1
|
Di Biagi L, Marozzi G, Malacaria E, Honda M, Aiello FA, Valenzisi P, Spies M, Franchitto A, Pichierri P. RAD52 prevents accumulation of Polα -dependent replication gaps at perturbed replication forks in human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.12.536536. [PMID: 37090680 PMCID: PMC10120653 DOI: 10.1101/2023.04.12.536536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Replication gaps can arise as a consequence of perturbed DNA replication and their accumulation might undermine the stability of the genome. Loss of RAD52, a protein involved in the regulation of fork reversal, promotes accumulation of parental ssDNA gaps during replication perturbation. Here, we demonstrate that this is due to the engagement of Polα downstream of the extensive degradation of perturbed replication forks after their reversal, and is not dependent on PrimPol. Polα is hyper-recruited at parental ssDNA in the absence of RAD52, and this recruitment is dependent on fork reversal enzymes and RAD51. Of note, we report that the interaction between Polα and RAD51 is stimulated by RAD52 inhibition, and Polα -dependent gap accumulation requires nucleation of RAD51 suggesting that it occurs downstream strand invasion. Altogether, our data indicate that RAD51- Polα -dependent repriming is essential to promote fork restart and limit DNA damage accumulation when RAD52 function is disabled.
Collapse
Affiliation(s)
- Ludovica Di Biagi
- Mechanisms, Biomarkers and Models Section, Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome (Italy)
| | - Giorgia Marozzi
- Mechanisms, Biomarkers and Models Section, Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome (Italy)
| | - Eva Malacaria
- Mechanisms, Biomarkers and Models Section, Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome (Italy)
| | - Masayoshi Honda
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242 (USA)
| | - Francesca Antonella Aiello
- Mechanisms, Biomarkers and Models Section, Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome (Italy)
| | - Pasquale Valenzisi
- Mechanisms, Biomarkers and Models Section, Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome (Italy)
| | - Maria Spies
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242 (USA)
| | - Annapaola Franchitto
- Mechanisms, Biomarkers and Models Section, Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome (Italy)
| | - Pietro Pichierri
- Mechanisms, Biomarkers and Models Section, Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome (Italy)
- Istituto Nazionale Biostrutture e Biosistemi - Roma Area Research - Via delle Medaglie d’Oro 305, 00136 Rome (Italy)
| |
Collapse
|
2
|
Fang T, Wang X, Huangfu N. Superfamily II helicases: the potential therapeutic target for cardiovascular diseases. Front Cardiovasc Med 2023; 10:1309491. [PMID: 38152606 PMCID: PMC10752008 DOI: 10.3389/fcvm.2023.1309491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023] Open
Abstract
Cardiovascular diseases (CVDs) still maintain high morbidity and mortality globally. Helicases, a unique class of enzymes, are extensively implicated in the processes of nucleic acid (NA) metabolism across various organisms. They play a pivotal role in gene expression, inflammatory response, lipid metabolism, and so forth. However, abnormal helicase expression has been associated with immune response, cancer, and intellectual disability in humans. Superfamily II (SFII) is one of the largest and most diverse of the helicase superfamilies. Increasing evidence has implicated SFⅡ helicases in the pathogenesis of multiple CVDs. In this review, we comprehensively review the regulation mechanism of SFⅡ helicases in CVDs including atherosclerosis, myocardial infarction, cardiomyopathies, and heart failure, which will contribute to the investigation of ideal therapeutic targets for CVDs.
Collapse
Affiliation(s)
- Tianxiang Fang
- Health Science Center, Ningbo University, Ningbo, China
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Department of Cardiology, Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
- Clinical Medicine Research Centre for Cardiovascular Disease of Ningbo, Ningbo, China
| | - Xizhi Wang
- Department of Cardiology, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China
| | - Ning Huangfu
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Department of Cardiology, Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
- Clinical Medicine Research Centre for Cardiovascular Disease of Ningbo, Ningbo, China
| |
Collapse
|
3
|
Cox MM, Goodman MF, Keck JL, van Oijen A, Lovett ST, Robinson A. Generation and Repair of Postreplication Gaps in Escherichia coli. Microbiol Mol Biol Rev 2023; 87:e0007822. [PMID: 37212693 PMCID: PMC10304936 DOI: 10.1128/mmbr.00078-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
When replication forks encounter template lesions, one result is lesion skipping, where the stalled DNA polymerase transiently stalls, disengages, and then reinitiates downstream to leave the lesion behind in a postreplication gap. Despite considerable attention in the 6 decades since postreplication gaps were discovered, the mechanisms by which postreplication gaps are generated and repaired remain highly enigmatic. This review focuses on postreplication gap generation and repair in the bacterium Escherichia coli. New information to address the frequency and mechanism of gap generation and new mechanisms for their resolution are described. There are a few instances where the formation of postreplication gaps appears to be programmed into particular genomic locations, where they are triggered by novel genomic elements.
Collapse
Affiliation(s)
- Michael M. Cox
- Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Myron F. Goodman
- Department of Biological Sciences, University of Southern California, University Park, Los Angeles, California, USA
- Department of Chemistry, University of Southern California, University Park, Los Angeles, California, USA
| | - James L. Keck
- Department of Biological Chemistry, University of Wisconsin—Madison School of Medicine, Madison, Wisconsin, USA
| | - Antoine van Oijen
- Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Susan T. Lovett
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA
| | - Andrew Robinson
- Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
4
|
Replication stalling activates SSB for recruitment of DNA damage tolerance factors. Proc Natl Acad Sci U S A 2022; 119:e2208875119. [PMID: 36191223 PMCID: PMC9565051 DOI: 10.1073/pnas.2208875119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Translesion synthesis (TLS) polymerases bypass DNA lesions that block replicative polymerases, allowing cells to tolerate DNA damage encountered during replication. It is well known that most bacterial TLS polymerases must interact with the sliding-clamp processivity factor to carry out TLS, but recent work in Escherichia coli has revealed that single-stranded DNA-binding protein (SSB) plays a key role in enriching the TLS polymerase Pol IV at stalled replication forks in the presence of DNA damage. It remains unclear how this interaction with SSB enriches Pol IV in a stalling-dependent manner given that SSB is always present at the replication fork. In this study, we use single-molecule imaging in live E. coli cells to investigate this SSB-dependent enrichment of Pol IV. We find that Pol IV is enriched through its interaction with SSB in response to a range of different replication stresses and that changes in SSB dynamics at stalled forks may explain this conditional Pol IV enrichment. Finally, we show that other SSB-interacting proteins are likewise selectively enriched in response to replication perturbations, suggesting that this mechanism is likely a general one for enrichment of repair factors near stalled replication forks.
Collapse
|
5
|
Courcelle J, Worley TK, Courcelle CT. Recombination Mediator Proteins: Misnomers That Are Key to Understanding the Genomic Instabilities in Cancer. Genes (Basel) 2022; 13:genes13030437. [PMID: 35327990 PMCID: PMC8950967 DOI: 10.3390/genes13030437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Recombination mediator proteins have come into focus as promising targets for cancer therapy, with synthetic lethal approaches now clinically validated by the efficacy of PARP inhibitors in treating BRCA2 cancers and RECQ inhibitors in treating cancers with microsatellite instabilities. Thus, understanding the cellular role of recombination mediators is critically important, both to improve current therapies and develop new ones that target these pathways. Our mechanistic understanding of BRCA2 and RECQ began in Escherichia coli. Here, we review the cellular roles of RecF and RecQ, often considered functional homologs of these proteins in bacteria. Although these proteins were originally isolated as genes that were required during replication in sexual cell cycles that produce recombinant products, we now know that their function is similarly required during replication in asexual or mitotic-like cell cycles, where recombination is detrimental and generally not observed. Cells mutated in these gene products are unable to protect and process replication forks blocked at DNA damage, resulting in high rates of cell lethality and recombination events that compromise genome integrity during replication.
Collapse
|
6
|
Bonde NJ, Romero ZJ, Chitteni-Pattu S, Cox MM. RadD is a RecA-dependent accessory protein that accelerates DNA strand exchange. Nucleic Acids Res 2022; 50:2201-2210. [PMID: 35150260 PMCID: PMC8887467 DOI: 10.1093/nar/gkac041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/11/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
In rapidly growing cells, with recombinational DNA repair required often and a new replication fork passing every 20 min, the pace of RecA-mediated DNA strand exchange is potentially much too slow for bacterial DNA metabolism. The enigmatic RadD protein, a putative SF2 family helicase, exhibits no independent helicase activity on branched DNAs. Instead, RadD greatly accelerates RecA-mediated DNA strand exchange, functioning only when RecA protein is present. The RadD reaction requires the RadD ATPase activity, does not require an interaction with SSB, and may disassemble RecA filaments as it functions. We present RadD as a new class of enzyme, an accessory protein that accelerates DNA strand exchange, possibly with a helicase-like action, in a reaction that is entirely RecA-dependent. RadD is thus a DNA strand exchange (recombination) synergist whose primary function is to coordinate closely with and accelerate the DNA strand exchange reactions promoted by the RecA recombinase. Multiple observations indicate a uniquely close coordination of RadD with RecA function.
