1
|
Majka M, Janáková E, Jakobson I, Järve K, Cápal P, Korchanová Z, Lampar A, Juračka J, Valárik M. The chromatin determinants and Ph1 gene effect at wheat sites with contrasting recombination frequency. J Adv Res 2023; 53:75-85. [PMID: 36632886 PMCID: PMC10658417 DOI: 10.1016/j.jare.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Meiotic recombination is one of the most important processes of evolution and adaptation to environmental conditions. Even though there is substantial knowledge about proteins involved in the process, targeting specific DNA loci by the recombination machinery is not well understood. OBJECTIVES This study aims to investigate a wheat recombination hotspot (H1) in comparison with a "regular" recombination site (Rec7) on the sequence and epigenetic level in conditions with functional and non-functional Ph1 locus. METHODS The DNA sequence, methylation pattern, and recombination frequency were analyzed for the H1 and Rec7 in three mapping populations derived by crossing introgressive wheat line 8.1 with cv. Chinese Spring (with Ph1 and ph1 alleles) and cv. Tähti. RESULTS The H1 and Rec7 loci are 1.586 kb and 2.538 kb long, respectively. High-density mapping allowed to delimit the Rec7 and H1 to 19 and 574 bp and 593 and 571 bp CO sites, respectively. A new method (ddPing) allowed screening recombination frequency in almost 66 thousand gametes. The screening revealed a 5.94-fold higher recombination frequency at the H1 compared to the Rec7. The H1 was also found out of the Ph1 control, similarly as gamete distortion. The recombination was strongly affected by larger genomic rearrangements but not by the SNP proximity. Moreover, chromatin markers for open chromatin and DNA hypomethylation were found associated with crossover occurrence except for the CHH methylation. CONCLUSION Our results, for the first time, allowed study of wheat recombination directly on sequence, shed new light on chromatin landmarks associated with particular recombination sites, and deepened knowledge about role of the Ph1 locus in control of wheat recombination processes. The results are suggesting more than one recombination control pathway. Understanding this phenomenon may become a base for more efficient wheat genome manipulation, gene pool enrichment, breeding, and study processes of recombination itself.
Collapse
Affiliation(s)
- Maciej Majka
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic; Polish Academy of Sciences, Institute of Plant Genetics, Strzeszyńska 34, Poznań 60-479, Poland
| | - Eva Janáková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic
| | - Irena Jakobson
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Akadeemia tee 15, Tallinn 19086, Estonia
| | - Kadri Järve
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Akadeemia tee 15, Tallinn 19086, Estonia
| | - Petr Cápal
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic
| | - Zuzana Korchanová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic; Department of Cell Biology and Genetics, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc 779 00, Czech Republic
| | - Adam Lampar
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic; Department of Cell Biology and Genetics, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc 779 00, Czech Republic
| | - Jakub Juračka
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic; Department of Computer Science, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc 779 00, Czech Republic; Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc 779 00, Czech Republic
| | - Miroslav Valárik
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic.
| |
Collapse
|
2
|
Tóth A, Székvölgyi L, Vellai T. The genome loading model for the origin and maintenance of sex in eukaryotes. Biol Futur 2022; 73:345-357. [PMID: 36534301 DOI: 10.1007/s42977-022-00148-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Understanding why sexual reproduction-which involves syngamy (union of gametes) and meiosis-emerged and how it has subsisted for millions of years remains a fundamental problem in biology. Considered as the essence of sex, meiotic recombination is initiated by a DNA double-strand break (DSB) that forms on one of the pairing homologous chromosomes. This DNA lesion is subsequently repaired by gene conversion, the non-reciprocal transfer of genetic information from the intact homolog. A major issue is which of the pairing homologs undergoes DSB formation. Accumulating evidence shows that chromosomal sites where the pairing homologs locally differ in size, i.e., are heterozygous for an insertion or deletion, often display disparity in gene conversion. Biased conversion tends to duplicate insertions and lose deletions. This suggests that DSB is preferentially formed on the "shorter" homologous region, which thereby acts as the recipient for DNA transfer. Thus, sex primarily functions as a genome (re)loading mechanism. It ensures the restoration of formerly lost DNA sequences (deletions) and allows the efficient copying and, mainly in eukaryotes, subsequent spreading of newly emerged sequences (insertions) arising initially in an individual genome, even if they confer no advantage to the host. In this way, sex simultaneously repairs deletions and increases genetic variability underlying adaptation. The model explains a remarkable increase in DNA content during the evolution of eukaryotic genomes.
Collapse
Affiliation(s)
- András Tóth
- Department of Genetics, Eötvös Loránd University, Pázmány Péter Stny. 1/C, Budapest, 1117, Hungary
| | - Lóránt Székvölgyi
- MTA-DE Momentum Genome Architecture and Recombination Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Tibor Vellai
- Department of Genetics, Eötvös Loránd University, Pázmány Péter Stny. 1/C, Budapest, 1117, Hungary.
| |
Collapse
|
3
|
Li Z, Zhao W, Zhang J, Pan Z, Bai S, Tong C. A Novel Strategy to Reveal the Landscape of Crossovers in an F1 Hybrid Population of Populus deltoides and Populus simonii. PLANTS 2022; 11:plants11081046. [PMID: 35448774 PMCID: PMC9025136 DOI: 10.3390/plants11081046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022]
Abstract
Although the crossover (CO) patterns of different species have been extensively investigated, little is known about the landscape of CO patterns in Populus because of its high heterozygosity and long-time generation. A novel strategy was proposed to reveal the difference of CO rate and interference between Populus deltoides and Populus simonii using their F1 hybrid population. We chose restriction site-associated DNA (RAD) tags that contained two SNPs, one only receiving the CO information from the female P. deltoides and the other from the male P. simonii. These RAD tags allowed us to investigate the CO patterns between the two outbred species, instead of using the traditional backcross populations in inbred lines. We found that the CO rate in P. deltoides was generally greater than that in P. simonii, and that the CO interference was a common phenomenon across the two genomes. The COs landscape of the different Populus species facilitates not only to understand the evolutionary mechanism for adaptability but also to rebuild the statistical model for precisely constructing genetic linkage maps that are critical in genome assembly in Populus. Additionally, the novel strategy could be applied in other outbred species for investigating the CO patterns.
