs with genes for dissimilatory nitrate reduction to ammonium and assimilatory nitrate reduction frequently co-occurred with the nosZ gene. Traditional primers targeting nosZ often focus on short-length amplicons. Therefore, we introduced custom-designed primer sets targeting near-full-length nosZ sequences. These new primers demonstrate efficacy in capturing diverse and well-characterized sequences, providing a valuable tool with higher resolution for future research. In conclusion, this comprehensive analysis enhances our understanding of N2O-reducing organisms in WWTPs, highlighting their potential as N2O sinks with the potential for optimizing wastewater treatment processes and mitigating greenhouse gas emissions. IMPORTANCE This study provides critical insights into the genetic diversity of nitrous oxide reductase (nosZ) genes and the microorganisms harboring them in wastewater treatment plants (WWTPs) by exploring 1,083 high-quality metagenome-assembled genomes (MAGs) from 23 Danish full-scale WWTPs. Despite the pivotal role of nosZ-containing organisms, their diversity remains largely unexplored in WWTPs. Our custom pipeline for detecting nosZ provides near-full-length genes with detailed information on secretory pathways and accessory nos genes. Using these genes as templates, we developed taxonomically diverse clade-specific primers that generate nosZ amplicons for phylogenetic annotation and gene-to-MAG linkage. This approach improves detection and expands the discovery of novel sequences, highlighting the prevalence of non-denitrifying N2O reducers and their potential as N2O sinks. These findings have the potential to optimize nitrogen removal processes and mitigate greenhouse gas emissions from WWTPs by fully harnessing the capabilities of the microbial communities.
Collapse
Affiliation(s)
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
3
|
Ma X, Feng ZT, Zhou JM, Sun YJ, Zhang QQ. Regulation mechanism of hydrazine and hydroxylamine in nitrogen removal processes: A Comprehensive review. CHEMOSPHERE 2024; 347:140670. [PMID: 37951396 DOI: 10.1016/j.chemosphere.2023.140670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/09/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
As the new fashioned nitrogen removal process, short-cut nitrification and denitrification (SHARON) process, anaerobic ammonium oxidation (anammox) process, completely autotrophic nitrogen removal over nitrite (CANON) process, partial nitrification and anammox (PN/A) process and partial denitrification and anammox (PD/A) process entered into the public eye due to its advantages of high nitrogen removal efficiency (NRE) and low energy consumption. However, the above process also be limited by long-term start-up time, unstable operation, complicated process regulation and so on. As intermediates or by-metabolites of functional microorganisms in above processes, hydroxylamine (NH2OH) and hydrazine (N2H4) improved NRE of the above processes by promoting functional enzyme activity, accelerating electron transport efficiency and regulating distribution of microbial communities. Therefore, this review discussed effects of NH2OH and N2H4 on stability and NRE of above processes, analyzed regulatory mechanism from functional enzyme activity, electron transport efficiency and microbial community distribution. Finally, the challenges and limitations for nitric oxide (NO) and nitrous oxide (N2O) produced from regulation of NH2OH and N2H4 are discussed. In additional, perspectives on future trends in technology development are proposed.
Collapse
Affiliation(s)
- Xin Ma
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Ze-Tong Feng
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Jia-Min Zhou
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Ying-Jun Sun
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Qian-Qian Zhang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China.
| |
Collapse
|
4
|
Kadam R, Jo S, Khanthong K, Lee J, Jang H, Park J. Potential of nitrite-absent anaerobic ammonium oxidation by mixed culture ANAMMOX granules in a single chamber bio-electrochemical system. CHEMOSPHERE 2023; 345:140494. [PMID: 37863210 DOI: 10.1016/j.chemosphere.2023.140494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/18/2023] [Accepted: 10/18/2023] [Indexed: 10/22/2023]
Abstract
Nitrogen (N) removal from wastewater is essential, but it a process that demands a substantial amount of energy. Therefore, there is an urgent need to develop treatment processes that can conserve and use energy effectively. This study investigated the potential of a single chamber bio-electrochemical system (BES) for ammonium (NH4+) removal. Various NH4+:NO2- ratios (1:1, 1:0.5, and 1:0) were tested at an applied potential of 0.4 V vs. Ag/AgCl. Potential in the reactors (R-1, R-2, and R-3) significantly improved NH4+ removal efficiencies. Specifically, R-1, R-2, and R-3 exhibited removal efficiencies of 68.12%, 64.22%, and 57.86%, respectively. NH4+ oxidation in R-3 involved using a carbon brush electrode as an electron acceptor. Significant electric charge generation was observed in all reactors (R-1, R-2, and R-3) during NH4+ removal. Particularly, the use of a carbon brush as an electron acceptor in R-3 resulted in higher electric charge generation compared to those in R-1 and R-2, where NO2- served as an electron acceptor. Upon NH4+ removal and concurrent electric charge generation, nitrate (NO3-) accumulation was observed in reactors with applied potential (R-1, R-2, and R-3), demonstrating greater accumulation compared to reactors without potential (R-7, R-8, and R-9). The mechanism involves ammonium oxidizing bacteria (AOB) oxidizing NH4+ to NO2-, which is then further oxidized by nitrite-oxidizing bacteria (NOB) to NO3-. ANAMMOX bacteria could directly produce N2 from NH4+ and NO2- or NH4+ could be oxidized to N2 through extracellular electron transfer (EET). A carbon brush electron acceptor reduces NO2- requirement by 1.65 g while enhancing NH4+ oxidation efficiency. This study demonstrates the potential of mixed culture ANAMMOX granules for efficient NO2-free NH4+ removal.
Collapse
Affiliation(s)
- Rahul Kadam
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Sangyeol Jo
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Kamonwan Khanthong
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Jonghwa Lee
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Heewon Jang
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Jungyu Park
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
5
|
Khanthong K, Jang H, Kadam R, Jo S, Lee J, Park J. Bioelectrochemical system for nitrogen removal: Fundamentals, current status, trends, and challenges. CHEMOSPHERE 2023; 339:139776. [PMID: 37567277 DOI: 10.1016/j.chemosphere.2023.139776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Biological nitrogen removal (BNR) is essential for the treatment of nitrogen-containing wastewater. However, the requirement for aeration and the addition of external carbon sources, resulting in greenhouse gas emissions and additional costs, are disadvantages of the traditional BNR process. Alternative technologies have been devised to overcome these drawbacks. Bioelectrochemical nitrogen removal (BENR) has been proposed for efficient nitrogen removal, demonstrating flexibility and versatility. BENR can be performed by combining nitrification, denitrification, anaerobic ammonium oxidation (ANAMMOX), or organic carbon oxidation. Bioelectrochemical-ANAMMOX (BE-ANAMMOX) is the most promising method for nitrogen removal, as it can directly convert NH4+ to N2 and H2 in one step when the electrode is arranged as an electron acceptor. High-value-added hydrogen can potentially be recovered with efficient nitrogen removal using this concept, maximizing the benefits of BENR. Using alternative electron acceptors, such as electrodes and metal ions, for complete total nitrogen removal is a promising technology to substitute NO2- production from NH4+ oxidation by aeration. However, the requirement of electron donors for NO3- reduction, low NH4+ removal efficiency, and low competitiveness of exoelectrogenic bacteria still remain the main obstacles. The future direction for successful BENR should aim to achieve complete anaerobic NH4+ oxidation without any electron acceptor and to maximize selectivity in H2 production. Therefore, the bioelectrochemical pathways and balances between efficient nitrogen removal and high-value-added chemical production should be further studied for carbon and energy neutralities.
Collapse
Affiliation(s)
- Kamonwan Khanthong
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61457, Republic of Korea.
| | - Heewon Jang
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61457, Republic of Korea
| | - Rahul Kadam
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61457, Republic of Korea
| | - Sangyeol Jo
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61457, Republic of Korea
| | - Jonghwa Lee
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61457, Republic of Korea
| | - Jungyu Park
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61457, Republic of Korea.
| |
Collapse
|
6
|
Thongsamer T, Vinitnantharat S, Pinisakul A, Werner D. Fixed-bed biofilter for polluted surface water treatment using chitosan impregnated-coconut husk biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122137. [PMID: 37406752 DOI: 10.1016/j.envpol.2023.122137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/25/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Pelletizing biochar enables its use as a biofilter medium for polluted canal water treatment. Coconut husk biochar pellets and their modification with chitosan (CHC) were compared with conventional activated carbon pellets and gravel. The biofilter columns with these media were operated with a hydraulic loading rate of 0.1 m3/m2∙h. CHC showed the highest potential to reduce phosphate and nitrogen, via the adsorption process in the first week of filtration and later enhanced by biodegradation, to achieve removal efficiencies of 61.70 and 54.37% for these two key nutrients, respectively, over five weeks of biofilter operation. The predominant bacteria in the biofilter communities were characterized at the end of the experiments by next generation sequencing and quantitative polymerase chain reaction analysis. The biofilter communities included ammonium oxidizing, nitrite oxidizing, denitrifying, polyphosphate accumulating and denitrifying phosphate-accumulating bacteria that benefit nutrient removal. The CHC biofilter also effectively removed micropollutants, including pharmaceuticals.
Collapse
Affiliation(s)
- Thunchanok Thongsamer
- Environmental Technology Program in School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Soydoa Vinitnantharat
- Environmental Technology Program in School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand; Environmental and Energy Management for Community and Circular Economy Research Group, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Anawat Pinisakul
- Chemistry for Green Society and Healthy Research Group, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
| | - David Werner
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| |
Collapse
|
7
|
Orsi WD, Inagaki F. Decoding geobiological evolution from microbiomes. SCIENCE ADVANCES 2023; 9:eadg5448. [PMID: 36724219 PMCID: PMC9891684 DOI: 10.1126/sciadv.adg5448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Genomic records of genetic recombination and mutation rates indicate that freshwater ammonia-oxidizing archaea have evolved through paleoclimate and geohydrological history.