Collapse
Affiliation(s)
- Nina J Bonde
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Zachary J Romero
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
7
|
The rarA gene as part of an expanded RecFOR recombination pathway: Negative epistasis and synthetic lethality with ruvB, recG, and recQ. PLoS Genet 2021; 17:e1009972. [PMID: 34936656 PMCID: PMC8735627 DOI: 10.1371/journal.pgen.1009972] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/06/2022] [Accepted: 12/01/2021] [Indexed: 11/19/2022] Open
Abstract
The RarA protein, homologous to human WRNIP1 and yeast MgsA, is a AAA+ ATPase and one of the most highly conserved DNA repair proteins. With an apparent role in the repair of stalled or collapsed replication forks, the molecular function of this protein family remains obscure. Here, we demonstrate that RarA acts in late stages of recombinational DNA repair of post-replication gaps. A deletion of most of the rarA gene, when paired with a deletion of ruvB or ruvC, produces a growth defect, a strong synergistic increase in sensitivity to DNA damaging agents, cell elongation, and an increase in SOS induction. Except for SOS induction, these effects are all suppressed by inactivating recF, recO, or recJ, indicating that RarA, along with RuvB, acts downstream of RecA. SOS induction increases dramatically in a rarA ruvB recF/O triple mutant, suggesting the generation of large amounts of unrepaired ssDNA. The rarA ruvB defects are not suppressed (and in fact slightly increased) by recB inactivation, suggesting RarA acts primarily downstream of RecA in post-replication gaps rather than in double strand break repair. Inactivating rarA, ruvB and recG together is synthetically lethal, an outcome again suppressed by inactivation of recF, recO, or recJ. A rarA ruvB recQ triple deletion mutant is also inviable. Together, the results suggest the existence of multiple pathways, perhaps overlapping, for the resolution or reversal of recombination intermediates created by RecA protein in post-replication gaps within the broader RecF pathway. One of these paths involves RarA.
Collapse
|
8
|
Bianco PR. DNA Helicase-SSB Interactions Critical to the Regression and Restart of Stalled DNA Replication forks in Escherichia coli. Genes (Basel) 2020; 11:E471. [PMID: 32357475 PMCID: PMC7290993 DOI: 10.3390/genes11050471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 01/25/2023] Open
Abstract
In Escherichia coli, DNA replication forks stall on average once per cell cycle. When this occurs, replisome components disengage from the DNA, exposing an intact, or nearly intact fork. Consequently, the fork structure must be regressed away from the initial impediment so that repair can occur. Regression is catalyzed by the powerful, monomeric DNA helicase, RecG. During this reaction, the enzyme couples unwinding of fork arms to rewinding of duplex DNA resulting in the formation of a Holliday junction. RecG works against large opposing forces enabling it to clear the fork of bound proteins. Following subsequent processing of the extruded junction, the PriA helicase mediates reloading of the replicative helicase DnaB leading to the resumption of DNA replication. The single-strand binding protein (SSB) plays a key role in mediating PriA and RecG functions at forks. It binds to each enzyme via linker/OB-fold interactions and controls helicase-fork loading sites in a substrate-dependent manner that involves helicase remodeling. Finally, it is displaced by RecG during fork regression. The intimate and dynamic SSB-helicase interactions play key roles in ensuring fork regression and DNA replication restart.
Collapse
Affiliation(s)
- Piero R Bianco
- Center for Single Molecule Biophysics, University at Buffalo, SUNY, Buffalo, NY 14221, USA
| |
Collapse
|
9
|
Midgley-Smith SL, Dimude JU, Rudolph CJ. A role for 3' exonucleases at the final stages of chromosome duplication in Escherichia coli. Nucleic Acids Res 2019; 47:1847-1860. [PMID: 30544222 PMCID: PMC6393302 DOI: 10.1093/nar/gky1253] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/25/2018] [Accepted: 12/06/2018] [Indexed: 11/13/2022] Open
Abstract
Chromosome duplication initiates via the assembly of replication fork complexes at defined origins, from where they proceed in opposite directions until they fuse with a converging fork. Recent work highlights that the completion of DNA replication is highly complex in both pro- and eukaryotic cells. In this study we have investigated how 3' and 5' exonucleases contribute towards the successful termination of chromosome duplication in Escherichia coli. We show that the absence of 3' exonucleases can trigger levels of over-replication in the termination area robust enough to allow successful chromosome duplication in the absence of oriC firing. Over-replication is completely abolished if replication fork complexes are prevented from fusing by chromosome linearization. Our data strongly support the idea that 3' flaps are generated as replication fork complexes fuse. In the absence of 3' exonucleases, such as ExoI, these 3' flaps can be converted into 5' flaps, which are degraded by 5' exonucleases, such as ExoVII and RecJ. Our data support the idea that multiple protein activities are required to process fork fusion intermediates. They highlight the complexity of fork fusions and further support the idea that the termination area evolved to contain fork fusion-mediated pathologies.
Collapse
Affiliation(s)
- Sarah L Midgley-Smith
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Juachi U Dimude
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Christian J Rudolph
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| |
Collapse
|
10
|
Midgley-Smith SL, Dimude JU, Taylor T, Forrester NM, Upton AL, Lloyd RG, Rudolph CJ. Chromosomal over-replication in Escherichia coli recG cells is triggered by replication fork fusion and amplified if replichore symmetry is disturbed. Nucleic Acids Res 2019; 46:7701-7715. [PMID: 29982635 PMCID: PMC6125675 DOI: 10.1093/nar/gky566] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/13/2018] [Indexed: 01/04/2023] Open
Abstract
Chromosome duplication initiates via the assembly of replication forks at defined origins. Forks proceed in opposite directions until they fuse with a converging fork. Recent work highlights that fork fusions are highly choreographed both in pro- and eukaryotic cells. The circular Escherichia coli chromosome is replicated from a single origin (oriC), and a single fork fusion takes place in a specialised termination area opposite oriC that establishes a fork trap mediated by Tus protein bound at ter sequences that allows forks to enter but not leave. Here we further define the molecular details of fork fusions and the role of RecG helicase in replication termination. Our data support the idea that fork fusions have the potential to trigger local re-replication of the already replicated DNA. In ΔrecG cells this potential is realised in a substantial fraction of cells and is dramatically elevated when one fork is trapped for some time before the converging fork arrives. They also support the idea that the termination area evolved to contain such over-replication and we propose that the stable arrest of replication forks at ter/Tus complexes is an important feature that limits the likelihood of problems arising as replication terminates.
Collapse
Affiliation(s)
- Sarah L Midgley-Smith
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Juachi U Dimude
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Toni Taylor
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Nicole M Forrester
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Amy L Upton
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Robert G Lloyd
- Medical School, Queen's Medical Centre, Nottingham University, Nottingham NG7 2UH, UK
| | - Christian J Rudolph
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| |
Collapse
|
11
|
Warren GM, Stein RA, Mchaourab HS, Eichman BF. Movement of the RecG Motor Domain upon DNA Binding Is Required for Efficient Fork Reversal. Int J Mol Sci 2018; 19:ijms19103049. [PMID: 30301235 PMCID: PMC6213257 DOI: 10.3390/ijms19103049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/29/2018] [Accepted: 10/04/2018] [Indexed: 01/20/2023] Open
Abstract
RecG catalyzes reversal of stalled replication forks in response to replication stress in bacteria. The protein contains a fork recognition (“wedge”) domain that binds branched DNA and a superfamily II (SF2) ATPase motor that drives translocation on double-stranded (ds)DNA. The mechanism by which the wedge and motor domains collaborate to catalyze fork reversal in RecG and analogous eukaryotic fork remodelers is unknown. Here, we used electron paramagnetic resonance (EPR) spectroscopy to probe conformational changes between the wedge and ATPase domains in response to fork DNA binding by Thermotoga maritima RecG. Upon binding DNA, the ATPase-C lobe moves away from both the wedge and ATPase-N domains. This conformational change is consistent with a model of RecG fully engaged with a DNA fork substrate constructed from a crystal structure of RecG bound to a DNA junction together with recent cryo-electron microscopy (EM) structures of chromatin remodelers in complex with dsDNA. We show by mutational analysis that a conserved loop within the translocation in RecG (TRG) motif that was unstructured in the RecG crystal structure is essential for fork reversal and DNA-dependent conformational changes. Together, this work helps provide a more coherent model of fork binding and remodeling by RecG and related eukaryotic enzymes.
Collapse
Affiliation(s)
- Garrett M Warren
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA.
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA.
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA.
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
12
|
Activity and in vivo dynamics of Bacillus subtilis DisA are affected by RadA/Sms and by Holliday junction-processing proteins. DNA Repair (Amst) 2017; 55:17-30. [PMID: 28511132 DOI: 10.1016/j.dnarep.2017.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/18/2022]
Abstract
Bacillus subtilis c-di-AMP synthase DisA and RecA-related RadA/Sms are involved in the repair of DNA damage in exponentially growing cells. We provide genetic evidence that DisA or RadA/Sms is epistatic to the branch migration translocase (BMT) RecG and the Holliday junction (HJ) resolvase RecU in response to DNA damage. We provide genetic evidence damage. Functional DisA-YFP formed dynamic foci in exponentially growing cells, which moved through the nucleoids at a speed compatible with a DNA-scanning mode. DisA formed more static structures in the absence of RecU or RecG than in wild type cells, while dynamic foci were still observed in cells lacking the BMT RuvAB. Purified DisA synthesizes c-di-AMP, but interaction with RadA/Sms or with HJ DNA decreases DisA-mediated c-di-AMP synthesis. RadA/Sms-YFP also formed dynamic foci in growing cells, but the foci moved throughout the cells rather than just on the nucleoids, and co-localized rarely with DisA-YFP foci, suggesting that RadA/Sms and DisA interact only transiently in unperturbed conditions. Our data suggest a model in which DisA moving along dsDNA indicates absence of DNA damage/replication stress via normal c-di-AMP levels, while interaction with HJ DNA/halted forks leads to reduced c-di-AMP levels and an ensuing block in cell proliferation. RadA/Sms may be involved in modulating DisA activities.