Collapse
Affiliation(s)
| | | | | | | | | | - Chunfa Tong
- Correspondence: ; Tel.: +86-025-85428817 (ext. 815)
| |
Collapse
|
4
|
Ahuja JS, Harvey CS, Wheeler DL, Lichten M. Repeated strand invasion and extensive branch migration are hallmarks of meiotic recombination. Mol Cell 2021; 81:4258-4270.e4. [PMID: 34453891 PMCID: PMC8541907 DOI: 10.1016/j.molcel.2021.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/09/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022]
Abstract
Currently favored models for meiotic recombination posit that both noncrossover and crossover recombination are initiated by DNA double-strand breaks but form by different mechanisms: noncrossovers by synthesis-dependent strand annealing and crossovers by formation and resolution of double Holliday junctions centered around the break. This dual mechanism hypothesis predicts different hybrid DNA patterns in noncrossover and crossover recombinants. We show that these predictions are not upheld, by mapping with unprecedented resolution parental strand contributions to recombinants at a model locus. Instead, break repair in both noncrossovers and crossovers involves synthesis-dependent strand annealing, often with multiple rounds of strand invasion. Crossover-specific double Holliday junction formation occurs via processes involving branch migration as an integral feature, one that can be separated from repair of the break itself. These findings reveal meiotic recombination to be a highly dynamic process and prompt a new view of the relationship between crossover and noncrossover recombination.
Collapse
Affiliation(s)
- Jasvinder S Ahuja
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Catherine S Harvey
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - David L Wheeler
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Martinez-Garcia M, Fernández-Jiménez N, Santos JL, Pradillo M. Duplication and divergence: New insights into AXR1 and AXL functions in DNA repair and meiosis. Sci Rep 2020; 10:8860. [PMID: 32483285 PMCID: PMC7264244 DOI: 10.1038/s41598-020-65734-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/20/2020] [Indexed: 01/08/2023] Open
Abstract
Rubylation is a conserved regulatory pathway similar to ubiquitination and essential in the response to the plant hormone auxin. In Arabidopsis thaliana, AUXIN RESISTANT1 (AXR1) functions as the E1-ligase in the rubylation pathway. The gene AXR1-LIKE (AXL), generated by a relatively recent duplication event, can partially replace AXR1 in this pathway. We have analysed mutants deficient for both proteins and complementation lines (with the AXR1 promoter and either AXR1 or AXL coding sequences) to further study the extent of functional redundancy between both genes regarding two processes: meiosis and DNA repair. Here we report that whereas AXR1 is essential to ensure the obligatory chiasma, AXL seems to be dispensable during meiosis, although its absence slightly alters chiasma distribution. In addition, expression of key DNA repair and meiotic genes is altered when either AXR1 or AXL are absent. Furthermore, our results support a significant role for both genes in DNA repair that was not previously described. These findings highlight that AXR1 and AXL show a functional divergence in relation to their involvement in homologous recombination, exemplifying a duplicate retention model in which one copy tends to have more sub-functions than its paralog.
Collapse
Affiliation(s)
- Marina Martinez-Garcia
- Departamento de Genética, Fisiología y Microbiología. Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Nadia Fernández-Jiménez
- Departamento de Genética, Fisiología y Microbiología. Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Juan L Santos
- Departamento de Genética, Fisiología y Microbiología. Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Mónica Pradillo
- Departamento de Genética, Fisiología y Microbiología. Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain.
| |
Collapse
|
6
|
Brahme A, Hultén M, Bengtsson C, Hultgren A, Zetterberg A. Radiation-Induced Chromosomal Breaks may be DNA Repair Fragile Sites with Larger-scale Correlations to Eight Double-Strand-Break Related Data Sets over the Human Genome. Radiat Res 2019; 192:562-576. [PMID: 31545677 DOI: 10.1667/rr15424.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this work, we compared the genomic distribution of common radiation-induced chromosomal breaks to eight different data sets covering the whole human genome. Sites with a high probability of chromatid breakage after exposure to low and high ionization density radiations were often located inside common and rare fragile sites, indicating that they may be a new and more local type of DNA repair-related fragility. Breaks in specific chromosome bands after acute exposure to oil and benzene also showed strong correlation with these sites and fragile sites. In addition, close correlation was found with cytologically detected chiasma and MLH1 immunofluorescence sites and with the HapMap recombination density distributions. Also, of interest, copy number changes occurred predominantly at radiation-induced breaks and fragile sites, at least for breast cancers with poor prognosis, and they decreased weakly but significantly in regions with increasing recombination and CpG density. An increased CpG density is linked to regions of high gene density to secure high-fidelity reproduction and survival. To minimize cancer induction, cancer-related genes are often located in regions of decreased recombination density and/or higher-than-average CpG density. It is compelling that all these data sets were influenced by the cells' handling of double-strand breaks and, more generally, DNA damage on its genome. In fact, the DNA repair genes systematically avoid regions with a high recombination density, as they need to be intact to accurately handle repairable DNA lesions.
Collapse
Affiliation(s)
- Anders Brahme
- Department of Oncology-Pathology, Karolinska Institutet, Box 260, SE-171 76 Stockholm, Sweden
| | - Maj Hultén
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| | - Carin Bengtsson
- Department of Oncology-Pathology, Karolinska Institutet, Box 260, SE-171 76 Stockholm, Sweden
| | - Andreas Hultgren
- Department of Oncology-Pathology, Karolinska Institutet, Box 260, SE-171 76 Stockholm, Sweden
| | - Anders Zetterberg
- Department of Oncology-Pathology, Karolinska Institutet, Box 260, SE-171 76 Stockholm, Sweden
| |
Collapse
|
7
|
Marsolier-Kergoat MC, Khan MM, Schott J, Zhu X, Llorente B. Mechanistic View and Genetic Control of DNA Recombination during Meiosis. Mol Cell 2019; 70:9-20.e6. [PMID: 29625041 DOI: 10.1016/j.molcel.2018.02.032] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/07/2017] [Accepted: 02/26/2018] [Indexed: 10/17/2022]
Abstract
Meiotic recombination is essential for fertility and allelic shuffling. Canonical recombination models fail to capture the observed complexity of meiotic recombinants. Here, by combining genome-wide meiotic heteroduplex DNA patterns with meiotic DNA double-strand break (DSB) sites, we show that part of this complexity results from frequent template switching during synthesis-dependent strand annealing that yields noncrossovers and from branch migration of double Holliday junction (dHJ)-containing intermediates that mainly yield crossovers. This complexity also results from asymmetric positioning of crossover intermediates relative to the initiating DSB and Msh2-independent conversions promoted by the suspected dHJ resolvase Mlh1-3 as well as Exo1 and Sgs1. Finally, we show that dHJ resolution is biased toward cleavage of the pair of strands containing newly synthesized DNA near the junctions and that this bias can be decoupled from the crossover-biased dHJ resolution. These properties are likely conserved in eukaryotes containing ZMM proteins, which includes mammals.