Collapse
Affiliation(s)
- William D. Orsi
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - Fumio Inagaki
- Mantle Drilling Promotion Office, Institute for Marine-Earth Exploration and Engineering (MarE3), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama 236-0001, Japan
- Department of Earth Sciences, Graduate School of Science, Tohoku University, Sendai 980-8574, Japan
| |
Collapse
|
8
|
Wen L, Yang F, Li X, Liu S, Lin Y, Hu E, Gao L, Li M. Composition of dissolved organic matter (DOM) in wastewater treatment plants influent affects the efficiency of carbon and nitrogen removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159541. [PMID: 36265625 DOI: 10.1016/j.scitotenv.2022.159541] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Wastewater treatment plants (WWTPs) play a critical role in receiving, removing, and discharging dissolved organic matter (DOM) in aquatic systems. To date, understanding the composition and fate of DOM in different WWTPs with various environmental and socioeconomic conditions is limited. This study analyzed DOM components in the influent and effluent samples from 49 WWTPs in China using EEM-PARAFAC and ESI-FT-ICR-MS methods. The influencing factors of DOM components in the influent were also analyzed. Geographic location and GDP showed significant (p < 0.05) correlations with DOM components in the influent. The removal efficiency of DOM in WWTPs was closely related to the DOM compositions, where carbohydrates, lipids, and protein-like components (removal efficiencies > 75 %) were more readily decomposed than the humic-like components, lignin, and tannin. The relative fraction of humic-like compound C3 in the influent was correlated negatively with total nitrogen (TN) and chemical oxygen demand (COD) removal in WWTPs (p < 0.05). Besides, the relative fraction of DOM containing the element sulfur also showed significant negative correlations with the humification of DOM (p < 0.05). The results from EEM-PARAFAC and ESI-FT-ICR-MS methods showed no obvious correlation for the DOM characterizations except for humic-like fluorescent fraction C3 and lignin, while significant positive correlations (p < 0.05) between the aromatic index (AI_mod) from the ESI-FT-ICR-MS analysis and the humification index (HIX) from spectrofluorimetry. This supports the use of these spectral indexes as simple surrogates to represent part chemical compositions in further research.
Collapse
Affiliation(s)
- Ling Wen
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, PR China
| | - Fang Yang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, PR China
| | - Xuan Li
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Siwan Liu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, PR China
| | - Yuye Lin
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, PR China
| | - En Hu
- Shaanxi Provincial Academy of Environmental Science, Xi'an 710061, PR China
| | - Li Gao
- South East Water, 101 Wells Street, Frankston, VIC 3199, Australia
| | - Ming Li
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, PR China.
| |
Collapse
|
9
|
Karuriya S, Choudhary S. Simultaneous heterotrophic nitrification and aerobic denitrification potential of Paenibacillus sp. strain GLM-08 isolated from lignite mine waste and its role ammonia removal from mine waste water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:3223-3235. [PMID: 36579880 DOI: 10.2166/wst.2022.401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Paenibacillus sp. strain GLM-08 was isolated from a lignite mine waste site in the Barmer basin, Rajasthan, India. The strain is efficient in heterotrophic nitrification and aerobic denitrification. This bacterium could remove approximately more than 95% of NH4+, NO3-, and NO2- in 24 h. The average nitrogen (N) removal rate of the strain was found to be 4.775 mg/L/H, 5.66 mg/L/H, and 5.01 mg/L/H for NH4+, NO3-, and NO2-, respectively. Bioaugmentation of mine wastewater with Paenibacillus sp. strain GLM-08 demonstrated N removal of 86.6% under conditions of a high load of NH4+. The presence of potential genetic determinants (nxrB, nirS, and nosZ) having role in heterotrophic nitrification and aerobic denitrification was confirmed by PCR based analysis. The findings show that this bacterium performs simultaneous nitrification and denitrification and has a high nitrogen removal efficiency indicating the potential application of the strain in the treatment of wastewater.
Collapse
Affiliation(s)
- Silisti Karuriya
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, P.O. Banasthali Vidyapith, Rajasthan 304022, India E-mail:
| | - Sangeeta Choudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, P.O. Banasthali Vidyapith, Rajasthan 304022, India E-mail:
| |
Collapse
|
10
|
Yang S, Yang L, Xiong P, Qian X, Nagasaka T. Ammonium continuous removal by zeolite P synthesized using fly ash combined with bacteria in aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81892-81908. [PMID: 35739440 DOI: 10.1007/s11356-022-21350-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
The new composite product synthesized by zeolite P and bacteria consisting of nitrobacteria and denitrobacteria can efficiently and continuously remove ammonium in solution through zeolite adsorption and bacteria degradation. In this study, we used fly ash to prepared zeolite P, and then combined bacteria to synthesize the composite product. The adsorption efficiency and mechanism of products for ammonium were further studied by batch and dynamic experiments, and adsorption model. The zeolite P with a relative crystallinity of 84.7% was synthesized using fly ash by an alkali fusion-hydrothermal method. The synthetic zeolite P could combine with bacteria to be prepared an integral adsorption composite that had hierarchical pore structure including macropores, mesopores, and micropores, and its maximum compressive strength reached 106.2 N. The zeolite P could remove ammonium from solution, and Freundlich, Temkin, and Dubinin-Radushkevich models as well as thermodynamic models all showed that the ammonium adsorption by zeolite was mainly physical adsorption. Thus, the adsorbed ammonium was easy to be desorbed and became the nitrogen source for bacteria in composites. By batch experiments, the ammonium adsorption rate of composite product was significantly improved (P < 0.05) compared with zeolite P due to zeolite adsorption and the bacteria degradation. Through dynamic experiments, the composite product could efficiently and continuously remove ammonium from solution than zeolite P and bacteria alone. Therefore, the composite product could form a stable system for the adsorption, desorption, and degradation of ammonium in solution.
Collapse
Affiliation(s)
- Shuangjian Yang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Liyun Yang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
- Department of Metallurgy, Graduate School of Engineering, Tohoku University, 02 Aoba-yama, Sendai, 980-8579, Japan.
| | - Pengfei Xiong
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Xiaoming Qian
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Tetsuya Nagasaka
- Department of Metallurgy, Graduate School of Engineering, Tohoku University, 02 Aoba-yama, Sendai, 980-8579, Japan
| |
Collapse
|
11
|
Zantop AW, Stark H. Emergent collective dynamics of pusher and puller squirmer rods: swarming, clustering, and turbulence. SOFT MATTER 2022; 18:6179-6191. [PMID: 35822601 DOI: 10.1039/d2sm00449f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We study the interplay of steric and hydrodynamic interactions in suspensions of elongated microswimmers by simulating the full hydrodynamics of squirmer rods in the quasi two-dimensional geometry of a Hele-Shaw cell. To create pusher or puller-type squirmer rods, we concentrate the surface slip-velocity field more to the back or to the front of the rod and thereby are able to tune the rod's force-dipole strength. We study a wide range of aspect ratios and area fractions and provide corresponding state diagrams. The flow field of pusher-type squirmer rods destabilizes ordered structures and favors the disordered state at small area fractions and aspect ratios. Only when steric interactions become relevant, we observe a turbulent and dynamic cluster state, while for large aspect ratios a single swarm and jammed cluster occurs. The power spectrum of the turbulent state shows two distinct energy cascades at small and large wave numbers with power-law scaling and non-universal exponents. Pullers show a strong tendency to form swarms instead of the disordered state found for neutral and pusher rods. At large area fractions a dynamic cluster is observed and at larger aspect ratio a single swarm or jammed cluster occurs.
Collapse
Affiliation(s)
- Arne W Zantop
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany.
| | - Holger Stark
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany.
| |
Collapse
|
12
|
Wan Y, Li J, Ni J, Wang C, Ni C, Chen H. Crystal-facet and microstructure engineering in ZnO for photocatalytic NO oxidation. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129073. [PMID: 35650731 DOI: 10.1016/j.jhazmat.2022.129073] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/22/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Photocatalysis is believed to be an important way of reducing NO pollutant in air and the facet engineering of semiconducting oxides could enhance the efficiency of the photocatalysis. ZnO nanoparticles with different exposed crystalline facets were successfully synthesized using a hydrothermal method and their photocatalytic degradation towards NO was investigated. The crystals from ZnCl2 precursor were hexagonal mesoporous ones with exposed (0002) facet, while those from zinc acetate were in the form of flakes or wheat ears with enhanced exposure of (101(-)1) facet. Calcination in air imparted an enhanced the textural coefficient of the orientated facets as well as the oxygen defects. The nanocrystals with enhanced (0002) facet and lower flat-band energy did better in photoelectrochemical water-oxidation than those with exposed (101(-)1) facet that showed superior photocatalytic activity (approaching 76.7 ± 0.6% under 365 nm photons) for NO oxidation. According to theoretical calculations, (101(-)1) facet with O termination showed much higher affinity to NO molecules than other configurations, and the oxygen vacancy in ZnO played an minor role in the photocatalytic oxidation of NO. A high quantum efficiency approaching 97.5 ± 1.4% under 275 nm photons was obtained for the ZnO crystals from zinc acetate with mixed (0002) and (101(-)1) facets. This research explores the special characteristics of ZnO with different exposed facets and is important for the future design of highly efficient photocatalyst for hazardous material removal.