Collapse
|
13
|
Bianco PR, Lyubchenko YL. SSB and the RecG DNA helicase: an intimate association to rescue a stalled replication fork. Protein Sci 2017; 26:638-649. [PMID: 28078722 DOI: 10.1002/pro.3114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 12/26/2016] [Accepted: 12/28/2016] [Indexed: 12/27/2022]
Abstract
In E. coli, the regression of stalled DNA replication forks is catalyzed by the DNA helicase RecG. One means of gaining access to the fork is by binding to the single strand binding protein or SSB. This interaction occurs via the wedge domain of RecG and the intrinsically disordered linker (IDL) of SSB, in a manner similar to that of SH3 domains binding to PXXP motif-containing ligands in eukaryotic cells. During loading, SSB remodels the wedge domain so that the helicase domains bind to the parental, duplex DNA, permitting the helicase to translocate using thermal energy. This translocation may be used to clear the fork of obstacles, prior to the initiation of fork regression.
Collapse
Affiliation(s)
- Piero R Bianco
- SUNY Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, 321 Cary Hall, 3435 Main St, Buffalo, New York 14214.,Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York.,Department of Biochemistry, University at Buffalo, Buffalo, New York
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, 68198-6025
| |
Collapse
|
14
|
Azeroglu B, Leach DRF. RecG controls DNA amplification at double-strand breaks and arrested replication forks. FEBS Lett 2017; 591:1101-1113. [PMID: 28155219 PMCID: PMC5412681 DOI: 10.1002/1873-3468.12583] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/13/2017] [Accepted: 01/28/2017] [Indexed: 12/16/2022]
Abstract
DNA amplification is a powerful mutational mechanism that is a hallmark of cancer and drug resistance. It is therefore important to understand the fundamental pathways that cells employ to avoid over‐replicating sections of their genomes. Recent studies demonstrate that, in the absence of RecG, DNA amplification is observed at sites of DNA double‐strand break repair (DSBR) and of DNA replication arrest that are processed to generate double‐strand ends. RecG also plays a role in stabilising joint molecules formed during DSBR. We propose that RecG prevents a previously unrecognised mechanism of DNA amplification that we call reverse‐restart, which generates DNA double‐strand ends from incorrect loading of the replicative helicase at D‐loops formed by recombination, and at arrested replication forks.
Collapse
Affiliation(s)
- Benura Azeroglu
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, UK
| | - David R F Leach
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, UK
| |
Collapse
|
15
|
Yu C, Tan HY, Choi M, Stanenas AJ, Byrd AK, D Raney K, Cohan CS, Bianco PR. SSB binds to the RecG and PriA helicases in vivo in the absence of DNA. Genes Cells 2016; 21:163-84. [PMID: 26766785 DOI: 10.1111/gtc.12334] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/24/2015] [Indexed: 11/27/2022]
Abstract
The E. coli single-stranded DNA-binding protein (SSB) binds to the fork DNA helicases RecG and PriA in vitro. Typically for binding to occur, 1.3 m ammonium sulfate must be present, bringing into question the validity of these results as these are nonphysiological conditions. To determine whether SSB can bind to these helicases, we examined binding in vivo. First, using fluorescence microscopy, we show that SSB localizes PriA and RecG to the vicinity of the inner membrane in the absence of DNA damage. Localization requires that SSB be in excess over the DNA helicases and the SSB C-terminus and both PriA and RecG be present. Second, using the purification of tagged complexes, our results show that SSB binds to PriA and RecG in vivo, in the absence of DNA. We propose that this may be the 'storage form' of RecG and PriA. We further propose that when forks stall, RecG and PriA are targeted to the fork by SSB, which, by virtue of its high affinity for single-stranded DNA, allows these helicases to outcompete other proteins. This ensures their actions in the early stages of the rescue of stalled replication forks.
Collapse
Affiliation(s)
- Cong Yu
- Department of Biochemistry, University at Buffalo, Buffalo, NY, 14214, USA.,Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, 14214, USA
| | - Hui Yin Tan
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, 14214, USA.,Center for Single Molecule Biophysics, University at Buffalo, Buffalo, NY, 14214, USA
| | - Meerim Choi
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, 14214, USA.,Center for Single Molecule Biophysics, University at Buffalo, Buffalo, NY, 14214, USA
| | - Adam J Stanenas
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, 14214, USA.,Center for Single Molecule Biophysics, University at Buffalo, Buffalo, NY, 14214, USA
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, slot 516, Little Rock, AR, 72205, USA
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, slot 516, Little Rock, AR, 72205, USA
| | - Christopher S Cohan
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY, 14214, USA
| | - Piero R Bianco
- Department of Biochemistry, University at Buffalo, Buffalo, NY, 14214, USA.,Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, 14214, USA.,Center for Single Molecule Biophysics, University at Buffalo, Buffalo, NY, 14214, USA
| |
Collapse
|
16
|
Abstract
This article reviews atomic force microscopy (AFM) studies of DNA structure and dynamics and protein-DNA complexes, including recent advances in the visualization of protein-DNA complexes with the use of cutting-edge, high-speed AFM. Special emphasis is given to direct nanoscale visualization of dynamics of protein-DNA complexes. In the area of DNA structure and dynamics, structural studies of local non-B conformations of DNA and the interplay of local and global DNA conformations are reviewed. The application of time-lapse AFM nanoscale imaging of DNA dynamics is illustrated by studies of Holliday junction branch migration. Structure and dynamics of protein-DNA interactions include problems related to site-specific DNA recombination, DNA replication, and DNA mismatch repair. Studies involving the structure and dynamics of chromatin are also described.
Collapse
Affiliation(s)
- Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025
| | - Luda S. Shlyakhtenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025
| |
Collapse
|
17
|
Halgasova N, Solteszova B, Pevala V, Košťan J, Kutejová E, Bukovska G. A RepA-like protein from bacteriophage BFK20 is a multifunctional protein with primase, polymerase, NTPase and helicase activities. Virus Res 2015; 210:178-87. [DOI: 10.1016/j.virusres.2015.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/06/2015] [Accepted: 08/10/2015] [Indexed: 11/17/2022]
|
18
|
Abstract
This review provides a brief review of the current understanding of the structure-function relationship of the Escherichia coli nucleoid developed after the overview by Pettijohn focusing on the physical properties of nucleoids. Isolation of nucleoids requires suppression of DNA expansion by various procedures. The ability to control the expansion of nucleoids in vitro has led to purification of nucleoids for chemical and physical analyses and for high-resolution imaging. Isolated E. coli genomes display a number of individually intertwined supercoiled loops emanating from a central core. Metabolic processes of the DNA double helix lead to three types of topological constraints that all cells must resolve to survive: linking number, catenates, and knots. The major species of nucleoid core protein share functional properties with eukaryotic histones forming chromatin; even the structures are different from histones. Eukaryotic histones play dynamic roles in the remodeling of eukaryotic chromatin, thereby controlling the access of RNA polymerase and transcription factors to promoters. The E. coli genome is tightly packed into the nucleoid, but, at each cell division, the genome must be faithfully replicated, divided, and segregated. Nucleoid activities such as transcription, replication, recombination, and repair are all affected by the structural properties and the special conformations of nucleoid. While it is apparent that much has been learned about the nucleoid, it is also evident that the fundamental interactions organizing the structure of DNA in the nucleoid still need to be clearly defined.
Collapse
|
19
|
Remodeling of RecG Helicase at the DNA Replication Fork by SSB Protein. Sci Rep 2015; 5:9625. [PMID: 25923319 PMCID: PMC4894433 DOI: 10.1038/srep09625] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/13/2015] [Indexed: 11/08/2022] Open
Abstract
The RecG DNA helicase a key player in stalled replication fork rescue. The single-stranded DNA binding protein (SSB) participates in this process, but its role in the interaction of RecG with the fork remains unclear. We used atomic force microscopy (AFM) to visualize the interaction of RecG with a fork DNA in the presence of SSB. We discovered that SSB enhances RecG loading efficiency onto the DNA fork by threefold. Additionally, SSB interacts with RecG leading to the RecG remodeling. As a result, RecG separates from the fork, but remains bound to the DNA duplex. Moreover, in this new binding mode RecG is capable of translocation along the parental duplex DNA. We propose a model of RecG interaction with the replication fork involving two RecG binding modes. SSB plays the role of a remodeling factor defining the mode of RecG binding to the fork mediated by the SSB C-terminus. In the translocating mode, RecG remains in the vicinity of the fork and is capable of initiating the fork regression. Our results afford novel mechanistic insights into RecG interaction with the replication fork and provide the basis for further structural studies.
Collapse
|
20
|
Bianco PR. I came to a fork in the DNA and there was RecG. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 117:166-173. [PMID: 25613916 PMCID: PMC4417463 DOI: 10.1016/j.pbiomolbio.2015.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 11/28/2022]
Abstract
RecG is a potent, atypical, monomeric DNA helicase. It simultaneously couples ATP hydrolysis to duplex unwinding and rewinding, and to the displacement of proteins bound to the DNA. A model is presented for the localization of the enzyme to the inner membrane via its binding to SSB. Upon fork stalling, SSB targets the enzyme to the fork where it can act. RecG displays a strong preference for processing the fork in the regression direction, that is, away from the site of damage that initially led to fork arrest. Regression is mediated by strong binding of the wedge domain to the fork arms as well as to parental duplex DNA by the helicase domains. Once RecG has regressed the fork, it will dissociate leaving the now relaxed, Holliday junction-like DNA, available for further processing by enzymes such as RuvAB.