Collapse
Affiliation(s)
- Marie-Claude Marsolier-Kergoat
- CEA/DRF, I2BC/UMR 9198, SBIGeM, Gif-sur-Yvette, France; CNRS-UMR 7206, Éco-anthropologie et Ethnobiologie, Musée de l'Homme, 17, Place du Trocadéro et du 11 Novembre, Paris, France.
| | - Md Muntaz Khan
- Cancer Research Center of Marseille, CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Jonathan Schott
- Cancer Research Center of Marseille, CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Xuan Zhu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center and Howard Hughes Medical Institute, New York, NY, USA
| | - Bertrand Llorente
- Cancer Research Center of Marseille, CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France.
| |
Collapse
|
8
|
Role of Cis, Trans, and Inbreeding Effects on Meiotic Recombination in Saccharomyces cerevisiae. Genetics 2018; 210:1213-1226. [PMID: 30291109 DOI: 10.1534/genetics.118.301644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/02/2018] [Indexed: 11/18/2022] Open
Abstract
Meiotic recombination is a major driver of genome evolution by creating new genetic combinations. To probe the factors driving variability of meiotic recombination, we used a high-throughput method to measure recombination rates in hybrids between SK1 and a total of 26 Saccharomyces cerevisiae strains from different geographic origins and habitats. Fourteen intervals were monitored for each strain, covering chromosomes VI and XI entirely, and part of chromosome I. We found an average number of crossovers per chromosome ranging between 1.0 and 9.5 across strains ("domesticated" or not), which is higher than the average between 0.5 and 1.5 found in most organisms. In the different intervals analyzed, recombination showed up to ninefold variation across strains but global recombination landscapes along chromosomes varied less. We also built an incomplete diallel experiment to measure recombination rates in one region of chromosome XI in 10 different crosses involving five parental strains. Our overall results indicate that recombination rate is increasingly positively correlated with sequence similarity between homologs (i) in DNA double-strand-break-rich regions within intervals, (ii) in entire intervals, and (iii) at the whole genome scale. Therefore, these correlations cannot be explained by cis effects only. We also estimated that cis and trans effects explained 38 and 17%, respectively, of the variance of recombination rate. In addition, by using a quantitative genetics analysis, we identified an inbreeding effect that reduces recombination rate in homozygous genotypes, while other interaction effects (specific combining ability) or additive effects (general combining ability) are found to be weak. Finally, we measured significant crossover interference in some strains, and interference intensity was positively correlated with crossover number.
Collapse
|
9
|
León SC, Prentiss M, Fyta M. Binding energies of nucleobase complexes: Relevance to homology recognition of DNA. Phys Rev E 2016; 93:062410. [PMID: 27415301 DOI: 10.1103/physreve.93.062410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Indexed: 06/06/2023]
Abstract
The binding energies of complexes of DNA nucleobase pairs are evaluated using quantum mechanical calculations at the level of dispersion corrected density functional theory. We begin with Watson-Crick base pairs of singlets, duplets, and triplets and calculate their binding energies. At a second step, mismatches are incorporated into the Watson-Crick complexes in order to evaluate the variation in the binding energy with respect to the canonical Watson-Crick pairs. A linear variation of this binding energy with the degree of mismatching is observed. The binding energies for the duplets and triplets containing mismatches are further compared to the energies of the respective singlets in order to assess the degree of collectivity in these complexes. This study also suggests that mismatches do not considerably affect the energetics of canonical base pairs. Our work is highly relevant to the recognition process in DNA promoted through the RecA protein and suggests a clear distinction between recognition in singlets, and recognition in duplets or triplets. Our work assesses the importance of collectivity in the homology recognition of DNA.
Collapse
Affiliation(s)
- Sergio Cruz León
- Institute for Computational Physics, Universität Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
- Departamento de Ciencias Naturales, Escuela Colombiana de Ingeniería Julio Garavito, AK 45 205-59, Bogotá, Colombia
| | - Mara Prentiss
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Maria Fyta
- Institute for Computational Physics, Universität Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| |
Collapse
|
10
|
Sanchez-Moran E, Armstrong SJ. Meiotic chromosome synapsis and recombination in Arabidopsis thaliana: new ways of integrating cytological and molecular approaches. Chromosome Res 2014; 22:179-90. [DOI: 10.1007/s10577-014-9426-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Kan Y, Ruis B, Lin S, Hendrickson EA. The mechanism of gene targeting in human somatic cells. PLoS Genet 2014; 10:e1004251. [PMID: 24699519 PMCID: PMC3974634 DOI: 10.1371/journal.pgen.1004251] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/03/2014] [Indexed: 12/24/2022] Open
Abstract
Gene targeting in human somatic cells is of importance because it can be used to either delineate the loss-of-function phenotype of a gene or correct a mutated gene back to wild-type. Both of these outcomes require a form of DNA double-strand break (DSB) repair known as homologous recombination (HR). The mechanism of HR leading to gene targeting, however, is not well understood in human cells. Here, we demonstrate that a two-end, ends-out HR intermediate is valid for human gene targeting. Furthermore, the resolution step of this intermediate occurs via the classic DSB repair model of HR while synthesis-dependent strand annealing and Holliday Junction dissolution are, at best, minor pathways. Moreover, and in contrast to other systems, the positions of Holliday Junction resolution are evenly distributed along the homology arms of the targeting vector. Most unexpectedly, we demonstrate that when a meganuclease is used to introduce a chromosomal DSB to augment gene targeting, the mechanism of gene targeting is inverted to an ends-in process. Finally, we demonstrate that the anti-recombination activity of mismatch repair is a significant impediment to gene targeting. These observations significantly advance our understanding of HR and gene targeting in human cells. Gene targeting is important for basic research and clinical applications. In the laboratory, gene targeting is used to knockout genes so that loss-of-function phenotypes can be assessed. In the clinic, gene targeting is the gold standard to which most gene therapy approaches aspire. One of the most promising tools for gene targeting in humans is recombinant adeno-associated virus (rAAV). The mechanism by which rAAV performs gene targeting has, however, remained obscure. Here, we surprisingly demonstrate that the normally single-stranded rAAV performs gene targeting via double-stranded intermediates, which are mechanistically indistinguishable from standard plasmid-mediated gene targeting. Moreover, we establish the double-strand break (DSB) repair model as the paradigm to describe human gene targeting, and delineate the dynamics of crossovers in this model. Most unexpectedly, we demonstrate that when a meganuclease is used to introduce a chromosomal DSB to augment gene targeting, the mechanism of gene targeting is inverted such that the chromosome becomes the “attacker” instead of the “attackee”. Finally, we confirm that the anti-recombination activity of mismatch repair is a significant impediment to gene targeting. These observations advance our understanding of the mechanism of human gene targeting and should readily lend themselves to developing improvements to existing methodologies.