Collapse
Affiliation(s)
- Yanshan Wan
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Jibiao Li
- Center for Materials and Energy (CME) and Chongqing Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM), Yangtze Normal University, Chongqing 408100, China
| | - Jiupai Ni
- College of Resources and Environment, Southwest University, Chongqing 400715, China; National Base of International S&T Collaboration on Water Environmental Monitoring and Simulation in Three Gorges Reservoir Region, Chongqing 400716, China
| | - Chong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China; National Base of International S&T Collaboration on Water Environmental Monitoring and Simulation in Three Gorges Reservoir Region, Chongqing 400716, China.
| | - Chengsheng Ni
- College of Resources and Environment, Southwest University, Chongqing 400715, China; National Base of International S&T Collaboration on Water Environmental Monitoring and Simulation in Three Gorges Reservoir Region, Chongqing 400716, China.
| | - Hong Chen
- College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
13
|
Diagnostic Method for Enhancing Nitrogen and Phosphorus Removal in Cyclic Activated Sludge Technology (CAST) Process Wastewater Treatment Plant. WATER 2022. [DOI: 10.3390/w14142253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ensuring the stable operation of urban wastewater treatment plants (WWTPs) and achieving energy conservation and emission reduction have become serious problems with the improvement of national requirements for WWTP effluent. Based on a wastewater quality analysis, identification of the contaminant removal, and a simulation and optimization of the wastewater treatment process, a practical engineering diagnosis method for the cyclic activated sludge technology process of WWTPs in China and an optimal control scheme are proposed in this study. Results showed that exceeding the standard of effluent nitrogen and phosphorus due to unreasonable process cycle setting and insufficient influent carbon source is dangerous. The total nitrogen removal rate increased by 9.5% and steadily increased to 67% when agitation was added to the first 40 min of the cycle. Additionally, the total phosphorus (TP) was reduced to 0.27 mg/L after replacing the phosphorus removal agent polyferric sulfate with polyaluminum iron. The corresponding increase in the TP removal rate to 97% resulted in a reduction in the treatment cost by 0.008 CNY/t.
Collapse
|
14
|
Wang J, Liang J, Ning D, Zhang T, Wang M. A review of biomass immobilization in anammox and partial nitrification/anammox systems: Advances, issues, and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:152792. [PMID: 35033568 DOI: 10.1016/j.scitotenv.2021.152792] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/11/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Two biomass immobilization techniques; entrapment and carrier-based, attract increasing attention in anammox and partial nitrification/anammox (PN/A) systems. This paper provides a comprehensive review of the advances, outstanding issues, and future research directions in this field. The application of both entrapment and carrier-based biofilm immobilization for reactor start up, improving the nitrogen removal performance, and protecting autotrophic bacteria from environmental fluctuations in anammox and partial nitrification/anammox systems are summarized and discussed. The key characteristics of carriers for biomass immobilization are biocompatibility for supporting microbial growth, permeability for effective mass transfer, and physical/chemical stability for long-term use. Carriers without these characteristics must be improved and re-evaluated for their feasibility in applications. Lab-scale, pilot, and full-scale studies are needed to overcome the potential obstacles of preliminary studies, and to investigate the long-term performance of biomass immobilization techniques, especially using real wastewater as influent, which may introduce more complexity and threaten the carrier's immobilization. In addition, calculating the 'nitrogen removal rate normalized by the packing ratio of carriers (NRR-C)' in the immobilization system is strongly suggested to obtain a direct comparison of immobilization performance/limitations from different studies. This review will improve understanding of the major challenges of immobilization technology in anammox and PN/A systems and provide insights into the next-stage of research and full-scale applications.
Collapse
Affiliation(s)
- Jinxing Wang
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China; College of Horticulture, North West Agriculture and Forestry University, Yangling 712100, China
| | - Jidong Liang
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Dingying Ning
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tengge Zhang
- Department of Energy and Mineral Engineering and EMS Energy Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Meng Wang
- Department of Energy and Mineral Engineering and EMS Energy Institute, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
15
|
Technologies for Biological and Bioelectrochemical Removal of Inorganic Nitrogen from Wastewater: A Review. NITROGEN 2022. [DOI: 10.3390/nitrogen3020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Water contamination due to various nitrogenous pollutants generated from wastewater treatment plants is a crucial and ubiquitous environmental problem now-a-days. Nitrogen contaminated water has manifold detrimental effects on human health as well as aquatic life. Consequently, various biological treatment processes are employed to transform the undesirable forms of nitrogen in wastewater to safer ones for subsequent discharge. In this review, an overview of various conventional biological treatment processes (viz. nitrification, denitrification, and anammox) have been presented along with recent novel bioelectrochemical methods (viz. microbial fuel cells and microbial electrolysis cells). Additionally, nitrogen is an indispensable nutrient necessary to produce artificial fertilizers by fixing dinitrogen gas from the atmosphere. Thus, this study also explored the potential capability of various nitrogen recovery processes from wastewater (like microalgae, cyanobacteria, struvite precipitation, stripping, and zeolites) that are used in industries. Further, the trade-offs, challenges posed by these processes have been dwelt on along with other biological processes like CANON, SHARON, OLAND, and others.
Collapse
|
16
|
Wu Z, Gao J, Cui Y, Li D, Dai H, Guo Y, Li Z, Zhang H, Zhao M. Metagenomics insights into the selective inhibition of NOB and comammox by phenacetin: Transcriptional activity, nitrogen metabolism and mechanistic understanding. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150068. [PMID: 34525735 DOI: 10.1016/j.scitotenv.2021.150068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/22/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Phenacetin (PNCT), a common antipyretic and analgesic drug, is often used to treat fever and headache. However, the effect of PNCT on nitrifiers in wastewater treatment processes remains unclear. The practicability of attaining partial nitrification (PN) through inhibitor-PNCT was investigated in this study. The optimal treatment conditions of soaking once for 18 h with 2.50 × 10-3 g PNCT/(g MLSS) were applied to the PN stability experiment. The results showed that ammonia oxidation activity recovered quickly after 3 cycles of operation, while nitrite oxidation activity was suppressed steadily. In addition, average ammonium removal efficiency and nitrite accumulation ratio during 138 cycles could reach 94.94% and 85.38%, respectively. Complimentary DNA high-throughput sequencing and oligotyping analysis showed that the activity of Nitrosomonas would gradually surpass Nitrospira after PNCT treatment only once. The decrease of Nitrospira activity was accompanied by the simplification of oligotypes after PNCT treatment, while Nitrosomonas could adapt to PNCT stress by reducing the differences between oligotypes. Metagenomics revealed that the decrease in the number of NXR in the nitrogen metabolism pathways was the key reason for achieving PN. The potential mechanisms might be that the dominant nitrite-oxidizing bacteria and complete ammonia oxidizers were bio-killed by PNCT.
Collapse
Affiliation(s)
- Zejie Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing 100124, China.
| | - Yingchao Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Dingchang Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Huihui Dai
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Yi Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Ziqiao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Haoran Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Mingyan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
17
|
Malyan SK, Yadav S, Sonkar V, Goyal VC, Singh O, Singh R. Mechanistic understanding of the pollutant removal and transformation processes in the constructed wetland system. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1882-1909. [PMID: 34129692 DOI: 10.1002/wer.1599] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/12/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
Constructed wetland systems (CWs) are biologically and physically engineered systems to mimic the natural wetlands which can potentially treat the wastewater from the various point and nonpoint sources of pollution. The present study aims to review the various mechanisms involved in the different types of CWs for wastewater treatment and to elucidate their role in the effective functioning of the CWs. Several physical, chemical, and biological processes substantially influence the pollutant removal efficiency of CWs. Plants species Phragmites australis, Typha latifolia, and Typha angustifolia are most widely used in CWs. The rate of nitrogen (N) removal is significantly affected by emergent vegetation cover and type of CWs. Hybrid CWs (HCWS) removal efficiency for nutrients, metals, pesticides, and other pollutants is higher than a single constructed wetland. The contaminant removal efficiency of the vertical subsurface flow constructed wetlands (VSSFCW) commonly used for the treatment of domestic and municipal wastewater ranges between 31% and 99%. Biochar/zeolite addition as substrate material further enhances the wastewater treatment of CWs. Innovative components (substrate materials, plant species) and factors (design parameters, climatic conditions) sustaining the long-term sink of the pollutants, such as nutrients and heavy metals in the CWs should be further investigated in the future. PRACTITIONER POINTS: Constructed wetland systems (CWs) are efficient natural treatment system for on-site contaminants removal from wastewater. Denitrification, nitrification, microbial and plant uptake, sedimentation and adsorption are crucial pollutant removal mechanisms. Phragmites australis, Typha latifolia, and Typha angustifolia are widely used emergent plants in constructed wetlands. Hydraulic retention time (HRT), water flow regimes, substrate, plant, and microbial biomass substantially affect CWs treatment performance.
Collapse
Affiliation(s)
- Sandeep K Malyan
- Research Management and Outreach Division, National Institute of Hydrology, Roorkee, India
| | - Shweta Yadav
- Research Management and Outreach Division, National Institute of Hydrology, Roorkee, India
| | - Vikas Sonkar
- Research Management and Outreach Division, National Institute of Hydrology, Roorkee, India
| | - V C Goyal
- Research Management and Outreach Division, National Institute of Hydrology, Roorkee, India
| | - Omkar Singh
- Research Management and Outreach Division, National Institute of Hydrology, Roorkee, India
| | - Rajesh Singh
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, Uttarakhand, India
| |
Collapse
|
18
|
Oxidative decomposition of ammonium ion with ozone in the presence of cobalt and chloride ions for the treatment of radioactive liquid waste. PROGRESS IN NUCLEAR ENERGY 2021. [DOI: 10.1016/j.pnucene.2021.103872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Akizuki S, Cuevas-Rodríguez G, Toda T. Effect of ammonia concentration on a microalgal-nitrifying bacterial photobioreactor treating anaerobic digester effluent. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Application of Internal Carbon Source from Sewage Sludge: A Vital Measure to Improve Nitrogen Removal Efficiency of Low C/N Wastewater. WATER 2021. [DOI: 10.3390/w13172338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biological nitrogen removal from wastewater is widely used all over the world on account of high efficiency and relatively low cost. However, nitrogen removal efficiency is not optimized when the organic matter has inadequate effect for the lack of a sufficient carbon source in influent. Although addition of an external carbon source (e.g., methanol and acetic acid) could solve the insufficient carbon source problem, it raises the operating cost of wastewater treatment plants (WWTPs). On the other hand, large amounts of sludge are produced during biological sewage treatment, which contain high concentrations of organic matter. This paper reviews the emerging technologies to obtain an internal organic carbon resource from sewage sludge and their application on improving nitrogen removal of low carbon/nitrogen wastewater of WWTPs. These are methods that could solve the insufficient carbon problem and excess sludge crisis simultaneously. The recovery of nitrogen and phosphorus from treated sludge before recycling as an internal carbon source should also be emphasized, and the energy and time consumed to treat sludge should be reduced in practical application.