Collapse
Affiliation(s)
- Piero R Bianco
- Department of Biochemistry, University at Buffalo, Buffalo, NY 14214, USA; Center for Single Molecule Biophysics, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
21
|
Cañas C, Suzuki Y, Marchisone C, Carrasco B, Freire-Benéitez V, Takeyasu K, Alonso JC, Ayora S. Interaction of branch migration translocases with the Holliday junction-resolving enzyme and their implications in Holliday junction resolution. J Biol Chem 2014; 289:17634-46. [PMID: 24770420 DOI: 10.1074/jbc.m114.552794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Double-strand break repair involves the formation of Holliday junction (HJ) structures that need to be resolved to promote correct replication and chromosomal segregation. The molecular mechanisms of HJ branch migration and/or resolution are poorly characterized in Firmicutes. Genetic evidence suggested that the absence of the RuvAB branch migration translocase and the RecU HJ resolvase is synthetically lethal in Bacillus subtilis, whereas a recU recG mutant was viable. In vitro RecU, which is restricted to bacteria of the Firmicutes phylum, binds HJs with high affinity. In this work we found that RecU does not bind simultaneously with RecG to a HJ. RuvB by interacting with RecU bound to the central region of HJ DNA, loses its nonspecific association with DNA, and re-localizes with RecU to form a ternary complex. RecU cannot stimulate the ATPase or branch migration activity of RuvB. The presence of RuvB·ATPγS greatly stimulates RecU-mediated HJ resolution, but the addition of ATP or RuvA abolishes this stimulatory effect. A RecU·HJ·RuvAB complex might be formed. RecU does not increase the RuvAB activities but slightly inhibits them.
Collapse
Affiliation(s)
- Cristina Cañas
- From the Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Departamento de Biotecnología Microbiana, 28049 Madrid, Spain and
| | - Yuki Suzuki
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Chiara Marchisone
- From the Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Departamento de Biotecnología Microbiana, 28049 Madrid, Spain and
| | - Begoña Carrasco
- From the Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Departamento de Biotecnología Microbiana, 28049 Madrid, Spain and
| | - Verónica Freire-Benéitez
- From the Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Departamento de Biotecnología Microbiana, 28049 Madrid, Spain and
| | - Kunio Takeyasu
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Juan C Alonso
- From the Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Departamento de Biotecnología Microbiana, 28049 Madrid, Spain and
| | - Silvia Ayora
- From the Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Departamento de Biotecnología Microbiana, 28049 Madrid, Spain and
| |
Collapse
|
22
|
RecG and UvsW catalyse robust DNA rewinding critical for stalled DNA replication fork rescue. Nat Commun 2014; 4:2368. [PMID: 24013402 PMCID: PMC3778716 DOI: 10.1038/ncomms3368] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 07/30/2013] [Indexed: 11/09/2022] Open
Abstract
Helicases that both unwind and rewind DNA have central roles in DNA repair and genetic recombination. In contrast to unwinding, DNA rewinding by helicases has proved difficult to characterize biochemically because of its thermodynamically downhill nature. Here we use single-molecule assays to mechanically destabilize a DNA molecule and follow, in real time, unwinding and rewinding by two DNA repair helicases, bacteriophage T4 UvsW and Escherichia coli RecG. We find that both enzymes are robust rewinding enzymes, which can work against opposing forces as large as 35 pN, revealing their active character. The generation of work during the rewinding reaction allows them to couple rewinding to DNA unwinding and/or protein displacement reactions central to the rescue of stalled DNA replication forks. The overall results support a general mechanism for monomeric rewinding enzymes.
Collapse
|
23
|
Zegeye ED, Balasingham SV, Laerdahl JK, Homberset H, Kristiansen PE, Tønjum T. Effects of conserved residues and naturally occurring mutations on Mycobacterium tuberculosis RecG helicase activity. MICROBIOLOGY-SGM 2013; 160:217-227. [PMID: 24169816 DOI: 10.1099/mic.0.072140-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
RecG is a helicase that is conserved in nearly all bacterial species. The prototypical Escherichia coli RecG promotes regression of stalled replication forks, participates in DNA recombination and DNA repair, and prevents aberrant replication. Mycobacterium tuberculosis RecG (RecGMtb) is a DNA-dependent ATPase that unwinds a variety of DNA substrates, although its preferred substrate is a Holliday junction. Here, we performed site-directed mutagenesis of selected residues in the wedge domain and motifs Q, I, Ib and VI of RecGMtb. Three of the 10 substitution mutations engineered were detected previously as naturally occurring SNPs in the gene encoding RecGMtb. Alanine substitution mutations at residues Q292, F286, K321 and R627 abolished the RecGMtb unwinding activity, whilst RecGMtb F99A, P285S and T408A mutants exhibited ~25-50 % lower unwinding activity than WT. We also found that RecGMtb bound ATP in the absence of a DNA cofactor.
Collapse
Affiliation(s)
- Ephrem Debebe Zegeye
- Centre for Molecular Biology and Neuroscience and Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway.,Centre for Molecular Biology and Neuroscience and Department of Microbiology, University of Oslo, Oslo, Norway
| | - Seetha V Balasingham
- Centre for Molecular Biology and Neuroscience and Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway.,Centre for Molecular Biology and Neuroscience and Department of Microbiology, University of Oslo, Oslo, Norway
| | - Jon K Laerdahl
- Bioinformatics Core Facility, Department of Informatics, University of Oslo, Oslo, Norway.,Centre for Molecular Biology and Neuroscience and Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway.,Centre for Molecular Biology and Neuroscience and Department of Microbiology, University of Oslo, Oslo, Norway
| | - Håvard Homberset
- Centre for Molecular Biology and Neuroscience and Department of Microbiology, University of Oslo, Oslo, Norway
| | - Per E Kristiansen
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | - Tone Tønjum
- Centre for Molecular Biology and Neuroscience and Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway.,Centre for Molecular Biology and Neuroscience and Department of Microbiology, University of Oslo, Oslo, Norway
| |
Collapse
|
24
|
Abd Wahab S, Choi M, Bianco PR. Characterization of the ATPase activity of RecG and RuvAB proteins on model fork structures reveals insight into stalled DNA replication fork repair. J Biol Chem 2013; 288:26397-409. [PMID: 23893472 DOI: 10.1074/jbc.m113.500223] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RecG and RuvAB are proposed to act at stalled DNA replication forks to facilitate replication restart. To clarify the roles of these proteins in fork regression, we used a coupled spectrophotometric ATPase assay to determine how these helicases act on two groups of model fork substrates: the first group mimics nascent stalled forks, whereas the second mimics regressed fork structures. The results show that RecG is active on the substrates in group 1, whereas these are poor substrates for RuvAB. In addition, in the presence of group 1 forks, the single-stranded DNA-binding protein (SSB) enhances the activity of RecG and enables it to compete with excess RuvA. In contrast, SSB inhibits the activity of RuvAB on these substrates. Results also show that the preferred regressed fork substrate for RuvAB is a Holliday junction, not a forked DNA. The active form of the enzyme on the Holliday junction contains a single RuvA tetramer. In contrast, although the enzyme is active on a regressed fork structure, RuvB loading by a single RuvA tetramer is impaired, and full activity requires the cooperative binding of two forked DNA substrate molecules. Collectively, the data support a model where RecG is responsible for stalled DNA replication fork regression. SSB ensures that if the nascent fork has single-stranded DNA character RuvAB is inhibited, whereas the activity of RecG is preferentially enhanced. Only once the fork has been regressed and the DNA is relaxed can RuvAB bind to a RecG-extruded Holliday junction.
Collapse
|
25
|
Perumal SK, Nelson SW, Benkovic SJ. Interaction of T4 UvsW helicase and single-stranded DNA binding protein gp32 through its carboxy-terminal acidic tail. J Mol Biol 2013; 425:2823-39. [PMID: 23732982 DOI: 10.1016/j.jmb.2013.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/17/2013] [Accepted: 05/14/2013] [Indexed: 10/26/2022]
Abstract
Bacteriophage T4 UvsW helicase contains both unwinding and annealing activities and displays some functional similarities to bacterial RecG and RecQ helicases. UvsW is involved in several DNA repair pathways, playing important roles in recombination-dependent DNA repair and the reorganization of stalled replication forks. The T4 single-stranded DNA (ssDNA) binding protein gp32 is a central player in nearly all DNA replication and repair processes and is thought to facilitate their coordination by recruiting and regulating the various proteins involved. Here, we show that the activities of the UvsW protein are modulated by gp32. UvsW-catalyzed unwinding of recombination intermediates such as D-loops and static X-DNA (Holliday junction mimic) to ssDNA products is enhanced by the gp32 protein. The enhancement requires the presence of the protein interaction domain of gp32 (the acidic carboxy-terminus), suggesting that a specific interaction between UvsW and gp32 is required. In the absence of this interaction, the ssDNA annealing and ATP-dependent translocation activities of UvsW are severely inhibited when gp32 coats the ssDNA lattice. However, when UvsW and gp32 do interact, UvsW is able to efficiently displace the gp32 protein from the ssDNA. This ability of UvsW to remove gp32 from ssDNA may explain its ability to enhance the strand invasion activity of the T4 recombinase (UvsX) and suggests a possible new role for UvsW in gp32-mediated DNA transactions.