Collapse
Affiliation(s)
- Yinan Kan
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Brian Ruis
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Sherry Lin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Eric A. Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
12
|
Contrasted patterns of crossover and non-crossover at Arabidopsis thaliana meiotic recombination hotspots. PLoS Genet 2013; 9:e1003922. [PMID: 24244190 PMCID: PMC3828143 DOI: 10.1371/journal.pgen.1003922] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/11/2013] [Indexed: 11/25/2022] Open
Abstract
The vast majority of meiotic recombination events (crossovers (COs) and non-crossovers (NCOs)) cluster in narrow hotspots surrounded by large regions devoid of recombinational activity. Here, using a new molecular approach in plants, called “pollen-typing”, we detected and characterized hundreds of CO and NCO molecules in two different hotspot regions in Arabidopsis thaliana. This analysis revealed that COs are concentrated in regions of a few kilobases where their rates reach up to 50 times the genome average. The hotspots themselves tend to cluster in regions less than 8 kilobases in size with overlapping CO distribution. Non-crossover (NCO) events also occurred in the two hotspots but at very different levels (local CO/NCO ratios of 1/1 and 30/1) and their track lengths were quite small (a few hundred base pairs). We also showed that the ZMM protein MSH4 plays a role in CO formation and somewhat unexpectedly we also found that it is involved in the generation of NCOs but with a different level of effect. Finally, factors acting in cis and in trans appear to shape the rate and distribution of COs at meiotic recombination hotspots. During meiosis, genomes are reshuffled by recombination between homologous chromosomes. Reciprocal recombination events called crossovers are clustered in several kilobase-wide regions called hotspots, where their frequency is greatly enhanced compared to adjacent regions. Our understanding of hotspot organization is based on analyses performed in only a few species and rules differ between species. For the first time, hundreds of recombination events were analyzed in Arabidopsis thaliana revealing several new features: (i) crossovers are concentrated in hotspots where their rate reaches up to 50 times the genome average; (ii) non-crossovers events, (also called gene conversions not associated with crossovers) also occur in hotspots but at very different levels; and (iii) in the absence of the recombination protein MSH4, the crossover rate is dramatically reduced (70 times less than the wild-type level) and the crossover distribution within a hotspot is also largely modified; unexpectedly, the non-crossover rate was also altered (15% of the wild-type level at a hotspot). Finally we showed that factors acting in cis and in trans may influence the level and distribution of crossovers at and between hotspots.
Collapse
|
13
|
Rockmill B, Lefrançois P, Voelkel-Meiman K, Oke A, Roeder GS, Fung JC. High throughput sequencing reveals alterations in the recombination signatures with diminishing Spo11 activity. PLoS Genet 2013; 9:e1003932. [PMID: 24204324 PMCID: PMC3814317 DOI: 10.1371/journal.pgen.1003932] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 09/16/2013] [Indexed: 12/03/2022] Open
Abstract
Spo11 is the topoisomerase-like enzyme responsible for the induction of the meiosis-specific double strand breaks (DSBs), which initiates the recombination events responsible for proper chromosome segregation. Nineteen PCR-induced alleles of SPO11 were identified and characterized genetically and cytologically. Recombination, spore viability and synaptonemal complex (SC) formation were decreased to varying extents in these mutants. Arrest by ndt80 restored these events in two severe hypomorphic mutants, suggesting that ndt80-arrested nuclei are capable of extended DSB activity. While crossing-over, spore viability and synaptonemal complex (SC) formation defects correlated, the extent of such defects was not predictive of the level of heteroallelic gene conversions (prototrophs) exhibited by each mutant. High throughput sequencing of tetrads from spo11 hypomorphs revealed that gene conversion tracts associated with COs are significantly longer and gene conversion tracts unassociated with COs are significantly shorter than in wild type. By modeling the extent of these tract changes, we could account for the discrepancy in genetic measurements of prototrophy and crossover association. These findings provide an explanation for the unexpectedly low prototroph levels exhibited by spo11 hypomorphs and have important implications for genetic studies that assume an unbiased recovery of prototrophs, such as measurements of CO homeostasis. Our genetic and physical data support previous observations of DSB-limited meioses, in which COs are disproportionally maintained over NCOs (CO homeostasis). Most eukaryotes depend on the meiotic division to segregate each pair of chromosomes properly into their gametes. Chromosome segregation mistakes happening during meiosis are responsible for most miscarriages as well as many diseases such as Down's and Kleinfelter's syndromes in humans. Proper chromosome segregation during meiosis depends on efficient and regulated recombination events that link homologous chromosomes prior to the first meiotic division. These linkages are initiated at double-stranded breaks (DSBs) in chromosomal DNA by Spo11 and associated proteins. We isolated a valuable new set of SPO11 alleles in yeast with a wide range of Spo11 activity. Genetic analysis and high throughput sequencing of tetrads from these mutants has revealed unexpected features of meiotic recombination. First, Spo11 DSBs likely continue to form throughout a pachytene arrest in cells compromised for Spo11 activity. Second, the number of recombination initiation events in a given meiosis influences the repair outcome of those events. In addition, our results provide support for crossover homeostasis – a phenomenon in which crossovers are disproportionately maintained over other types of repair in the face of a decrease in DSBs.