Collapse
|
21
|
Cepan C, Segneanu AE, Grad O, Mihailescu M, Cepan M, Grozescu I. Assessment of the Different Type of Materials Used for Removing Phosphorus from Wastewater. MATERIALS 2021; 14:ma14164371. [PMID: 34442892 PMCID: PMC8400586 DOI: 10.3390/ma14164371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022]
Abstract
Reducing the costs associated with water management, improving water quality and the environment are fundamental requirements of sustainable development. Maintaining the optimal level of phosphorus has a direct impact on water quality and the biological system. Current methods used in tertiary wastewater treatment for phosphorus removal present several disadvantages that influence the final water processing cost. Therefore, it is essential for water quality and food safety to develop ecological, cheap and highly efficient materials. This study reported the first comparative assessment of three different types of materials (magnetic, semiconductors and composite) as environmentally friendly, cheap adsorbents for phosphorus removal from wastewater. Several experiments were done to investigate the influence of adsorbent type, dosage and contact time on the efficiency of the processes. The adsorption process was fast and equilibrium was reached within 150 min. We found that the phosphorus adsorption efficiency on of these materials was higher than the chemical method. The obtained results indicated that specific surface area directly influences the performance of the adsorption process. EDS analysis was used to analyze adsorbents composition and analyze the type and content of elements in the substrate before and after reaction with wastewater.
Collapse
Affiliation(s)
- Claudiu Cepan
- Department of Applied Chemistry and Engineering of Inorganic Compounds and the Environment, University Politehnica Timisoara, 300006 Timisoara, Romania; (C.C.); (O.G.); (M.M.); (M.C.); (I.G.)
| | - Adina-Elena Segneanu
- Faculty of Chemistry, Biology, Geography, West University of Timisoara, 300223 Timisoara, Romania
- Correspondence:
| | - Oana Grad
- Department of Applied Chemistry and Engineering of Inorganic Compounds and the Environment, University Politehnica Timisoara, 300006 Timisoara, Romania; (C.C.); (O.G.); (M.M.); (M.C.); (I.G.)
| | - Maria Mihailescu
- Department of Applied Chemistry and Engineering of Inorganic Compounds and the Environment, University Politehnica Timisoara, 300006 Timisoara, Romania; (C.C.); (O.G.); (M.M.); (M.C.); (I.G.)
| | - Melinda Cepan
- Department of Applied Chemistry and Engineering of Inorganic Compounds and the Environment, University Politehnica Timisoara, 300006 Timisoara, Romania; (C.C.); (O.G.); (M.M.); (M.C.); (I.G.)
| | - Ioan Grozescu
- Department of Applied Chemistry and Engineering of Inorganic Compounds and the Environment, University Politehnica Timisoara, 300006 Timisoara, Romania; (C.C.); (O.G.); (M.M.); (M.C.); (I.G.)
| |
Collapse
|
22
|
Kouba V, Gerlein JC, Benakova A, Lopez Marin MA, Rysava E, Vejmelkova D, Bartacek J. Adaptation of flocculent anammox culture to low temperature by cold shock: long-term response of the microbial population. ENVIRONMENTAL TECHNOLOGY 2021; 43:1-8. [PMID: 34240689 DOI: 10.1080/09593330.2021.1950842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Partial nitritation-anammox (PN/A) process will substantially reduce the costs for the removal of nitrogen in the mainstream of municipal sewage. However, one of the mainstream PN/A challenges is to reduce the time necessary for the adaptation of anammox bacteria to lower temperatures in mild climates. In this study, we exposed anammox flocculent culture to cold shocks [35°C → 5°C (8 h) → 15°C] and evaluated long-term cold shock response. Over a post-shock period of 40 d at 15°C, the nitrogen removal rates in the shocked culture were significantly higher compared to control, with maximum rates up to 0.082 and 0.033 kg-N/kg-VSS/d or 0.164 and 0.076 kg-N/m3/d, for shocked culture and control, respectively. In the corresponding semi-batch cycles, the shocked culture was on average 136 ± 101% more active than the control, due to the negative effect of cold shock on side populations and more active anammox cells. Per FISH, Ca. Brocadia anammoxidans and Ca. Scalindua survived the shock and remained present throughout. Thus, both anammox microorganisms seem to respond favourably to cold shocks. In sum, we provide further evidence that cold shocks accelerate the adaptation of anammox to the mainstream of municipal WWTPs. Further, for the first time, we report the long-term adaptive response of anammox to cold shocks.
Collapse
Affiliation(s)
- Vojtech Kouba
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Czech Republic
| | - Juan Camilo Gerlein
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Czech Republic
| | - Andrea Benakova
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Czech Republic
| | - Marco Antonio Lopez Marin
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Czech Republic
| | - Eva Rysava
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Czech Republic
| | - Dana Vejmelkova
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Czech Republic
| | - Jan Bartacek
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Czech Republic
| |
Collapse
|
23
|
Wang N, Gao J, Liu Y, Wang Q, Zhuang X, Zhuang G. Realizing the role of N-acyl-homoserine lactone-mediated quorum sensing in nitrification and denitrification: A review. CHEMOSPHERE 2021; 274:129970. [PMID: 33979914 DOI: 10.1016/j.chemosphere.2021.129970] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Nitrification and denitrification are crucial processes in the nitrogen cycle, a vital microbially driven biogeochemical cycle. N-acyl-homoserine lactone (AHL)-mediated quorum sensing (QS) is widespread in bacteria and plays a key role in their physiological status. Recently, there has been an increase in research into how the AHL-mediated QS system is involved in nitrification and denitrification. Consequentially, the AHL-mediated QS system has been considered a promising regulatory approach in nitrogen metabolism processes, with high potential for real-world applications. In this review, the universal presence of QS in nitrifiers and denitrifiers is summarized. Many microorganisms taking part in nitrification and denitrification harbor QS genes, and they may produce AHLs with different chain lengths. The phenotypes and processes affected by QS in real-world applications are also reviewed. In wastewater bioreactors, QS could affect nitrogen metabolism efficiency, granule aggregation, and biofilm formation. Furthermore, methods commonly used to identify the existence and functions of QS, including physiological tests, genetic manipulation and omics analyses are discussed.
Collapse
Affiliation(s)
- Na Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Gao
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ying Liu
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Qiuying Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuliang Zhuang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoqiang Zhuang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
24
|
Prost V, Gazut S, Brüls T. A zero inflated log-normal model for inference of sparse microbial association networks. PLoS Comput Biol 2021; 17:e1009089. [PMID: 34143768 PMCID: PMC8244920 DOI: 10.1371/journal.pcbi.1009089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/30/2021] [Accepted: 05/17/2021] [Indexed: 01/03/2023] Open
Abstract
The advent of high-throughput metagenomic sequencing has prompted the development of efficient taxonomic profiling methods allowing to measure the presence, abundance and phylogeny of organisms in a wide range of environmental samples. Multivariate sequence-derived abundance data further has the potential to enable inference of ecological associations between microbial populations, but several technical issues need to be accounted for, like the compositional nature of the data, its extreme sparsity and overdispersion, as well as the frequent need to operate in under-determined regimes. The ecological network reconstruction problem is frequently cast into the paradigm of Gaussian Graphical Models (GGMs) for which efficient structure inference algorithms are available, like the graphical lasso and neighborhood selection. Unfortunately, GGMs or variants thereof can not properly account for the extremely sparse patterns occurring in real-world metagenomic taxonomic profiles. In particular, structural zeros (as opposed to sampling zeros) corresponding to true absences of biological signals fail to be properly handled by most statistical methods. We present here a zero-inflated log-normal graphical model (available at https://github.com/vincentprost/Zi-LN) specifically aimed at handling such "biological" zeros, and demonstrate significant performance gains over state-of-the-art statistical methods for the inference of microbial association networks, with most notable gains obtained when analyzing taxonomic profiles displaying sparsity levels on par with real-world metagenomic datasets.
Collapse
Affiliation(s)
- Vincent Prost
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France.,Université Paris-Saclay, CEA, List, Palaiseau, France
| | | | - Thomas Brüls
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| |
Collapse
|
25
|
Cui F, Kim M, Park C, Kim D, Mo K, Kim M. Application of principal component analysis (PCA) to the assessment of parameter correlations in the partial-nitrification process using aerobic granular sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112408. [PMID: 33780822 DOI: 10.1016/j.jenvman.2021.112408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
For the first time, principal component analysis (PCA) was used to extract relevant information hidden in the partial-nitrification process using aerobic granular sludge. The objectives of this research are (a) to determine total ammonia nitrogen (TAN), total nitrite nitrogen (NO2-N), nitrate nitrogen (NO3-N), and other water quality parameters; (b) to identify the diversity of nitrification and denitrification bacterial community of wastewater samples during the partial-nitrification process using aerobic granular sludge and; (c) to analyze the correlation of available parameters using PCA. The nitrite accumulation ratio was determined from TAN, NO2-N, and NO3-N. Other water quality parameters were mixed liquor volatile suspended solids (MLVSS), alkalinity, total nitrogen (TN) and sludge volume index (SVI), pH, and dissolved oxygen (DO). The identification of bacterial community was conducted using 16S rRNA gene-based pyrosequencing by GS Junior Sequencing system. The water quality parameters were computed for PCA using software MATLAB. A nitrite accumulation ratio (NAR) between 0.55 and 0.85 was determined while maintaining the aerobic granular sludge's compact and dense structure. The PCA was used to reduce the data dimensionality from the original 8 variables to 2 principal components explaining 75% of the total data variance. Applying PCA to the data analysis in biological wastewater treatment can support detecting data anomalies and separating useful information from unwanted interferences.