Collapse
Affiliation(s)
- Senthil K Perumal
- 414 Wartik Laboratories, Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
26
|
Thakur RS, Basavaraju S, Somyajit K, Jain A, Subramanya S, Muniyappa K, Nagaraju G. Evidence for the role of Mycobacterium tuberculosis RecG helicase in DNA repair and recombination. FEBS J 2013; 280:1841-60. [PMID: 23438087 DOI: 10.1111/febs.12208] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/05/2013] [Accepted: 02/18/2013] [Indexed: 11/28/2022]
Abstract
In order to survive and replicate in a variety of stressful conditions during its life cycle, Mycobacterium tuberculosis must possess mechanisms to safeguard the integrity of the genome. Although DNA repair and recombination related genes are thought to play key roles in the repair of damaged DNA in all organisms, so far only a few of them have been functionally characterized in the tubercle bacillus. In this study, we show that M. tuberculosis RecG (MtRecG) expression was induced in response to different genotoxic agents. Strikingly, expression of MtRecG in Escherichia coli ∆recG mutant strain provided protection against mitomycin C, methyl methane sulfonate and UV induced cell death. Purified MtRecG exhibited higher binding affinity for the Holliday junction (HJ) compared with a number of canonical recombinational DNA repair intermediates. Notably, although MtRecG binds at the core of the mobile and immobile HJs, and with higher binding affinity for the immobile HJ, branch migration was evident only in the case of the mobile HJ. Furthermore, immobile HJs stimulate MtRecG ATPase activity less efficiently than mobile HJs. In addition to HJ substrates, MtRecG exhibited binding affinity for a variety of branched DNA structures including three-way junctions, replication forks, flap structures, forked duplex and a D-loop structure, but demonstrated strong unwinding activity on replication fork and flap DNA structures. Together, these results support that MtRecG plays an important role in processes related to DNA metabolism under normal as well as stress conditions.
Collapse
Affiliation(s)
- Roshan S Thakur
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | | | | | | | | | | |
Collapse
|
27
|
Rideout MC, Naili I, Boldt JL, Flores-Fujimoto A, Patra S, Rostron JE, Segall AM. wrwyrggrywrw is a single-chain functional analog of the Holliday junction-binding homodimer, (wrwycr)2. Peptides 2013; 40:112-22. [PMID: 23291222 PMCID: PMC3646928 DOI: 10.1016/j.peptides.2012.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/23/2012] [Accepted: 12/26/2012] [Indexed: 11/22/2022]
Abstract
DNA repair pathways in bacteria that use homologous recombination involve the formation and subsequent resolution of Holliday junction (HJ) intermediates. We have previously identified several hexameric peptides that bind to HJs and interfere with HJ processing enzymes in vitro. The peptide WRWYCR and its D-amino acid stereoisomer wrwycr, are potent antibacterial agents. These hexapeptides must form homodimers in order to interact stably with HJs, and inhibit bacterial growth, and this represents a potential limitation. Herein we describe a disulfide bond-independent inhibitor, WRWYRGGRYWRW and its D-stereoisomer wrwyrggrywrw. We have characterized these single-chain, linear analogs of the hexapeptides, and show that in addition to effectively binding to HJs, and inhibiting the activity of DNA repair enzymes that process HJs, they have equal or greater potency against Gram-positive and Gram-negative bacterial growth. The analogs were also shown to cause DNA damage in bacteria, and disrupt the integrity of the bacterial cytoplasmic membrane. Finally, we found that they have little toxicity toward several eukaryotic cell types at concentrations needed to inhibit bacterial growth.
Collapse
Affiliation(s)
- Marc C. Rideout
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - Ilham Naili
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - Jeffrey L. Boldt
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - America Flores-Fujimoto
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - Sukanya Patra
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - Jason E. Rostron
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - Anca M. Segall
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
- To whom correspondence should be addressed: , Phone: (619) 594-6528, Fax: (619) 594-5676
| |
Collapse
|
28
|
Costes A, Lambert SAE. Homologous recombination as a replication fork escort: fork-protection and recovery. Biomolecules 2012; 3:39-71. [PMID: 24970156 PMCID: PMC4030885 DOI: 10.3390/biom3010039] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/11/2012] [Accepted: 12/11/2012] [Indexed: 01/03/2023] Open
Abstract
Homologous recombination is a universal mechanism that allows DNA repair and ensures the efficiency of DNA replication. The substrate initiating the process of homologous recombination is a single-stranded DNA that promotes a strand exchange reaction resulting in a genetic exchange that promotes genetic diversity and DNA repair. The molecular mechanisms by which homologous recombination repairs a double-strand break have been extensively studied and are now well characterized. However, the mechanisms by which homologous recombination contribute to DNA replication in eukaryotes remains poorly understood. Studies in bacteria have identified multiple roles for the machinery of homologous recombination at replication forks. Here, we review our understanding of the molecular pathways involving the homologous recombination machinery to support the robustness of DNA replication. In addition to its role in fork-recovery and in rebuilding a functional replication fork apparatus, homologous recombination may also act as a fork-protection mechanism. We discuss that some of the fork-escort functions of homologous recombination might be achieved by loading of the recombination machinery at inactivated forks without a need for a strand exchange step; as well as the consequence of such a model for the stability of eukaryotic genomes.
Collapse
Affiliation(s)
- Audrey Costes
- Institut Curie, Centre de Recherche, CNRS, UMR3348, Centre Universitaire, Bat110, 91405, Orsay, France.
| | - Sarah A E Lambert
- Institut Curie, Centre de Recherche, CNRS, UMR3348, Centre Universitaire, Bat110, 91405, Orsay, France.
| |
Collapse
|
29
|
Zhang Y, Lin J, Gao Y. In silico identification of a multi-functional regulatory protein involved in Holliday junction resolution in bacteria. BMC SYSTEMS BIOLOGY 2012; 6 Suppl 1:S20. [PMID: 23046553 PMCID: PMC3403352 DOI: 10.1186/1752-0509-6-s1-s20] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Homologous recombination is a fundamental cellular process that is most widely used by cells to rearrange genes and accurately repair DNA double-strand breaks. It may result in the formation of a critical intermediate named Holliday junction, which is a four-way DNA junction and needs to be resolved to allow chromosome segregation. Different Holliday junction resolution systems and enzymes have been characterized from all three domains of life. In bacteria, the RuvABC complex is the most important resolution system. RESULTS In this study, we conducted comparative genomics studies to identify a novel DNA-binding protein, YebC, which may serve as a key transcriptional regulator that mainly regulates the gene expression of RuvABC resolvasome in bacteria. On the other hand, the presence of YebC orthologs in some organisms lacking RuvC implied that it might participate in other biological processes. Further phylogenetic analysis of YebC protein sequences revealed two functionally different subtypes: YebC_I and YebC_II. Distribution of YebC_I is much wider than YebC_II. Only YebC_I proteins may play an important role in regulating RuvABC gene expression in bacteria. Investigation of YebC-like proteins in eukaryotes suggested that they may have originated from YebC_II proteins and evolved a new function as a specific translational activator in mitochondria. Finally, additional phylum-specific genes associated with Holliday junction resolution were predicted. CONCLUSIONS Overall, our data provide new insights into the basic mechanism of Holliday junction resolution and homologous recombination in bacteria.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Jie Lin
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Yang Gao
- Computer Network Information Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005 China
| |
Collapse
|
30
|
Loot C, Ducos-Galand M, Escudero JA, Bouvier M, Mazel D. Replicative resolution of integron cassette insertion. Nucleic Acids Res 2012; 40:8361-70. [PMID: 22740653 PMCID: PMC3458562 DOI: 10.1093/nar/gks620] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Site-specific recombination catalyzed by tyrosine recombinases follows a common pathway consisting of two consecutive strand exchanges. The first strand exchange generates a Holliday junction (HJ), which is resolved by a second strand exchange. In integrons, attC sites recombine as folded single-stranded substrates. Only one of the two attC site strands, the bottom one, is efficiently bound and cleaved by the integrase during the insertion of gene cassettes at the double-stranded attI site. Due to the asymmetry of this complex, a second strand exchange on the attC bottom strand (bs) would form linearized abortive recombination products. We had proposed that HJ resolution would rely on an uncharacterized mechanism, probably replication. Using an attC site carried on a plasmid with each strand specifically tagged, we followed the destiny of each strand after recombination. We demonstrated that only one strand, the one carrying the attC bs, is exchanged. Furthermore, we show that the recombination products contain the attC site bs and its entire de novo synthesized complementary strand. Therefore, we demonstrate the replicative resolution of single-strand recombination in integrons and rule out the involvement of a second strand exchange of any kind in the attC × attI reaction.
Collapse
Affiliation(s)
- Céline Loot
- Institut Pasteur, Unité Plasticité du Génome Bactérien, CNRS UMR3525, Paris 75724, France
| | | | | | | | | |
Collapse
|
31
|
Zegeye ED, Balasingham SV, Laerdahl JK, Homberset H, Tønjum T. Mycobacterium tuberculosis RecG binds and unwinds model DNA substrates with a preference for Holliday junctions. MICROBIOLOGY-SGM 2012; 158:1982-1993. [PMID: 22628485 PMCID: PMC3542137 DOI: 10.1099/mic.0.058693-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The RecG enzyme, a superfamily 2 helicase, is present in nearly all bacteria. Here we report for the first time that the recG gene is also present in the genomes of most vascular plants as well as in green algae, but is not found in other eukaryotes or archaea. The precise function of RecG is poorly understood, although ample evidence shows that it plays critical roles in DNA repair, recombination and replication. We further demonstrate that Mycobacterium tuberculosis RecG (RecGMtb) DNA binding activity had a broad substrate specificity, whereas it only unwound branched-DNA substrates such as Holliday junctions (HJs), replication forks, D-loops and R-loops, with a strong preference for the HJ as a helicase substrate. In addition, RecGMtb preferentially bound relatively long (≥40 nt) ssDNA, exhibiting a higher affinity for the homopolymeric nucleotides poly(dT), poly(dG) and poly(dC) than for poly(dA). RecGMtb helicase activity was supported by hydrolysis of ATP or dATP in the presence of Mg2+, Mn2+, Cu2+ or Fe2+. Like its Escherichia coli orthologue, RecGMtb is also a strictly DNA-dependent ATPase.