Collapse
Affiliation(s)
- Beth Rockmill
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Philippe Lefrançois
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Karen Voelkel-Meiman
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Ashwini Oke
- Department of Obstetrics, Gynecology and Reproductive Sciences and Center for Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - G. Shirleen Roeder
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Jennifer C. Fung
- Department of Obstetrics, Gynecology and Reproductive Sciences and Center for Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Clément Y, Arndt PF. Meiotic recombination strongly influences GC-content evolution in short regions in the mouse genome. Mol Biol Evol 2013; 30:2612-8. [PMID: 24030552 DOI: 10.1093/molbev/mst154] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Meiotic recombination is known to influence GC-content evolution in large regions of mammalian genomes by favoring the fixation of G and C alleles and increasing the rate of A/T to G/C substitutions. This process is known as GC-biased gene conversion (gBGC). Until recently, genome-wide measures of fine-scale recombination activity were unavailable in mice. Additionally, comparative studies focusing on mouse were limited as the closest organism with its genome fully sequenced was rat. Here, we make use of the recent mapping of double strand breaks (DSBs), the first step of meiotic recombination, in the mouse genome and of the sequencing of mouse closely related subspecies to analyze the fine-scale evolutionary signature of meiotic recombination on GC-content evolution in recombination hotspots, short regions that undergo extreme rates of recombination. We measure substitution rates around DSB hotspots and observe that gBGC is affecting a very short region (≈ 1 kbp) in length around these hotspots. Furthermore, we can infer that the locations of hotspots evolved rapidly during mouse evolution.
Collapse
Affiliation(s)
- Yves Clément
- Montpellier SupAgro, Unité Mixte de Recherche 1334, Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales, Montpellier, France
| | | |
Collapse
|
15
|
Mackiewicz D, de Oliveira PMC, Moss de Oliveira S, Cebrat S. Distribution of recombination hotspots in the human genome--a comparison of computer simulations with real data. PLoS One 2013; 8:e65272. [PMID: 23776462 PMCID: PMC3679075 DOI: 10.1371/journal.pone.0065272] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/23/2013] [Indexed: 11/19/2022] Open
Abstract
Recombination is the main cause of genetic diversity. Thus, errors in this process can lead to chromosomal abnormalities. Recombination events are confined to narrow chromosome regions called hotspots in which characteristic DNA motifs are found. Genomic analyses have shown that both recombination hotspots and DNA motifs are distributed unevenly along human chromosomes and are much more frequent in the subtelomeric regions of chromosomes than in their central parts. Clusters of motifs roughly follow the distribution of recombination hotspots whereas single motifs show a negative correlation with the hotspot distribution. To model the phenomena related to recombination, we carried out computer Monte Carlo simulations of genome evolution. Computer simulations generated uneven distribution of hotspots with their domination in the subtelomeric regions of chromosomes. They also revealed that purifying selection eliminating defective alleles is strong enough to cause such hotspot distribution. After sufficiently long time of simulations, the structure of chromosomes reached a dynamic equilibrium, in which number and global distribution of both hotspots and defective alleles remained statistically unchanged, while their precise positions were shifted. This resembles the dynamic structure of human and chimpanzee genomes, where hotspots change their exact locations but the global distributions of recombination events are very similar.
Collapse
Affiliation(s)
- Dorota Mackiewicz
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland.
| | | | | | | |
Collapse
|
16
|
Phillips D, Wnetrzak J, Nibau C, Barakate A, Ramsay L, Wright F, Higgins JD, Perry RM, Jenkins G. Quantitative high resolution mapping of HvMLH3 foci in barley pachytene nuclei reveals a strong distal bias and weak interference. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2139-54. [PMID: 23554258 PMCID: PMC3654414 DOI: 10.1093/jxb/ert079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In barley (Hordeum vulgare L.), chiasmata (the physical sites of genetic crossovers) are skewed towards the distal ends of chromosomes, effectively consigning a large proportion of genes to recombination coldspots. This has the effect of limiting potential genetic variability, and of reducing the efficiency of map-based cloning and breeding approaches for this crop. Shifting the sites of recombination to more proximal chromosome regions by forward and reverse genetic means may be profitable in terms of realizing the genetic potential of the species, but is predicated upon a better understanding of the mechanisms governing the sites of these events, and upon the ability to recognize real changes in recombination patterns. The barley MutL Homologue (HvMLH3), a marker for class I interfering crossovers, has been isolated and a specific antibody has been raised. Immunolocalization of HvMLH3 along with the synaptonemal complex transverse filament protein ZYP1, used in conjunction with fluorescence in situ hybridization (FISH) tagging of specific barley chromosomes, has enabled access to the physical recombination landscape of the barley cultivars Morex and Bowman. Consistent distal localization of HvMLH3 foci throughout the genome, and similar patterns of HvMLH3 foci within bivalents 2H and 3H have been observed. A difference in total numbers of HvMLH3 foci between these two cultivars has been quantified, which is interpreted as representing genotypic variation in class I crossover frequency. Discrepancies between the frequencies of HvMLH3 foci and crossover frequencies derived from linkage analysis point to the existence of at least two crossover pathways in barley. It is also shown that interference of HvMLH3 foci is relatively weak compared with other plant species.
Collapse
Affiliation(s)
- Dylan Phillips
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais, Aberystwyth, Ceredigion SY23 3DA, UK
| | - Joanna Wnetrzak
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais, Aberystwyth, Ceredigion SY23 3DA, UK
| | - Candida Nibau
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais, Aberystwyth, Ceredigion SY23 3DA, UK
| | | | | | - Frank Wright
- Biomathematics and Statistics Scotland, Invergowrie, Dundee DD2 5DA, UK
| | | | - Ruth M. Perry
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Glyn Jenkins
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais, Aberystwyth, Ceredigion SY23 3DA, UK
| |
Collapse
|
17
|
Billings T, Parvanov ED, Baker CL, Walker M, Paigen K, Petkov PM. DNA binding specificities of the long zinc-finger recombination protein PRDM9. Genome Biol 2013; 14:R35. [PMID: 23618393 PMCID: PMC4053984 DOI: 10.1186/gb-2013-14-4-r35] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/24/2013] [Indexed: 12/13/2022] Open
Abstract
Background Meiotic recombination ensures proper segregation of homologous chromosomes and creates genetic variation. In many organisms, recombination occurs at limited sites, termed 'hotspots', whose positions in mammals are determined by PR domain member 9 (PRDM9), a long-array zinc-finger and chromatin-modifier protein. Determining the rules governing the DNA binding of PRDM9 is a major issue in understanding how it functions. Results Mouse PRDM9 protein variants bind to hotspot DNA sequences in a manner that is specific for both PRDM9 and DNA haplotypes, and that in vitro binding parallels its in vivo biological activity. Examining four hotspots, three activated by Prdm9Cst and one activated by Prdm9Dom2, we found that all binding sites required the full array of 11 or 12 contiguous fingers, depending on the allele, and that there was little sequence similarity between the binding sites of the three Prdm9Cst activated hotspots. The binding specificity of each position in the Hlx1 binding site, activated by Prdm9Cst, was tested by mutating each nucleotide to its three alternatives. The 31 positions along the binding site varied considerably in the ability of alternative bases to support binding, which also implicates a role for additional binding to the DNA phosphate backbone. Conclusions These results, which provide the first detailed mapping of PRDM9 binding to DNA and, to our knowledge, the most detailed analysis yet of DNA binding by a long zinc-finger array, make clear that the binding specificities of PRDM9, and possibly other long-array zinc-finger proteins, are unusually complex.