Collapse
Affiliation(s)
- Fenghao Cui
- Department of Civil & Environmental Engineering, Hanyang University, 55 Hanyangdaehak-ro, Ansan City, Kyeonggido, 426-791, Republic of Korea.
| | - Minkyung Kim
- Department of Civil & Environmental Engineering, Hanyang University, 55 Hanyangdaehak-ro, Ansan City, Kyeonggido, 426-791, Republic of Korea.
| | - Chul Park
- Department of Civil & Environmental Engineering, Hanyang University, 55 Hanyangdaehak-ro, Ansan City, Kyeonggido, 426-791, Republic of Korea.
| | - Dokyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 55 Hanyangdaehak-ro, Ansan City, Kyeonggido, 426-791, Republic of Korea.
| | - Kyung Mo
- Department of Civil & Environmental Engineering, Hanyang University, 55 Hanyangdaehak-ro, Ansan City, Kyeonggido, 426-791, Republic of Korea.
| | - Moonil Kim
- Department of Civil & Environmental Engineering, Hanyang University, 55 Hanyangdaehak-ro, Ansan City, Kyeonggido, 426-791, Republic of Korea.
| |
Collapse
|
26
|
Ghimire U, Sarpong G, Gude VG. Transitioning Wastewater Treatment Plants toward Circular Economy and Energy Sustainability. ACS OMEGA 2021; 6:11794-11803. [PMID: 34056333 PMCID: PMC8154022 DOI: 10.1021/acsomega.0c05827] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/19/2021] [Indexed: 05/06/2023]
Abstract
Aging infrastructure, increasing environmental regulations, and receiving water environment issues stem the need for advanced wastewater treatment processes across the world. Advanced wastewater treatment systems treat wastewater beyond organic carbon removal and aim to remove nutrients and recover valuable products. While the removal of major nutrients (carbon, nitrogen, and phosphorus) is essential for environmental protection, this can only be achieved through energy-, chemical-, and cost-intensive processes in the industry today, which is an unsustainable trend, considering the global population growth and rapid urbanization. Two major routes for developing more sustainable and circular-economy-based wastewater treatment systems would be to (a) innovate and integrate energy- and resource-efficient anaerobic wastewater treatment systems and (b) enhance carbon capture to be diverted to energy recovery schemes. This Mini-Review provides a critical evaluation and perspective of two potential process routes that enable this transition. These process routes include a bioelectrochemical energy recovery scheme and codigestion of organic sludge for biogas generation in anaerobic digesters. From the analysis, it is imperative that integrating both concepts may even result in more energy- and resource-efficient wastewater treatment systems.
Collapse
|
27
|
Patil PK, Baskaran V, Vinay TN, Avunje S, Leo-Antony M, Shekhar MS, Alavandi SV, Vijayan KK. Abundance, community structure and diversity of nitrifying bacterial enrichments from low and high saline brackishwater environments. Lett Appl Microbiol 2021; 73:96-106. [PMID: 33780023 DOI: 10.1111/lam.13480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 11/29/2022]
Abstract
The study reports diversity in nitrifying microbial enrichments from low (0·5-5‰) and high (18-35‰) saline ecosystems. Microbial community profiling of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) enrichments was analysed by sequencing 16S rRNA and was processed using Mothur pipeline. The α-diversity indices showed the richness of nitrifying bacterial consortia from the high saline environment and were clustering based on the source of the sample. AOB and NOB enrichments from both the environments showed diverse lineages of phyla distributed in both groups with 38 and 34 phyla from low saline and 53 and 40 phyla in high saline sources, respectively. At class level, α- and γ-proteobacteria were found to be more dominant in both the enrichments. AOBs and NOBs in enrichments from low saline environments were dominated by Nitrosomonadaceae, Gallionellaceae (Nitrotoga sp.) and Ectothiorhodospiraceae and Nitrospira, respectively. Though Chromatiaceae were present in both AOB and NOB enrichments, Nitrosoglobus and Nitrosococcus dominated the AOBs while NOBs were dominated by uncultured genera, whereas Rhizobiales were found in both the enrichments. AOBs and NOBs in enrichments from high saline environments were dominated by Nitrospira-like AOBs, Nitrosomonas and Nitrosococcus genera, whereas ammonia-oxidizing archaea (AOA) group included Nitrosopumilus and Nitrososphaera genera comprising and Nitrospirae, respectively. The majority of the genera obtained in both the salinities were found to be either uncultured or unclassified groups. Results of the study suggest that the AOB and NOB consortia have unique and diverse microbes in each of the enrichments, capable of functioning in aquaculture systems practised at different salinities (0-60 ppt).
Collapse
Affiliation(s)
- P K Patil
- Central Institute of Brackishwater Aquaculture, ICAR, Chennai, India
| | - V Baskaran
- Central Institute of Brackishwater Aquaculture, ICAR, Chennai, India
| | - T-N Vinay
- Central Institute of Brackishwater Aquaculture, ICAR, Chennai, India
| | - S Avunje
- Central Institute of Brackishwater Aquaculture, ICAR, Chennai, India
| | - M Leo-Antony
- Central Institute of Brackishwater Aquaculture, ICAR, Chennai, India
| | - M S Shekhar
- Central Institute of Brackishwater Aquaculture, ICAR, Chennai, India
| | - S V Alavandi
- Central Institute of Brackishwater Aquaculture, ICAR, Chennai, India
| | - K K Vijayan
- Central Institute of Brackishwater Aquaculture, ICAR, Chennai, India
| |
Collapse
|
28
|
Singleton CM, Petriglieri F, Kristensen JM, Kirkegaard RH, Michaelsen TY, Andersen MH, Kondrotaite Z, Karst SM, Dueholm MS, Nielsen PH, Albertsen M. Connecting structure to function with the recovery of over 1000 high-quality metagenome-assembled genomes from activated sludge using long-read sequencing. Nat Commun 2021; 12:2009. [PMID: 33790294 PMCID: PMC8012365 DOI: 10.1038/s41467-021-22203-2] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
Microorganisms play crucial roles in water recycling, pollution removal and resource recovery in the wastewater industry. The structure of these microbial communities is increasingly understood based on 16S rRNA amplicon sequencing data. However, such data cannot be linked to functional potential in the absence of high-quality metagenome-assembled genomes (MAGs) for nearly all species. Here, we use long-read and short-read sequencing to recover 1083 high-quality MAGs, including 57 closed circular genomes, from 23 Danish full-scale wastewater treatment plants. The MAGs account for ~30% of the community based on relative abundance, and meet the stringent MIMAG high-quality draft requirements including full-length rRNA genes. We use the information provided by these MAGs in combination with >13 years of 16S rRNA amplicon sequencing data, as well as Raman microspectroscopy and fluorescence in situ hybridisation, to uncover abundant undescribed lineages belonging to important functional groups.
Collapse
Affiliation(s)
- Caitlin M Singleton
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Francesca Petriglieri
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Jannie M Kristensen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Rasmus H Kirkegaard
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Thomas Y Michaelsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Martin H Andersen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Zivile Kondrotaite
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Søren M Karst
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Morten S Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
29
|
Prokhorova A, Kainuma M, Hiyane R, Boerner S, Goryanin I. Concurrent treatment of raw and aerated swine wastewater using an electrotrophic denitrification system. BIORESOURCE TECHNOLOGY 2021; 322:124508. [PMID: 33341711 DOI: 10.1016/j.biortech.2020.124508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Enhanced nitrate removal in the cathode chamber of bioelectrochemical systems (BES) using aerated swine wastewater under high nitrate levels and low organic carbon was investigated in this study, focusing on the relationship between nitrogen and bacterial communities involved in denitrification pathways. BESs with the anion exchange membrane (AEM) under cathodic applied potentials of -0.6 V vs. AgCl/AgCl reference electrode showed a removal rate of 99 ± 2 mg L-1 d-1. Moreover, organic compounds from the untreated full-strength wastewater were simultaneously eliminated in the anode chamber with a removal rate of 0.46 g COD L-1 d-1 with achieved efficiency of 61.4 ± 0.5% from an initial concentration of around 5 g of COD L-1, measured over the course of 7 days. The highest microbial diversity was detected in BESs under potentials of -0.6 V, which include autotrophic denitrifiers such as Syderoxidans, Gallionela and Thiobacillus.
Collapse
Affiliation(s)
- Anna Prokhorova
- Biological Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | - Mami Kainuma
- Biological Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Rie Hiyane
- Biological Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Susan Boerner
- Biological Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Igor Goryanin
- Biological Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan; School of Informatics, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
30
|
Ammonium and organic carbon co-removal under feammox-coupled-with-heterotrophy condition as an efficient approach for nitrogen treatment. Sci Rep 2021; 11:784. [PMID: 33436808 PMCID: PMC7803747 DOI: 10.1038/s41598-020-80057-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/11/2020] [Indexed: 11/08/2022] Open
Abstract
Nitrification is the rate limiting step in the nitrogen removal processes since nitrifiers have high oxygen demand, but poorly compete with aerobic heterotrophs. In a laboratory-scaled system, we investigated a process of ammonium oxidation under ferric-iron reducing condition (feammox) in the presence of organic carbon using influents with high NH4+ and COD contents, and ferrihydrite as the only electron acceptor. Batch incubations testing influents with different NH4+ and COD concentrations revealed that the [COD]/[NH4+] ratio of 1.4 and the influent redox potential ranging from - 20 to + 20 mV led to the highest removal efficiencies, i.e. 98.3% for NH4+ and 58.8% for COD. N2 was detected as the only product of NH4+ conversion, whereas NO2- and NO3- were not detected. While operating continuously with influent having a [COD]/[NH4+] ratio of 1.4, the system efficiently removed NH4+ (> 91%) and COD (> 54%) within 6 day retention time. Fluorescence in situ hybridization analyses using Cy3-labeled 16S rRNA oligonucleotide probes revealed that gamma-proteobacteria dominated in the microbial community attaching to the matrix bed of the system. The iron-reduction dependent NH4+ and COD co-removal with a thorough conversion of NH4+ to N2 demonstrated in this study would be a novel approach for nitrogen treatment.