Collapse
Affiliation(s)
- Ephrem Debebe Zegeye
- Centre for Molecular Biology and Neuroscience and Department of Microbiology, University of Oslo, Oslo, Norway
| | - Seetha V Balasingham
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway.,Centre for Molecular Biology and Neuroscience and Department of Microbiology, University of Oslo, Oslo, Norway
| | - Jon K Laerdahl
- Bioinformatics Core Facility, Department of Informatics, University of Oslo, Oslo, Norway.,Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway.,Centre for Molecular Biology and Neuroscience and Department of Microbiology, University of Oslo, Oslo, Norway
| | - Håvard Homberset
- Centre for Molecular Biology and Neuroscience and Department of Microbiology, University of Oslo, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway.,Centre for Molecular Biology and Neuroscience and Department of Microbiology, University of Oslo, Oslo, Norway
| |
Collapse
|
32
|
Abstract
Bacterial DNA ligases, NAD⁺-dependent enzymes, are distinct from eukaryotic ATP-dependent ligases, representing promising targets for broad-spectrum antimicrobials. Yet, the chromosomal consequences of ligase-deficient DNA replication, during which Okazaki fragments accumulate, are still unclear. Using ligA251(Ts), the strongest ligase mutant of Escherichia coli, we studied ligase-deficient DNA replication by genetic and physical approaches. Here we show that replication without ligase kills after a short resistance period. We found that double-strand break repair via RecA, RecBCD, RuvABC and RecG explains the transient resistance, whereas irreparable chromosomal fragmentation explains subsequent cell death. Remarkably, death is mostly prevented by elimination of linear DNA degradation activity of ExoV, suggesting that non-allelic double-strand breaks behind replication forks precipitate DNA degradation that enlarge them into allelic double-strand gaps. Marker frequency profiling of synchronized replication reveals stalling of ligase-deficient forks with subsequent degradation of the DNA synthesized without ligase. The mechanism that converts unsealed nicks behind replication forks first into repairable double-strand breaks and then into irreparable double-strand gaps may be behind lethality of any DNA damaging treatment.
Collapse
Affiliation(s)
- Elena A Kouzminova
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3709, USA
| | | |
Collapse
|
33
|
Shcherbakov VP, Plugina L, Shcherbakova T, Kudryashova E, Sizova S. Double-strand break repair and recombination-dependent replication of DNA in bacteriophage T4 in the absence of UvsX recombinase: replicative resolution pathway. DNA Repair (Amst) 2012; 11:470-9. [PMID: 22365497 DOI: 10.1016/j.dnarep.2012.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/23/2012] [Accepted: 01/30/2012] [Indexed: 11/19/2022]
Abstract
The effects of mutations in bacteriophage T4 genes uvsX and 49 on the double-strand break (DSB)-promoted recombination were studied in crosses, in which DSBs were induced site-specifically within the rIIB gene by SegC endonuclease in the DNA of only one of the parents. Frequency of rII+ recombinants was measured in two-factor crosses of the type i×ets1 and in three-factor crosses of the type i×ets1 a6, where ets1 is an insertion in the rIIB gene carrying the cleavage site for SegC; i's are rIIB or rIIA point mutations located at various distances (12-2040 bp) from the ets1 site, and a6 is rIIA point mutation located at 2040 bp from ets1. The frequency/distance relationships were obtained in crosses of the wild-type phage and of the amber mutant S17 (gene uvsX) and the double mutant S17 E727 (genes uvsX and 49). These data provide information about the frequency and distance distribution of the single-exchange (splices) and double-exchange (patches) events. The extended variant of the splice/patch coupling (SPC) model of recombination, which includes transition to the replication resolution (RR) alternative is substantiated and used for interpretation of the frequency/distance relationships. We conclude that the uvsX mutant executes recombination-dependent replication but does it by a qualitatively different way. In the absence of UvsX function, the DSB repair runs largely through the RR subpathway because of inability of the mutant to form a Holliday junction. In the two-factor crosses, the double uvsX 49- is recombinationally more proficient than the single uvsX mutant (partial suppression of the uvsX deficiency), while the patch-related double exchanges are virtually eliminated in this background.
Collapse
Affiliation(s)
- Victor P Shcherbakov
- Institute of Problems of Chemical Physics RAS, Chernogolovka, Moscow Region 142432, Russia.
| | | | | | | | | |
Collapse
|
34
|
Jeiranian HA, Courcelle CT, Courcelle J. Inefficient replication reduces RecA-mediated repair of UV-damaged plasmids introduced into competent Escherichia coli. Plasmid 2012; 68:113-24. [PMID: 22542622 DOI: 10.1016/j.plasmid.2012.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 04/02/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
Abstract
Transformation of Escherichia coli with purified plasmids containing DNA damage is frequently used as a tool to characterize repair pathways that operate on chromosomes. In this study, we used an assay that allowed us to quantify plasmid survival and to compare how efficiently various repair pathways operate on plasmid DNA introduced into cells relative to their efficiency on chromosomal DNA. We observed distinct differences between the mechanisms operating on the transforming plasmid DNA and the chromosome. An average of one UV-induced lesion was sufficient to inactivate ColE1-based plasmids introduced into nucleotide excision repair mutants, suggesting an essential role for repair on newly introduced plasmid DNA. By contrast, the absence of RecA, RecF, RecBC, RecG, or RuvAB had a minimal effect on the survival of the transforming plasmid DNA containing UV-induced damage. Neither the presence of an endogenous homologous plasmid nor the induction of the SOS response enhanced the survival of transforming plasmids. Using two-dimensional agarose-gel analysis, both replication- and RecA-dependent structures that were observed on established, endogenous plasmids following UV-irradiation, failed to form on UV-irradiated plasmids introduced into E. coli. We interpret these observations to suggest that the lack of RecA-mediated survival is likely to be due to inefficient replication that occurs when plasmids are initially introduced into cells, rather than to the plasmid's size, the absence of homologous sequences, or levels of recA expression.
Collapse
Affiliation(s)
- H A Jeiranian
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97201, USA.
| | | | | |
Collapse
|
35
|
Carter AS, Tahmaseb K, Compton SA, Matson SW. Resolving Holliday junctions with Escherichia coli UvrD helicase. J Biol Chem 2012; 287:8126-34. [PMID: 22267744 DOI: 10.1074/jbc.m111.314047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli UvrD helicase is known to function in the mismatch repair and nucleotide excision repair pathways and has also been suggested to have roles in recombination and replication restart. The primary intermediate DNA structure in these two processes is the Holliday junction. UvrD has been shown to unwind a variety of substrates including partial duplex DNA, nicked DNA, forked DNA structures, blunt duplex DNA and RNA-DNA hybrids. Here, we demonstrate that UvrD also catalyzes the robust unwinding of Holliday junction substrates. To characterize this unwinding reaction we have employed steady-state helicase assays, pre-steady-state rapid quench helicase assays, DNaseI footprinting, and electron microscopy. We conclude that UvrD binds initially to the junction compared with binding one of the blunt ends of the four-way junction to initiate unwinding and resolves the synthetic substrate into two double-stranded fork structures. We suggest that UvrD, along with its mismatch repair partners, MutS and MutL, may utilize its ability to unwind Holliday junctions directly in the prevention of homeologous recombination. UvrD may also be involved in the resolution of stalled replication forks by unwinding the Holliday junction intermediate to allow bypass of the blockage.
Collapse
Affiliation(s)
- Annamarie S Carter
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
36
|
Hébert L, Moumen B, Pons N, Duquesne F, Breuil MF, Goux D, Batto JM, Laugier C, Renault P, Petry S. Genomic characterization of the Taylorella genus. PLoS One 2012; 7:e29953. [PMID: 22235352 PMCID: PMC3250509 DOI: 10.1371/journal.pone.0029953] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 12/07/2011] [Indexed: 01/21/2023] Open
Abstract
The Taylorella genus comprises two species: Taylorella equigenitalis, which causes contagious equine metritis, and Taylorella asinigenitalis, a closely-related species mainly found in donkeys. We herein report on the first genome sequence of T. asinigenitalis, analyzing and comparing it with the recently-sequenced T. equigenitalis genome. The T. asinigenitalis genome contains a single circular chromosome of 1,638,559 bp with a 38.3% GC content and 1,534 coding sequences (CDS). While 212 CDSs were T. asinigenitalis-specific, 1,322 had orthologs in T. equigenitalis. Two hundred and thirty-four T. equigenitalis CDSs had no orthologs in T. asinigenitalis. Analysis of the basic nutrition metabolism of both Taylorella species showed that malate, glutamate and alpha-ketoglutarate may be their main carbon and energy sources. For both species, we identified four different secretion systems and several proteins potentially involved in binding and colonization of host cells, suggesting a strong potential for interaction with their host. T. equigenitalis seems better-equipped than T. asinigenitalis in terms of virulence since we identified numerous proteins potentially involved in pathogenicity, including hemagluttinin-related proteins, a type IV secretion system, TonB-dependent lactoferrin and transferrin receptors, and YadA and Hep_Hag domains containing proteins. This is the first molecular characterization of Taylorella genus members, and the first molecular identification of factors potentially involved in T. asinigenitalis and T. equigenitalis pathogenicity and host colonization. This study facilitates a genetic understanding of growth phenotypes, animal host preference and pathogenic capacity, paving the way for future functional investigations into this largely unknown genus.