Collapse
|
18
|
Lesecque Y, Mouchiroud D, Duret L. GC-biased gene conversion in yeast is specifically associated with crossovers: molecular mechanisms and evolutionary significance. Mol Biol Evol 2013; 30:1409-19. [PMID: 23505044 PMCID: PMC3649680 DOI: 10.1093/molbev/mst056] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
GC-biased gene conversion (gBGC) is a process associated with recombination that favors the transmission of GC alleles over AT alleles during meiosis. gBGC plays a major role in genome evolution in many eukaryotes. However, the molecular mechanisms of gBGC are still unknown. Different steps of the recombination process could potentially cause gBGC: the formation of double-strand breaks (DSBs), the invasion of the homologous or sister chromatid, and the repair of mismatches in heteroduplexes. To investigate these models, we analyzed a genome-wide data set of crossovers (COs) and noncrossovers (NCOs) in Saccharomyces cerevisiae. We demonstrate that the overtransmission of GC alleles is specific to COs and that it occurs among conversion tracts in which all alleles are converted from the same donor haplotype. Thus, gBGC results from a process that leads to long-patch repair. We show that gBGC is associated with longer tracts and that it is driven by the nature (GC or AT) of the alleles located at the extremities of the tract. These observations invalidate the hypotheses that gBGC is due to the base excision repair machinery or to a bias in DSB formation and suggest that in S. cerevisiae, gBGC is caused by the mismatch repair (MMR) system. We propose that the presence of nicks on both DNA strands during CO resolution could be the cause of the bias in MMR activity. Our observations are consistent with the hypothesis that gBGC is a nonadaptive consequence of a selective pressure to limit the mutation rate in mitotic cells.
Collapse
Affiliation(s)
- Yann Lesecque
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | | | | |
Collapse
|
19
|
Johnston HR, Cutler DJ. Population demographic history can cause the appearance of recombination hotspots. Am J Hum Genet 2012; 90:774-83. [PMID: 22560089 DOI: 10.1016/j.ajhg.2012.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/12/2012] [Accepted: 03/12/2012] [Indexed: 01/12/2023] Open
Abstract
Although the prevailing view among geneticists suggests that recombination hotspots exist ubiquitously across the human genome, there is only limited experimental evidence from a few genomic regions to support the generality of this claim. A small number of true recombination hotspots are well supported experimentally, but the vast majority of hotspots have been identified on the basis of population genetic inferences from the patterns of linkage disequilibrium (LD) seen in the human population. These inferences are made assuming a particular model of human history, and one of the assumptions of that model is that the effective population size of humans has remained constant throughout our history. Our results show that relaxation of the constant population size assumption can create LD and variation patterns that are qualitatively and quantitatively similar to human populations without any need to invoke localized hotspots of recombination. In other words, apparent recombination hotspots could be an artifact of variable population size over time. Several lines of evidence suggest that the vast majority of hotspots identified on the basis of LD information are unlikely to have elevated recombination rates.
Collapse
Affiliation(s)
- Henry R Johnston
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
20
|
López E, Pradillo M, Oliver C, Romero C, Cuñado N, Santos JL. Looking for natural variation in chiasma frequency in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:887-94. [PMID: 22048037 DOI: 10.1093/jxb/err319] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Information concerning natural variation either in chiasma frequency or in the genetic basis of any such variation is a valuable tool to characterize phenotypic traits and their genetic control. Here meiotic recombination frequencies are analysed in nine geographically and ecologically diverse accessions of Arabidopsis thaliana, and a comparative study was carried out incorporating previous data from another eight accessions. Chiasma frequencies, estimated by counting rod and ring bivalents at metaphase I, varied up to 22% among accessions. However, no differences were found among plants of the same accession. There was a relationship, which does not necessarily imply direct proportionality, between the size of the chromosomes and their mean chiasma frequency. Chiasma frequency and distribution between arms and among chromosomes were not consistent over accessions. These findings indicate the existence of genetic factors controlling meiotic recombination both throughout the whole genome and at the whole chromosome level. The reliability of chiasma scoring as an indicator of reciprocal recombination events is also discussed.
Collapse
Affiliation(s)
- E López
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Campo D, García-Vázquez E. Evolution in the block: common elements of 5S rDNA organization and evolutionary patterns in distant fish genera. Genome 2011; 55:33-44. [PMID: 22171996 DOI: 10.1139/g11-074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 5S rDNA is organized in the genome as tandemly repeated copies of a structural unit composed of a coding sequence plus a nontranscribed spacer (NTS). The coding region is highly conserved in the evolution, whereas the NTS vary in both length and sequence. It has been proposed that 5S rRNA genes are members of a gene family that have arisen through concerted evolution. In this study, we describe the molecular organization and evolution of the 5S rDNA in the genera Lepidorhombus and Scophthalmus (Scophthalmidae) and compared it with already known 5S rDNA of the very different genera Merluccius (Merluccidae) and Salmo (Salmoninae), to identify common structural elements or patterns for understanding 5S rDNA evolution in fish. High intra- and interspecific diversity within the 5S rDNA family in all the genera can be explained by a combination of duplications, deletions, and transposition events. Sequence blocks with high similarity in all the 5S rDNA members across species were identified for the four studied genera, with evidences of intense gene conversion within noncoding regions. We propose a model to explain the evolution of the 5S rDNA, in which the evolutionary units are blocks of nucleotides rather than the entire sequences or single nucleotides. This model implies a "two-speed" evolution: slow within blocks (homogenized by recombination) and fast within the gene family (diversified by duplications and deletions).