Collapse
|
31
|
Park JG, Lee B, Heo TY, Cheon AI, Jun HB. Metagenomics approach and canonical correspondence analysis of novel nitrifiers and ammonia-oxidizing archaea in full scale anaerobic-anoxic-oxic (A2/O) and oxidation ditch processes. BIORESOURCE TECHNOLOGY 2021; 319:124205. [PMID: 33045546 DOI: 10.1016/j.biortech.2020.124205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 05/25/2023]
Abstract
Various microorganisms are involved in nitrogen removal, and their group compositions depend closely on operating parameters. The structures and functions of nitrification microorganisms in full-scale anaerobic-anoxic-oxic (A2/O) and oxidation ditch processes were analyzed using metagenomics and canonical correspondence analysis. The community structure of ammonia-oxidizing archaea in the oxidation ditch was 3.8 (winter) - 6.3 (summer) times higher than in A2/O, and the complete ammonia oxidizer was only found in the oxidation ditch process. The canonical correspondence analysis of various environmental variables showed that Nitrosomonadales, Crenarchaeota, and Nitrospira inopinata correlate highly with nitrification, and Nitrospira was involved in NO2--N oxidation rather than Nitrobacter. The longer solid and hydraulic retention times in the oxidation ditch were more effective in achieving a wider range of novel nitrification than A2/O. This result indicates that microbial communities of novel nitrifiers and ammonia-oxidizing archaea improved in the oxidation ditch process, significantly contributing to stable nitrogen removal.
Collapse
Affiliation(s)
- Jun-Gyu Park
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea; Department of Environmental Engineering, Montana Technological University, Butte, MT 59701, USA.
| | - Beom Lee
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea; Nature Engineering Co., LTD., 1 Chungdae-ro, Cheongju 28644, Republic of Korea.
| | - Tae-Young Heo
- Department of Information Statistics, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - A-In Cheon
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Hang-Bae Jun
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
32
|
Kaszycki P, Głodniok M, Petryszak P. Towards a bio-based circular economy in organic waste management and wastewater treatment - The Polish perspective. N Biotechnol 2020; 61:80-89. [PMID: 33202308 DOI: 10.1016/j.nbt.2020.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 01/06/2023]
Abstract
Bio-based solutions are expected to ensure technological circularity in priority areas such as agriculture, biotechnology, ecology, green industry or energy. Although Poland, unlike the other EU member states, has not yet adopted a precise political strategy to promote bioeconomy, it has taken several actions to enable smart, sustainable and inclusive growth. This goal can be achieved by developing selected bioeconomy-related areas such as the biogas industry together with novel technologies implemented to optimize treatment of municipal sewage and management of organic solid waste. Here, the relatively strong status of the Polish biogas sector is presented. The widely used practice of sewage sludge biomethanation has led to construction of numerous complex installations combining biological wastewater treatment plants with anaerobic digesters. Based on physico-chemical processing of biostabilized sludges, a novel method for efficient granulated soil fertilizer production is elaborated, in line with the concept of circular economy and the notion of "waste-to-product". It is also shown that anaerobic fermentation of sewage sludges can be optimized by co-digestion with properly selected co-substrates to increase bioprocess yield and improve the resultant digestate fertilizer quality. The problem of post-fermentation eutrophic sludge liquors, environmentally hazardous waste effluents requiring proper treatment prior to discharge or field application, is addressed. Attempts to optimize biological treatment of digestate liquors with complex microbial consortia are presented. The Polish innovations described show that the "zero waste" path in circular bioeconomy may bring advantageous results in terms of transformation of waste materials into commercial, added-value products together with recovery of water resources.
Collapse
Affiliation(s)
- Paweł Kaszycki
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Poland.
| | - Marcin Głodniok
- Department of Water Protection, Central Mining Institute, Katowice, Poland
| | - Przemysław Petryszak
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Poland
| |
Collapse
|
33
|
Simultaneous Stripping of Ammonia from Leachate: Experimental Insights and Key Microbial Players. WATER 2020. [DOI: 10.3390/w12092494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Air stripping is commonly used to remove the ammonia in multistage treatment systems for municipal landfill leachate (LFL). This paper proposes a novel approach combining the process of stripping with biological removal of ammonia, based on simultaneous nitrification and denitrification (SND) in a single hybrid sequencing batch reactor (HSBR). To avoid the accumulation of free ammonia (N-FAN), the shallow aeration system was used for the treatment of raw LFL with N-TAN level of 1520 mg/L and pH 9.24. The mean N-FAN removal efficiency of 69% with the reaction rate of 55 mg L−1 h−1 and mean ammonium (N-NH4+) removal efficiency of 84% with the reaction rate of 44 mg L−1 h−1 were achieved within a month in such an HSBR (R1). The comparative HSBR (R2), with conventional aeration system maintaining the same concentration of dissolved oxygen (DO ≤ 1 mg/L), was removing only trace amounts of N-FAN and 48% of N-NH4+. The quantitative analysis of 16S rRNA genes indicated that the number of total bacteria, Actinobacteria, Bacteroidetes, Firmicutes, and Beta- and Gammaproteobacteria increased during the operation of both HSBRs, but was always higher in R1. Moreover, the bacterial community shift was observed since the beginning of the experiment; the relative abundance of Firmicutes, and Beta- and Gammaproteobacteria increased by 5.01, 3.25 and 9.67% respectively, whilst the abundance of Bacteroidetes and Actinobacteria decreased by 15.59 and 0.95%. All of the surveyed bacteria groups, except Gammaproteobacteria, correlated significantly negatively (p < 0.001) with the concentrations of N-NH4+ in the outflows from R1. The results allow us to suppose that simultaneous stripping and SND in a single reactor could be a promising, cost-effective and easy-to-operate solution for LFL treatment.
Collapse
|
34
|
Zhang X, Li S, Zheng S, Duan S. Impact of dissolved oxygen and loading rate on NH 3 oxidation and N 2 production mechanisms in activated sludge treatment of sewage. Microb Biotechnol 2020; 14:419-429. [PMID: 32488999 PMCID: PMC7936313 DOI: 10.1111/1751-7915.13599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 01/19/2023] Open
Abstract
Microaerobic activated sludge (MAS) is a one-stage process operated at 0.5-1.0 mg l-1 dissolved oxygen (DO) aiming at simultaneous nitrification and denitrification. We used molecular techniques and a comprehensive nitrogen (N)-transformation activity test to investigate the dominant NH3 -oxidizing and N2 -producing mechanism as well as the dominant ammonia-oxidizing bacteria (AOB) species in sludge samples individually collected from an MAS system and a conventional anoxic/oxic (A/O) system; both systems were operated at a normal loading rate (i.e. 1.0 kg chemical oxygen demand (COD) m-3 day-1 and 0.1 kg NH4 + -N m-3 day-1 ) in our previous studies. The DO levels in both systems (aerobic: conventional A/O system; microaerobic: MAS system) did not affect the dominant NH3 -oxidizing mechanism or the dominant AOB species. This study further demonstrated the feasibility of a higher loading rate (i.e. 2.30 kg COD m-3 day-1 and 0.34 kg NH4 + -N m-3 day-1 ) with the MAS process during sewage treatment, which achieved a 40% reduction in aeration energy consumption than that obtained in the conventional A/O system. The increase in loading rates in the MAS system did not affect the dominant NH3 -oxidizing mechanism but did impact the dominant AOB species. Besides, N2 was predominantly produced by microaerobic denitrification in the MAS system at the two loading rates.
Collapse
Affiliation(s)
- Xueyu Zhang
- MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Shida Li
- MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Shaokui Zheng
- MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Shoupeng Duan
- MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
35
|
Lang X, Li Q, Ji M, Yan G, Guo S. Isolation and niche characteristics in simultaneous nitrification and denitrification application of an aerobic denitrifier, Acinetobacter sp. YS2. BIORESOURCE TECHNOLOGY 2020; 302:122799. [PMID: 31981809 DOI: 10.1016/j.biortech.2020.122799] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
The ecological niche of aerobic denitrifiers in activated sludge is little studied, but this determines the performance of these bacteria in reactors. Acinetobacter sp. YS2 isolated from a treatment process for petrochemical wastewater and showed excellent nitrogen removal performance. In the nitrification and denitrification process, the removal efficiencies of NH4+-N and NO3--N were 87.81% and 88.20% at 24 h, respectively, and nitrogen balance analysis indicated that the proportions of nitrogen removal by gaseous nitrogen were 37.58% and 46.45%, respectively. During simultaneous nitrification and denitrification (SND) treatment of synthetic petrochemical wastewater in a sequencing batch reactor (SBR), aerobic denitrifiers became the dominant species and the proportion reached 87.44% in the microbial community. The removal efficiencies of NH4+-N and TN were 99.46% and 80.36% over 5 days, respectively. This research has shown that aerobic denitrifiers can become the dominant species in the applications of SND treatment for petrochemical wastewater.
Collapse
Affiliation(s)
- Xudong Lang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, China University of Petroleum, 18 Fuxue Road, Changping District, Beijing 102249, PR China
| | - Qianwei Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, China University of Petroleum, 18 Fuxue Road, Changping District, Beijing 102249, PR China
| | - Mengmeng Ji
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, China University of Petroleum, 18 Fuxue Road, Changping District, Beijing 102249, PR China
| | - Guangxu Yan
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, China University of Petroleum, 18 Fuxue Road, Changping District, Beijing 102249, PR China.
| | - Shaohui Guo
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, China University of Petroleum, 18 Fuxue Road, Changping District, Beijing 102249, PR China
| |
Collapse
|
36
|
Kim IT, Lee YE, Jeong Y, Yoo YS. A novel method to remove nitrogen from reject water in wastewater treatment plants using a methane- and methanol-dependent bacterial consortium. WATER RESEARCH 2020; 172:115512. [PMID: 31986401 DOI: 10.1016/j.watres.2020.115512] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/18/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
This study proposes a novel method to directly treat reject water with a high ammonium content, without relying on dilution. The originality of this method resides in leveraging the coordinated action of a methane- and methanol-dependent bacterial consortium and the biogas generated from wastewater treatment facilities. Specifically, ammonium is removed through autotrophic assimilation in the glutamate cycle of methanotrophs and Methylophilus while, simultaneously, methanol generated by methanotrophs is treated through formaldehyde assimilation as Methylophilus undergo the same ribulose monophosphate cycle as methanotrophs. Using this method, the backflow of high-concentration ammonium into the wastewater treatment process was reduced to 59% in a single operation using a sequencing batch reactor at a mean influent concentration of 877.3 mg L-1. However, the removal rate temporarily declined to an average of 37.6% at a concentration of 800 mg L-1 or above, which was imputed to the influence of toxic intermediates.