Collapse
Affiliation(s)
- Laurent Hébert
- ANSES, Dozulé Laboratory for Equine Diseases, Dozulé, France
- * E-mail: (LH); (SP)
| | - Bouziane Moumen
- Institut National de la Recherche Agronomique, UMR1319 Micalis, Domaine de Vilvert, Jouy-en-Josas, France
| | - Nicolas Pons
- Institut National de la Recherche Agronomique, UMR1319 Micalis, Domaine de Vilvert, Jouy-en-Josas, France
| | - Fabien Duquesne
- ANSES, Dozulé Laboratory for Equine Diseases, Dozulé, France
| | | | - Didier Goux
- Centre de Microscopie Appliquée à la Biologie, Université de Caen Basse-Normandie et IFR146 ICORE, Caen, France
| | - Jean-Michel Batto
- Institut National de la Recherche Agronomique, UMR1319 Micalis, Domaine de Vilvert, Jouy-en-Josas, France
| | - Claire Laugier
- ANSES, Dozulé Laboratory for Equine Diseases, Dozulé, France
| | - Pierre Renault
- Institut National de la Recherche Agronomique, UMR1319 Micalis, Domaine de Vilvert, Jouy-en-Josas, France
| | - Sandrine Petry
- ANSES, Dozulé Laboratory for Equine Diseases, Dozulé, France
- * E-mail: (LH); (SP)
| |
Collapse
|
37
|
Marceau AH. Functions of single-strand DNA-binding proteins in DNA replication, recombination, and repair. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 922:1-21. [PMID: 22976174 DOI: 10.1007/978-1-62703-032-8_1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Double-stranded (ds) DNA contains all of the necessary genetic information, although practical use of this information requires unwinding of the duplex DNA. DNA unwinding creates single-stranded (ss) DNA intermediates that serve as templates for myriad cellular functions. Exposure of ssDNA presents several problems to the cell. First, ssDNA is thermodynamically less stable than dsDNA, which leads to spontaneous formation of duplex secondary structures that impede genome maintenance processes. Second, relative to dsDNA, ssDNA is hypersensitive to chemical and nucleolytic attacks that can cause damage to the genome. Cells deal with these potential problems by encoding specialized ssDNA-binding proteins (SSBs) that bind to and stabilize ssDNA structures required for essential genomic processes. SSBs are essential proteins found in all domains of life. SSBs bind ssDNA with high affinity and in a sequence-independent manner and, in doing so, SSBs help to form the central nucleoprotein complex substrate for DNA replication, recombination, and repair processes. While SSBs are found in every organism, the proteins themselves share surprisingly little sequence similarity, subunit composition, and oligomerization states. All SSB proteins contain at least one DNA-binding oligonucleotide/oligosaccharide binding (OB) fold, which consists minimally of a five stranded beta-sheet arranged as a beta barrel capped by a single alpha helix. The OB fold is responsible for both ssDNA binding and oligomerization (for SSBs that operate as oligomers). The overall organization of OB folds varies between bacteria, eukaryotes, and archaea. As part of SSB/ssDNA cellular structures, SSBs play direct roles in the DNA replication, recombination, and repair. In many cases, SSBs have been found to form specific complexes with diverse genome maintenance proteins, often helping to recruit SSB/ssDNA-processing enzymes to the proper cellular sites of action. This clustering of genome maintenance factors can help to stimulate and coordinate the activities of individual enzymes and is also important for dislodging SSB from ssDNA. These features support a model in which DNA metabolic processes have evolved to work on ssDNA/SSB nucleoprotein filaments rather than on naked ssDNA. In this volume, methods are described to interrogate SSB-DNA and SSB-protein binding functions along with approaches that aim to understand the cellular functions of SSB. This introductory chapter offers a general overview of SSBs that focuses on their structures, DNA-binding mechanisms, and protein-binding partners.
Collapse
Affiliation(s)
- Aimee H Marceau
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
38
|
Kuzminov A. Homologous Recombination-Experimental Systems, Analysis, and Significance. EcoSal Plus 2011; 4:10.1128/ecosalplus.7.2.6. [PMID: 26442506 PMCID: PMC4190071 DOI: 10.1128/ecosalplus.7.2.6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Indexed: 12/30/2022]
Abstract
Homologous recombination is the most complex of all recombination events that shape genomes and produce material for evolution. Homologous recombination events are exchanges between DNA molecules in the lengthy regions of shared identity, catalyzed by a group of dedicated enzymes. There is a variety of experimental systems in Escherichia coli and Salmonella to detect homologous recombination events of several different kinds. Genetic analysis of homologous recombination reveals three separate phases of this process: pre-synapsis (the early phase), synapsis (homologous strand exchange), and post-synapsis (the late phase). In E. coli, there are at least two independent pathway of the early phase and at least two independent pathways of the late phase. All this complexity is incongruent with the originally ascribed role of homologous recombination as accelerator of genome evolution: there is simply not enough duplication and repetition in enterobacterial genomes for homologous recombination to have a detectable evolutionary role and therefore not enough selection to maintain such a complexity. At the same time, the mechanisms of homologous recombination are uniquely suited for repair of complex DNA lesions called chromosomal lesions. In fact, the two major classes of chromosomal lesions are recognized and processed by the two individual pathways at the early phase of homologous recombination. It follows, therefore, that homologous recombination events are occasional reflections of the continual recombinational repair, made possible in cases of natural or artificial genome redundancy.
Collapse
|
39
|
Ayora S, Carrasco B, Cárdenas PP, César CE, Cañas C, Yadav T, Marchisone C, Alonso JC. Double-strand break repair in bacteria: a view from Bacillus subtilis. FEMS Microbiol Rev 2011; 35:1055-81. [PMID: 21517913 DOI: 10.1111/j.1574-6976.2011.00272.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In all living organisms, the response to double-strand breaks (DSBs) is critical for the maintenance of chromosome integrity. Homologous recombination (HR), which utilizes a homologous template to prime DNA synthesis and to restore genetic information lost at the DNA break site, is a complex multistep response. In Bacillus subtilis, this response can be subdivided into five general acts: (1) recognition of the break site(s) and formation of a repair center (RC), which enables cells to commit to HR; (2) end-processing of the broken end(s) by different avenues to generate a 3'-tailed duplex and RecN-mediated DSB 'coordination'; (3) loading of RecA onto single-strand DNA at the RecN-induced RC and concomitant DNA strand exchange; (4) branch migration and resolution, or dissolution, of the recombination intermediates, and replication restart, followed by (5) disassembly of the recombination apparatus formed at the dynamic RC and segregation of sister chromosomes. When HR is impaired or an intact homologous template is not available, error-prone nonhomologous end-joining directly rejoins the two broken ends by ligation. In this review, we examine the functions that are known to contribute to DNA DSB repair in B. subtilis, and compare their properties with those of other bacterial phyla.
Collapse
Affiliation(s)
- Silvia Ayora
- Departmento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Cantoblanco, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Ulrich HD. Timing and spacing of ubiquitin-dependent DNA damage bypass. FEBS Lett 2011; 585:2861-7. [PMID: 21605556 DOI: 10.1016/j.febslet.2011.05.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 05/10/2011] [Indexed: 11/17/2022]
Abstract
During its duplication, DNA, the carrier of our genetic information, is particularly vulnerable to decay, and the capacity of cells to deal with replication stress has been recognised as a major factor protecting us from genome instability and cancer. One of the major pathways controlling the bypass of DNA lesions during replication is activated by ubiquitylation of the sliding clamp, PCNA. Whereas monoubiquitylation of PCNA allows mutagenic translesion synthesis by damage-tolerant DNA polymerases, polyubiquitylation is required mainly for an error-free pathway that likely involves template switching. This review is focussed on our understanding of the timing of damage bypass during the cell cycle and the question of how it is coordinated with the progression of replication forks.
Collapse
Affiliation(s)
- Helle D Ulrich
- Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Herts EN6 3LD, United Kingdom.
| |
Collapse
|
41
|
Bichara M, Meier M, Wagner J, Cordonnier A, Lambert IB. Postreplication repair mechanisms in the presence of DNA adducts in Escherichia coli. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2011; 727:104-22. [DOI: 10.1016/j.mrrev.2011.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 04/25/2011] [Accepted: 04/26/2011] [Indexed: 02/02/2023]
|
42
|
Abstract
DNA and RNA helicases are organized into six superfamilies of enzymes on the basis of sequence alignments, biochemical data, and available crystal structures. DNA helicases, members of which are found in each of the superfamilies, are an essential group of motor proteins that unwind DNA duplexes into their component single strands in a process that is coupled to the hydrolysis of nucleoside 5'-triphosphates. The purpose of this DNA unwinding is to provide nascent, single-stranded DNA (ssDNA) for the processes of DNA repair, replication, and recombination. Not surprisingly, DNA helicases share common biochemical properties that include the binding of single- and double-stranded DNA, nucleoside 5'-triphosphate binding and hydrolysis, and nucleoside 5'-triphosphate hydrolysis-coupled, polar unwinding of duplex DNA. These enzymes participate in every aspect of DNA metabolism due to the requirement for transient separation of small regions of the duplex genome into its component strands so that replication, recombination, and repair can occur. In Escherichia coli, there are currently twelve DNA helicases that perform a variety of tasks ranging from simple strand separation at the replication fork to more sophisticated processes in DNA repair and genetic recombination. In this chapter, the superfamily classification, role(s) in DNA metabolism, effects of mutations, biochemical analysis, oligomeric nature, and interacting partner proteins of each of the twelve DNA helicases are discussed.