Collapse
Affiliation(s)
- Daniel Campo
- Departamento de Biologia Funcional, Universidad de Oviedo, Spain
| | | |
Collapse
|
22
|
Abstract
Recombination, together with mutation, generates the raw material of evolution, is essential for reproduction and lies at the heart of all genetic analysis. Recent advances in our ability to construct genome-scale, high-resolution recombination maps and new molecular techniques for analysing recombination products have substantially furthered our understanding of this important biological phenomenon in humans and mice: from describing the properties of recombination hot spots in male and female meiosis to the recombination landscape along chromosomes. This progress has been accompanied by the identification of trans-acting systems that regulate the location and relative activity of individual hot spots.
Collapse
|
23
|
Stoletzki N. The surprising negative correlation of gene length and optimal codon use--disentangling translational selection from GC-biased gene conversion in yeast. BMC Evol Biol 2011; 11:93. [PMID: 21481245 PMCID: PMC3096941 DOI: 10.1186/1471-2148-11-93] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 04/11/2011] [Indexed: 02/06/2023] Open
Abstract
Background Surprisingly, in several multi-cellular eukaryotes optimal codon use correlates negatively with gene length. This contrasts with the expectation under selection for translational accuracy. While suggested explanations focus on variation in strength and efficiency of translational selection, it has rarely been noticed that the negative correlation is reported only in organisms whose optimal codons are biased towards codons that end with G or C (-GC). This raises the question whether forces that affect base composition - such as GC-biased gene conversion - contribute to the negative correlation between optimal codon use and gene length. Results Yeast is a good organism to study this as equal numbers of optimal codons end in -GC and -AT and one may hence compare frequencies of optimal GC- with optimal AT-ending codons to disentangle the forces. Results of this study demonstrate in yeast frequencies of GC-ending (optimal AND non-optimal) codons decrease with gene length and increase with recombination. A decrease of GC-ending codons along genes contributes to the negative correlation with gene length. Correlations with recombination and gene expression differentiate between GC-ending and optimal codons, and also substitution patterns support effects of GC-biased gene conversion. Conclusion While the general effect of GC-biased gene conversion is well known, the negative correlation of optimal codon use with gene length has not been considered in this context before. Initiation of gene conversion events in promoter regions and the presence of a gene conversion gradient most likely explain the observed decrease of GC-ending codons with gene length and gene position.
Collapse
Affiliation(s)
- Nina Stoletzki
- Ludwig-Maximilan Universität, Biocenter, Grosshadernerstr, 2, D-82152 Planegg-Martinsried, Germany.
| |
Collapse
|
24
|
The Rate and Tract Length of Gene Conversion between Duplicated Genes. Genes (Basel) 2011; 2:313-31. [PMID: 24710193 PMCID: PMC3924818 DOI: 10.3390/genes2020313] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 03/11/2011] [Accepted: 03/17/2011] [Indexed: 11/26/2022] Open
Abstract
Interlocus gene conversion occurs such that a certain length of DNA fragment is non-reciprocally transferred (copied and pasted) between paralogous regions. To understand the rate and tract length of gene conversion, there are two major approaches. One is based on mutation-accumulation experiments, and the other uses natural DNA sequence variation. In this review, we overview the two major approaches and discuss their advantages and disadvantages. In addition, to demonstrate the importance of statistical analysis of empirical and evolutionary data for estimating tract length, we apply a maximum likelihood method to several data sets.
Collapse
|
25
|
Clément Y, Arndt PF. Substitution patterns are under different influences in primates and rodents. Genome Biol Evol 2011; 3:236-45. [PMID: 21339508 PMCID: PMC3068003 DOI: 10.1093/gbe/evr011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There are large-scale variations of the GC-content along mammalian chromosomes that have been called isochore structures. Primates and rodents have different isochore structures, which suggests that these lineages exhibit different modes of GC-content evolution. It has been shown that, in the human lineage, GC-biased gene conversion (gBGC), a neutral process associated with meiotic recombination, acts on GC-content evolution by influencing A or T to G or C substitution rates. We computed genome-wide substitution patterns in the mouse lineage from multiple alignments and compared them with substitution patterns in the human lineage. We found that in the mouse lineage, gBGC is active but weaker than in the human lineage and that male-specific recombination better predicts GC-content evolution than female-specific recombination. Furthermore, we were able to show that G or C to A or T substitution rates are predicted by a combination of different factors in both lineages. A or T to G or C substitution rates are most strongly predicted by meiotic recombination in the human lineage but by CpG odds ratio (the observed CpG frequency normalized by the expected CpG frequency) in the mouse lineage, suggesting that substitution patterns are under different influences in primates and rodents.
Collapse
Affiliation(s)
- Yves Clément
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | | |
Collapse
|
26
|
Marsolier-Kergoat MC. A simple model for the influence of meiotic conversion tracts on GC content. PLoS One 2011; 6:e16109. [PMID: 21249197 PMCID: PMC3020949 DOI: 10.1371/journal.pone.0016109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 12/10/2010] [Indexed: 11/19/2022] Open
Abstract
A strong correlation between GC content and recombination rate is observed in many eukaryotes, which is thought to be due to conversion events linked to the repair of meiotic double-strand breaks. In several organisms, the length of conversion tracts has been shown to decrease exponentially with increasing distance from the sites of meiotic double-strand breaks. I show here that this behavior leads to a simple analytical model for the evolution and the equilibrium state of the GC content of sequences devoid of meiotic double-strand break sites. In the yeast Saccharomyces cerevisiae, meiotic double-strand breaks are practically excluded from protein-coding sequences. A good fit was observed between the predictions of the model and the variations of the average GC content of the third codon position (GC3) of S. cerevisiae genes. Moreover, recombination parameters that can be extracted by fitting the data to the model coincide with experimentally determined values. These results thus indicate that meiotic recombination plays an important part in determining the fluctuations of GC content in yeast coding sequences. The model also accounted for the different patterns of GC variations observed in the genes of Candida species that exhibit a variety of sexual lifestyles, and hence a wide range of meiotic recombination rates. Finally, the variations of the average GC3 content of human and chicken coding sequences could also be fitted by the model. These results suggest the existence of a widespread pattern of GC variation in eukaryotic genes due to meiotic recombination, which would imply the generality of two features of meiotic recombination: its association with GC-biased gene conversion and the quasi-exclusion of meiotic double-strand breaks from coding sequences. Moreover, the model points out to specific constraints on protein fragments encoded by exon terminal sequences, which are the most affected by the GC bias.