Collapse
Affiliation(s)
- I-Tae Kim
- Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology, 283, Goyang-daero, Ilsanseo-gu, Goyang-si, Gyeonggi-do, 10223, South Korea.
| | - Ye-Eun Lee
- Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology, 283, Goyang-daero, Ilsanseo-gu, Goyang-si, Gyeonggi-do, 10223, South Korea; Department of Construction Environment Engineering, University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, 34113, South Korea
| | - Yoonah Jeong
- Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology, 283, Goyang-daero, Ilsanseo-gu, Goyang-si, Gyeonggi-do, 10223, South Korea
| | - Yeong-Seok Yoo
- Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology, 283, Goyang-daero, Ilsanseo-gu, Goyang-si, Gyeonggi-do, 10223, South Korea; Department of Construction Environment Engineering, University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, 34113, South Korea
| |
Collapse
|
37
|
Wang X, Yang H, Liu X, Su Y. Effects of biomass and environmental factors on nitrogen removal performance and community structure of an anammox immobilized filler. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:135258. [PMID: 31866106 DOI: 10.1016/j.scitotenv.2019.135258] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/25/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
In order to reduce the loss of anaerobic ammonia oxidation (anammox) sludge and stabilize the reaction microenvironment, polyvinyl alcohol - polypropylene (PVA-PP) was used to encapsulate anammox bacteria on a filler. The influence of different inoculation amounts (2, 4, 6 and 8%) on the overall nitrogen removal process was first compared and then the anammox characteristics of the immobilized filler under the influence of different environmental factors were evaluated through batch experiments. The results show that the biomass only affected the growth rate of the activity during the logarithmic phase, while the total nitrogen removal rate (NRR) tended to be similar after 99 d of culture. The NRR reached 1.83 kg·(m3·d)-1 on day 140, which was 9.4 times that of suspended sludge before encapsulation, and the structure of embedding filler was complete without shedding. Scanning electron microscopy (SEM) showed that the internal porous network structure formed channels and a large number of anammox bacteria were observed around. Microbial community analysis of the 16S rDNA gene showed that the diversity was maintained in the entrapped carrier. Furthermore, the effective enrichment of the anammox functional bacteria Candidatus Kuenenia (AF375995.1) increarsed from 11.06% to 32.55%. The PVA-PP immobilized filler fit well with the biological nitrogen removal kinetic model and could also achieve coupling of anammox and denitrification. The inhibition effect of the organic carbon source interference and starvation on anammox bacteria was significantly weakened.
Collapse
Affiliation(s)
- XiaoTong Wang
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hong Yang
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China.
| | - XuYan Liu
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yang Su
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
38
|
Skoyles A, Chaganti SR, Mundle SOC, Weisener CG. 'Nitrification kinetics and microbial community dynamics of attached biofilm in wastewater treatment'. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:891-905. [PMID: 32541108 DOI: 10.2166/wst.2020.170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A comparative bench-scale and field site analysis of BioCord was conducted to investigate seasonal microbial community dynamics and its impact on nitrogen removal in wastewater. This was assessed using metabolite (NO3 -) stable isotope analysis, high-throughput sequencing of the 16S rRNA gene, and RT-qPCR of key genes in biological treatment representing nitrification, anammox, and denitrification. Bench-scale experiments showed an increase in nitrifiers with increasing ammonia loading resulting in an ammonia removal efficiency up to 98 ± 0.14%. Stable isotope analysis showed that 15ɛ and δ18ONO3 could be used in monitoring the efficiency of the enhanced biological nitrification. In the lagoon field trials, an increase in total nitrogen promoted three principle nitrifying genera (Nitrosomonas, Nitrospira, Candidatus Nitrotoga) and enhanced the expression of denitrification genes (nirK, norB, and nosZ). Further, anaerobic ammonia oxidizers were active within BioCord biofilm. Even at lower temperatures (2-6°C) the nitrifying bacteria remained active on the BioCord.
Collapse
Affiliation(s)
- Adam Skoyles
- Great Lakes Institute for Environmental Science, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada E-mail:
| | - Subba Rao Chaganti
- Great Lakes Institute for Environmental Science, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada E-mail: ; Present address: Cooperative Institute for Great Lakes Research, University of Michigan, 4840 South State Rd, Ann Arbor, MI 48108, USA
| | - Scott O C Mundle
- Great Lakes Institute for Environmental Science, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada E-mail:
| | - Chris G Weisener
- Great Lakes Institute for Environmental Science, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada E-mail:
| |
Collapse
|
39
|
|
40
|
Ammonium-Nitrogen (NH4+-N) Removal from Groundwater by a Dropping Nitrification Reactor: Characterization of NH4+-N Transformation and Bacterial Community in the Reactor. WATER 2020. [DOI: 10.3390/w12020599] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A dropping nitrification reactor was proposed as a low-cost and energy-saving option for the removal of NH4+-N from contaminated groundwater. The objectives of this study were to investigate NH4+-N removal performance and the nitrogen removal pathway and to characterize the microbial communities in the reactor. Polyolefin sponge cubes (10 mm × 10 mm × 10 mm) were connected diagonally in a nylon thread to produce 1 m long dropping nitrification units. Synthetic groundwater containing 50 mg L−1 NH4+-N was added from the top of the hanging units at a flow rate of 4.32 L day−1 for 56 days. Nitrogen-oxidizing microorganisms in the reactor removed 50.8–68.7% of the NH4+-N in the groundwater, which was aerated with atmospheric oxygen as it flowed downwards through the sponge units. Nitrogen transformation and the functional bacteria contributing to it were stratified in the sponge units. Nitrosomonadales-like AOB predominated and transformed NH4+-N to NO2−-N in the upper part of the reactor. Nitrospirales-like NOB predominated and transformed NO2−-N to NO3−-N in the lower part of the reactor. The dropping nitrification reactor could be a promising technology for oxidizing NH4+-N in groundwater and other similar contaminated wastewaters.
Collapse
|
41
|
Application of the Anammox in China-A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17031090. [PMID: 32050414 PMCID: PMC7037791 DOI: 10.3390/ijerph17031090] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 11/18/2022]
Abstract
Anaerobic ammonia oxidation (anammox) has been one of the most innovative discoveries for the treatment of wastewater with high ammonia nitrogen concentrations. The process has significant advantages for energy saving and sludge reduction, also capital costs and greenhouse gases emissions are reduced. Recently, the use of anammox has rapidly become mainstream in China. This study reviews the engineering applications of the anammox process in China, including various anammox-based technologies, selection of anammox reactors and attempts to apply them to different wastewater treatment plants. This review discusses the control and implementation of stable reactor operation and analyzes challenges facing mainstream anammox applications. Finally, a unique and novel perspective on the development and application of anammox in China is presented.
Collapse
|
42
|
Wang JP, Liu YD, Meng FG, Li W. The short- and long-term effects of formic acid on rapid nitritation start-up. ENVIRONMENT INTERNATIONAL 2020; 135:105350. [PMID: 31812826 DOI: 10.1016/j.envint.2019.105350] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/17/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
The feasibility of achieving stable nitritation inoculating with activated sludge by adding formic acid was studied in this work. Short-term batch effects of formic acid on nitrification showed that the nitrite accumulation ratio (NAR) significantly increased from 0.3% to 83.7% with an increase of formic acid concentration from 0 to 50 mM at an initial ammonia concentration of 75 mg·L-1, which was demonstrated to be due to the inhibition of nxrB transcription in nitrite oxidizing bacteria (NOB). The long-term effects of formic acid at 30 mM were constantly monitored in an aerobic sequencing batch reactor. During 27 days of operation, the NAR was rapidly raised and maintained approximately 90%. What's more, in the following 52 days without addition of formic acid, the NAR was kept above 91.3%. The sustained suppression of NOB genus Nitrospira coupling nxrB inhibition was the main reason to maintain stable nitritation. These results supported the feasibility of formic acid as an efficient nitritation regulator, thus providing a new approach for the development of the BNR process via nitrite pathway.
Collapse
Affiliation(s)
- Ji-Peng Wang
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Yong-di Liu
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Fan-Gang Meng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangdong, China
| | - Wei Li
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangdong, China.
| |
Collapse
|
43
|
Zhao Y, Lu W, Liu Y, Wang J, Zhou S, Mao Y, Li G, Deng Y. Efficient total nitrogen removal from wastewater by Paracoccus denitrificans DYTN-1. Lett Appl Microbiol 2019; 70:263-273. [PMID: 31879967 DOI: 10.1111/lam.13268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/26/2019] [Accepted: 12/20/2019] [Indexed: 01/20/2023]
Abstract
Bioaugmentation is an effective treatment method to reduce nitrogenous pollutants from wastewater. A strain of DYTN-1, which could effectively remove TN from sewage, was isolated from the sludge of a wastewater treatment plant and was identified as Paracoccus denitrificans. The TN in wastewater reduced to <20 mg l-1 within 12 h under optimal conditions by free cells of P. denitrificans DYTN-1. To enhance the removal of TN, P. denitrificans DYTN-1 cells were immobilized in sodium alginate (SA) using different divalent metal ions as cross-linking agents. It was found that the immobilized P. denitrificans DYTN-1 cells could reduce the TN concentration from 100 to below 20 mg l-1 within 8 h. After the optimization of an orthogonal experiment, the immobilized P. denitrificans DYTN-1 cells could reduce the TN concentration from 100 mg l-1 to below 20 mg l-1 within 1 h and significantly reduce the fermentation cycle. These findings would provide an economical and effective method for the removal of total nitrogen in wastewater by immobilized cells of P. denitrificans DYTN-1. SIGNIFICANCE AND IMPACT OF THE STUDY: We identified a new Paracoccus denitrificans strain (DYTN-1) for removal of the total nitrogen in wastewater. The total nitrogen could be removed effectively by P. denitrificans DYTN-1 within 12 h in wastewater. Using sodium alginate as the carrier and Ba2+ as cross-linking agent, the immobilized P. denitrificans DYTN-1 cells could improve the removal efficiency of total nitrogen in wastewater and significantly reduce the fermentation cycle. The assay has provided an economical and effective method for the removal of total nitrogen in wastewater by immobilized cell.