Collapse
|
43
|
Williams AB, Hetrick KM, Foster PL. Interplay of DNA repair, homologous recombination, and DNA polymerases in resistance to the DNA damaging agent 4-nitroquinoline-1-oxide in Escherichia coli. DNA Repair (Amst) 2010; 9:1090-7. [PMID: 20724226 DOI: 10.1016/j.dnarep.2010.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/09/2010] [Accepted: 07/13/2010] [Indexed: 11/18/2022]
Abstract
Escherichia coli has three DNA damage-inducible DNA polymerases: DNA polymerase II (Pol II), DNA polymerase IV (Pol IV), and DNA polymerase V (Pol V). While the in vivo function of Pol V is well understood, the precise roles of Pol IV and Pol II in DNA replication and repair are not as clear. Study of these polymerases has largely focused on their participation in the recovery of failed replication forks, translesion DNA synthesis, and origin-independent DNA replication. However, their roles in other repair and recombination pathways in E. coli have not been extensively examined. This study investigated how E. coli's inducible DNA polymerases and various DNA repair and recombination pathways function together to convey resistance to 4-nitroquinoline-1-oxide (NQO), a DNA damaging agent that produces replication blocking DNA base adducts. The data suggest that full resistance to this compound depends upon an intricate interplay among the activities of the inducible DNA polymerases and recombination. The data also suggest new relationships between the different pathways that process recombination intermediates.
Collapse
Affiliation(s)
- Ashley B Williams
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
| | | | | |
Collapse
|
44
|
Horikoshi N, Morozumi Y, Takaku M, Takizawa Y, Kurumizaka H. Holliday junction-binding activity of human SPF45. Genes Cells 2010; 15:373-83. [PMID: 20236180 DOI: 10.1111/j.1365-2443.2010.01383.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
SPF45 is considered to be a bifunctional protein that functions in splicing and DNA repair. A previous genetic study reported that Drosophila SPF45 participates in the DNA-repair pathway with a RAD51-family protein, RAD201, suggesting that SPF45 may function in DNA repair by the homologous-recombination pathway. To study the function of SPF45 in homologous recombination, we purified human SPF45 and found that it preferentially binds to the Holliday junction, which is a key DNA intermediate in the homologous-recombination pathway. Deletion analyses revealed that the RNA recognition motif, which is located in the C-terminal region of human SPF45, is not involved in DNA binding. On the other hand, alanine-scanning mutagenesis identified the N-terminal lysine residues, which may be involved in Holliday junction binding by human SPF45. We also found that human SPF45 significantly binds to a RAD51 paralog, RAD51B, although it also binds to RAD51 and DMC1 with lower affinity. These biochemical results support the idea that human SPF45 functions in DNA repair by homologous recombination.
Collapse
Affiliation(s)
- Naoki Horikoshi
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | | | | | | | | |
Collapse
|
45
|
Promoting and avoiding recombination: contrasting activities of the Escherichia coli RuvABC Holliday junction resolvase and RecG DNA translocase. Genetics 2010; 185:23-37. [PMID: 20157002 DOI: 10.1534/genetics.110.114413] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RuvABC and RecG are thought to provide alternative pathways for the late stages of recombination in Escherichia coli. Inactivation of both blocks the recovery of recombinants in genetic crosses. RuvABC resolves Holliday junctions, with RuvAB driving branch migration and RuvC catalyzing junction cleavage. RecG also drives branch migration, but no nuclease has been identified that might act with RecG to cleave junctions, apart from RusA, which is not normally expressed. We searched for an alternative nuclease using a synthetic lethality assay to screen for mutations causing inviability in the absence of RuvC, on the premise that a strain without any ability to cut junctions might be inviable. All the mutations identified mapped to polA, dam, or uvrD. None of these genes encodes a nuclease that cleaves Holliday junctions. Probing the reason for the inviability using the RusA Holliday junction resolvase provided strong evidence in each case that the RecG pathway is very ineffective at removing junctions and indicated that a nuclease component most probably does not exist. It also revealed new suppressors of recG, which were located to the ssb gene. Taken together with the results from the synthetic lethality assays, the properties of the mutant SSB proteins provide evidence that, rather than promoting recombination, a major function of RecG is to curb potentially pathological replication initiated via PriA protein at sites remote from oriC.
Collapse
|
46
|
Rudolph CJ, Upton AL, Briggs GS, Lloyd RG. Is RecG a general guardian of the bacterial genome? DNA Repair (Amst) 2010; 9:210-23. [PMID: 20093100 DOI: 10.1016/j.dnarep.2009.12.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The RecG protein of Escherichia coli is a double-stranded DNA translocase that unwinds a variety of branched DNAs in vitro, including Holliday junctions, replication forks, D-loops and R-loops. Coupled with the reported pleiotropy of recG mutations, this broad range of potential targets has made it hard to pin down what the protein does in vivo, though roles in recombination and replication fork repair have been suggested. However, recent studies suggest that RecG provides a more general defence against pathological DNA replication. We have postulated that this is achieved through the ability of RecG to eliminate substrates that the replication restart protein, PriA, could otherwise exploit to re-replicate the chromosome. Without RecG, PriA triggers a cascade of events that interfere with the duplication and segregation of chromosomes. Here we review the studies that led us to this idea and to conclude that RecG may be both a specialist activity and a general guardian of the genome.
Collapse
Affiliation(s)
- Christian J Rudolph
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom
| | | | | | | |
Collapse
|
47
|
Wu Y, Chen W, Zhao Y, Xu H, Hua Y. Involvement of RecG in H2O2-induced damage repair in Deinococcus radiodurans. Can J Microbiol 2009; 55:841-8. [DOI: 10.1139/w09-028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deinococcus radiodurans (ex Raj et al. 1960) Brooks and Murray 1981 is well known for its efficient repair of various types of physically or chemically induced DNA damage caused by ionizing and ultraviolet radiation or H2O2. RecG codes for a helicase that is known to be involved in repairing oxidative damage in other bacterium. In this work, we constructed a DRrecG deletion mutant and investigated its possible role in H2O2-induced damage. The results showed that the deletion of DRrecG resulted in an obvious growth defect and great decrease of radioresistance of D. radiodurans to gamma radiation and H2O2. We also defined the transcriptional profiles of the recG mutant and wild-type strain with and without treatment with H2O2. These results suggested that DRrecG is important for DNA repair during oxidative damage.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 310029 Hangzhou, China
| | - Weiwei Chen
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 310029 Hangzhou, China
| | - Ye Zhao
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 310029 Hangzhou, China
| | - Hong Xu
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 310029 Hangzhou, China
| | - Yuejin Hua
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 310029 Hangzhou, China
| |
Collapse
|
48
|
Abstract
Little is known about what happens when forks meet to complete DNA replication in any organism. In this study we present data suggesting that the collision of replication forks is a potential threat to genomic stability. We demonstrate that Escherichia coli cells lacking RecG helicase suffer major defects in chromosome replication following UV irradiation, and that this is associated with high levels of DNA synthesis initiated independently of the initiator protein DnaA. This UV-induced stable DNA replication is dependent on PriA helicase and continues long after UV-induced lesions have been excised. We suggest UV irradiation triggers the assembly of new replication forks, leading to multiple fork collisions outside the terminus area. Such collisions may generate branched DNAs that serve to establish further new forks, resulting in uncontrolled DNA amplification. We propose that RecG reduces the likelihood of this pathological cascade being set in motion by reducing initiation of replication at D- and R-loops, and other structures generated as a result of fork collisions. Our results shed light on why replication initiation in bacteria is limited to a single origin and why termination is carefully orchestrated to a single event within a restricted area each cell cycle.
Collapse
Affiliation(s)
- Christian J Rudolph
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | | | | | | |
Collapse
|
49
|
Atkinson J, McGlynn P. Replication fork reversal and the maintenance of genome stability. Nucleic Acids Res 2009; 37:3475-92. [PMID: 19406929 PMCID: PMC2699526 DOI: 10.1093/nar/gkp244] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The progress of replication forks is often threatened in vivo, both by DNA damage and by proteins bound to the template. Blocked forks must somehow be restarted, and the original blockage cleared, in order to complete genome duplication, implying that blocked fork processing may be critical for genome stability. One possible pathway that might allow processing and restart of blocked forks, replication fork reversal, involves the unwinding of blocked forks to form four-stranded structures resembling Holliday junctions. This concept has gained increasing popularity recently based on the ability of such processing to explain many genetic observations, the detection of unwound fork structures in vivo and the identification of enzymes that have the capacity to catalyse fork regression in vitro. Here, we discuss the contexts in which fork regression might occur, the factors that may promote such a reaction and the possible roles of replication fork unwinding in normal DNA metabolism.
Collapse
Affiliation(s)
- John Atkinson
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | | |
Collapse
|
50
|
Vindigni A, Hickson ID. RecQ helicases: multiple structures for multiple functions? HFSP JOURNAL 2009; 3:153-64. [PMID: 19949442 DOI: 10.2976/1.3079540] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 01/20/2009] [Indexed: 11/19/2022]
Abstract
Approximately 1% of the open reading frames in the human genome encode proteins that function as DNA or RNA helicases. These enzymes act in all aspects of nucleic acid metabolism where the complementary strands of DNA:DNA or DNA:RNA duplexes require to be transiently opened. However, they perform wider roles in nucleic acid metabolism due to their ability to couple the energy derived from hydrolysis of ATP to their unidirectional translocation along strands of DNARNA. In this way, helicases can displace proteins from DNARNA, drive the migration of DNA junctions (such as the Holliday junction recombination intermediate), or generate superhelical tension in nucleic acid duplexes. Here, we review a subgroup of DNA helicase enzymes, the RecQ family, that has attracted considerable interest in recent years due to their role not only in suppression of genome instability, but also in the avoidance of human disease. We focus particularly on the protein structural motifs and the multiple assembly states that characterize RecQ helicases and discuss novel biophysical techniques to study the different RecQ structures present in solution. We also speculate on the roles of the different domains and oligomeric forms in defining which DNA structures will represent substrates for RecQ helicase-mediated transactions.
Collapse
|