Collapse
Affiliation(s)
- Y Zhao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - W Lu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Y Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing, China
| | - J Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing, China
| | - S Zhou
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Y Mao
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - G Li
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Y Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
44
|
C. Alzate Marin J, H. Caravelli A, E. Zaritzky N. Performance of Anoxic-Oxic Sequencing Batch Reactor for Nitrification and Aerobic Denitrification. Biotechnol Bioeng 2019. [DOI: 10.5772/intechopen.84775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Wang X, Yang R, Zhang Z, Wu J, Chen S. Mass balance and bacterial characteristics in an in-situ full-scale swine wastewater treatment system occurring anammox process. BIORESOURCE TECHNOLOGY 2019; 292:122005. [PMID: 31442838 DOI: 10.1016/j.biortech.2019.122005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/07/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
A spontaneous development of full-scale anaerobic ammonium oxidation (anammox) process was seldom reported, and its operational parameters could supply references in actual applications. This engineered case indicated that anammox process was suitable for treating relatively high-strength ammonium and organics wastewater due to niche differentiation of biofilm. Results of isotope labelling showed that anammox contributed approximately 40% to N-loss in aerobic unit, but this value increased to 78.3% in anoxic tank. Mass balance showed that N-removal via anammox and denitrification pathways were 38.1 and 23.9 g m-3 d-1, and anammox rate was 1.6 times higher than denitrifiaction. The wild-type anammox granules had a high purity, with anammox accounting for 92.2%. Candidatus Brocadia was the predominant species. Mixing sludge had a higher oxygen tolerance compared with granules, although the latter had a higher anammox activity under anaerobic conditions. Moreover, physicochemical precipitation on the surface of granules may be related to granulation mechanism.
Collapse
Affiliation(s)
- Xiaojun Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ruili Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoji Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Junbin Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Shaohua Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
46
|
Rajta A, Bhatia R, Setia H, Pathania P. Role of heterotrophic aerobic denitrifying bacteria in nitrate removal from wastewater. J Appl Microbiol 2019; 128:1261-1278. [PMID: 31587489 DOI: 10.1111/jam.14476] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 11/27/2022]
Abstract
With the increase in industrial and agricultural activities, a large amount of nitrogenous compounds are released into the environment, leading to nitrate pollution. The perilous effects of nitrate present in the environment pose a major threat to human and animal health. Bioremediation provides a cost-effective and environmental friendly method to deal with this problem. The process of aerobic denitrification can reduce nitrate compounds to harmless dinitrogen gas. This review provides a brief view of the exhaustive role played by aerobic denitrifiers for tackling nitrate pollution under different ecological niches and their dependency on various environmental parameters. It also provides an understanding of the enzymes involved in aerobic denitrification. The role of aerobic denitrification to solve the issues faced by the conventional method (aerobic nitrification-anaerobic denitrification) in treating nitrogen-polluted wastewaters is elaborated.
Collapse
Affiliation(s)
- A Rajta
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - R Bhatia
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - H Setia
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - P Pathania
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| |
Collapse
|
47
|
Mori JF, Chen LX, Jessen GL, Rudderham SB, McBeth JM, Lindsay MBJ, Slater GF, Banfield JF, Warren LA. Putative Mixotrophic Nitrifying-Denitrifying Gammaproteobacteria Implicated in Nitrogen Cycling Within the Ammonia/Oxygen Transition Zone of an Oil Sands Pit Lake. Front Microbiol 2019; 10:2435. [PMID: 31708903 PMCID: PMC6824324 DOI: 10.3389/fmicb.2019.02435] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/09/2019] [Indexed: 11/24/2022] Open
Abstract
Anthropogenically-impacted environments offer the opportunity to discover novel microbial species and metabolisms, which may be undetectable in natural systems. Here, a combined metagenomic and geochemical study in Base Mine Lake, Alberta, Canada, which is the only oil sands end pit lake to date, revealed that nitrification was performed by members from Nitrosomonadaceae, Chloroflexi and unclassified Gammaproteobacteria “MBAE14.” While Nitrosomonadaceae and Chloroflexi groups were relatively abundant in the upper oxygenated zones, MBAE14 dominated the hypoxic hypolimnetic zones (approximately 30% of total microbial communities); MBAE14 was not detected in the underlying anoxic tailings. Replication rate analyses indicate that MBAE14 grew in metalimnetic and hypolimnetic water cap regions, most actively at the metalimnetic, ammonia/oxygen transition zone consistent with it putatively conducting nitrification. Detailed genomic analyses of MBAE14 evidenced both ammonia oxidation and denitrification into dinitrogen capabilities. However, the absence of known CO2-fixation genes suggests a heterotrophic denitrifying metabolism. Functional marker genes of ammonia oxidation (amo and hao) in the MBAE14 genome are homologous with those conserved in autotrophic nitrifiers, but not with those of known heterotrophic nitrifiers. We propose that this novel MBAE14 inhabits the specific ammonia-rich, oxygen and labile organic matter-limited conditions occurring in Base Mine Lake which selectively favors mixotrophic coupled nitrifier denitrification metabolism. Our results highlight the opportunities to better constrain biogeochemical cycles from the application of metagenomics to engineered systems associated with extractive resource sectors.
Collapse
Affiliation(s)
- Jiro F Mori
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| | - Lin-Xing Chen
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA, United States
| | - Gerdhard L Jessen
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| | - Sarah B Rudderham
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joyce M McBeth
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Matthew B J Lindsay
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Gregory F Slater
- School of Geography and Earth Science, McMaster University, Hamilton, ON, Canada
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA, United States
| | - Lesley A Warren
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada.,School of Geography and Earth Science, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
48
|
Speirs LBM, Rice DTF, Petrovski S, Seviour RJ. The Phylogeny, Biodiversity, and Ecology of the Chloroflexi in Activated Sludge. Front Microbiol 2019; 10:2015. [PMID: 31572309 PMCID: PMC6753630 DOI: 10.3389/fmicb.2019.02015] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/16/2019] [Indexed: 02/01/2023] Open
Abstract
It is now clear that several of the filamentous bacteria in activated sludge wastewater treatment plants globally, are members of the phylum Chloroflexi. They appear to be more commonly found in treatment plants designed to remove nitrogen (N) and phosphorus (P), most of which operate at long sludge ages and expose the biomass to anaerobic conditions. The Chloroflexi seem to play an important beneficial role in providing the filamentous scaffolding around which flocs are formed, to feed on the debris from lysed bacterial cells, to ferment carbohydrates and to degrade other complex polymeric organic compounds to low molecular weight substrates to support their growth and that of other bacterial populations. A few commonly extend beyond the floc surface, while others can align in bundles, which may facilitate interfloc bridging and hence generate a bulking sludge. Although several recent papers have examined the phylogeny and in situ physiology of Chloroflexi in activated sludge plants in Denmark, this review takes a wider look at what we now know about these filaments, especially their global distribution in activated sludge plants, and what their functional roles there might be. It also attempts to outline why such information might provide us with clues as to how their population levels may be manipulated, and the main research questions that need addressing to achieve these outcomes.
Collapse
Affiliation(s)
- Lachlan B. M. Speirs
- La Trobe Institute for Molecular Sciences, La Trobe University, Bendigo, VIC, Australia
| | - Daniel T. F. Rice
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Steve Petrovski
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Robert J. Seviour
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
49
|
Pekyavas G, Yangin-Gomec C. Response of Anammox bacteria to elevated nitrogen and organic matter in pre-digested chicken waste at a long-term operated UASB reactor initially seeded by methanogenic granules. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Chen J, Wang X, Zhou S, Chen Z. Effect of alkalinity on bio-zeolite regeneration in treating cold low-strength ammonium wastewater via adsorption and enhanced regeneration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28040-28051. [PMID: 31359315 DOI: 10.1007/s11356-019-06034-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Low temperature severely inhibits microbial activity, making biological method inefficient for ammonium removal from wastewater. A zeolite biological fixed-bed (ZBFB) was successfully established for 6.0-8.0 °C low-strength ammonium wastewater treatment via adsorption-regeneration. Ion exchange was a remarkable alternative and zeolite was mostly applied. Nevertheless, insufficient zeolite bio-regeneration rate was the key obstacle for economically sustainable utilization. By adsorption, effluent NH4+-N was around 1.5-2.5 mg/L. About 26% regeneration rate was obtained. With a ceramsite biological aerobic filter (CBAF) operated with ZBFB in series at the regeneration stage, the regeneration rate reached 95%, 3.5 times higher. Studies of alkalinity effects on bio-zeolite regeneration process indicated that Na2CO3 worked better than NaHCO3. Greater amount and one dose mode of alkalinity addition, higher regeneration rate could be obtained. The bio-zeolite regeneration process followed pseudo first-order kinetics with K = 0.0629 h-1. High-throughput sequencing analysis indicated the enriched nitrifying microorganisms in CBAF fully oxidized NH4+-N in regeneration solution, which accelerated desorption and conversion of NH4+-N by the circulation of regeneration solution between ZBFB and CBAF. The dynamic adsorption experiment proved that ZBFB-CBAF was feasible for cold low-strength ammonium wastewater treatment.
Collapse
Affiliation(s)
- Jing Chen
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, China
| | - Xiaojun Wang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, People's Republic of China.
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, China.
| | - Songwei Zhou
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, China
- Hua An Biotech Co. Ltd., Foshan, 528300, China
| | - Zhenguo Chen
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, China
- Hua An Biotech Co. Ltd., Foshan, 528300, China
| |
Collapse
|