Collapse
|
27
|
Saintenac C, Faure S, Remay A, Choulet F, Ravel C, Paux E, Balfourier F, Feuillet C, Sourdille P. Variation in crossover rates across a 3-Mb contig of bread wheat (Triticum aestivum) reveals the presence of a meiotic recombination hotspot. Chromosoma 2010; 120:185-98. [PMID: 21161258 DOI: 10.1007/s00412-010-0302-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/27/2010] [Accepted: 11/20/2010] [Indexed: 10/18/2022]
Abstract
In bread wheat (Triticum aestivum L.), initial studies using deletion lines indicated that crossover (CO) events occur mainly in the telomeric regions of the chromosomes with a possible correlation with the presence of genes. However, little is known about the distribution of COs at the sequence level. To investigate this, we studied in detail the pattern of COs along a contig of 3.110 Mb using two F2 segregating populations (Chinese Spring × Renan (F2-CsRe) and Chinese Spring × Courtot (F2-CsCt)) each containing ~2,000 individuals. The availability of the sequence of the contig from Cs enabled the development of 318 markers among which 23 co-dominant polymorphic markers (11 SSRs and 12 SNPs) were selected for CO distribution analyses. The distribution of CO events was not homogeneous throughout the contig, ranging from 0.05 to 2.77 cM/Mb, but was conserved between the two populations despite very different contig recombination rate averages (0.82 cM/Mb in F2-CsRe vs 0.35 cM/Mb in F2-CsCt). The CO frequency was correlated with the percentage of coding sequence in Cs and with the polymorphism rate between Cs and Re or Ct in both populations, indicating an impact of these two factors on CO distribution. At a finer scale, COs were found in a region covering 2.38 kb, spanning a gene coding for a glycosyl transferase (Hga3), suggesting the presence of a CO hotspot. A non-crossover event covering at least 453 bp was also identified in the same interval. From these results, we can conclude that gene content could be one of the factors driving recombination in bread wheat.
Collapse
Affiliation(s)
- Cyrille Saintenac
- UMR 1095, Genetics, Diversity and Ecophysiology of Cereals, INRA-UBP, Domaine de Crouël, 234 Avenue du Brézet, Clermont-Ferrand, 63100, France
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Salmon A, Flagel L, Ying B, Udall JA, Wendel JF. Homoeologous nonreciprocal recombination in polyploid cotton. THE NEW PHYTOLOGIST 2010; 186:123-34. [PMID: 19925554 DOI: 10.1111/j.1469-8137.2009.03093.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Polyploid formation and processes that create partial genomic duplication generate redundant genomic information, whose fate is of particular interest to evolutionary biologists. Different processes can lead to diversification among duplicate genes, which may be counterbalanced by mechanisms that retard divergence, including gene conversion via nonreciprocal homoeologous exchange. Here, we used genomic resources in diploid and allopolyploid cotton (Gossypium) to detect homoeologous single nucleotide polymorphisms provided by expressed sequence tags from G. arboreum (A genome), G. raimondii (D genome) and G. hirsutum (AD genome), allowing us to identify homoeo-single nucleotide polymorphism patterns indicative of potential homoeologous exchanges. We estimated the proportion of contigs in G. hirsutum that have experienced nonreciprocal homoeologous exchanges since the origin of polyploid cotton 1-2 million years ago (Mya) to be between 1.8% and 1.9%. To address the question of when the intergenomic exchange occurred, we assayed six of the genes affected by homoeo-recombination in all five Gossypium allopolyploids using a phylogenetic approach. This analysis revealed that nonreciprocal homoeologous exchanges have occurred throughout polyploid divergence and speciation, as opposed to saltationally with polyploid formation. In addition, some genomic regions show multiple patterns of homoeologous recombination among species.
Collapse
Affiliation(s)
- Armel Salmon
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | |
Collapse
|
29
|
Stapley J, Birkhead TR, Burke T, Slate J. Pronounced inter- and intrachromosomal variation in linkage disequilibrium across the zebra finch genome. Genome Res 2010; 20:496-502. [PMID: 20357051 DOI: 10.1101/gr.102095.109] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The extent of nonrandom association of alleles at two or more loci, termed linkage disequilibrium (LD), can reveal much about population demography, selection, and recombination rate, and is a key consideration when designing association mapping studies. Here, we describe a genome-wide analysis of LD in the zebra finch (Taeniopygia guttata) using 838 single nucleotide polymorphisms and present LD maps for all assembled chromosomes. We found that LD declined with physical distance approximately five times faster on the microchromosomes compared to macrochromosomes. The distribution of LD across individual macrochromosomes also varied in a distinct pattern. In the center of the macrochromosomes there were large blocks of markers, sometimes spanning tens of mega bases, in strong LD whereas on the ends of macrochromosomes LD declined more rapidly. Regions of high LD were not simply the result of suppressed recombination around the centromere and this pattern has not been observed previously in other taxa. We also found evidence that this pattern of LD has remained stable across many generations. The variability in LD between and within chromosomes has important implications for genome wide association studies in birds and for our understanding of the distribution of recombination events and the processes that govern them.
Collapse
Affiliation(s)
- Jessica Stapley
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK.
| | | | | | | |
Collapse
|
30
|
A recombination hotspot in a schizophrenia-associated region of GABRB2. PLoS One 2010; 5:e9547. [PMID: 20221451 PMCID: PMC2833194 DOI: 10.1371/journal.pone.0009547] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 01/28/2010] [Indexed: 12/01/2022] Open
Abstract
Background Schizophrenia is a major disorder with complex genetic mechanisms. Earlier, population genetic studies revealed the occurrence of strong positive selection in the GABRB2 gene encoding the β2 subunit of GABAA receptors, within a segment of 3,551 bp harboring twenty-nine single nucleotide polymorphisms (SNPs) and containing schizophrenia-associated SNPs and haplotypes. Methodology/Principal Findings In the present study, the possible occurrence of recombination in this ‘S1–S29’ segment was assessed. The occurrence of hotspot recombination was indicated by high resolution recombination rate estimation, haplotype diversity, abundance of rare haplotypes, recurrent mutations and torsos in haplotype networks, and experimental haplotyping of somatic and sperm DNA. The sub-segment distribution of relative recombination strength, measured by the ratio of haplotype diversity (Hd) over mutation rate (θ), was indicative of a human specific Alu-Yi6 insertion serving as a central recombining sequence facilitating homologous recombination. Local anomalous DNA conformation attributable to the Alu-Yi6 element, as suggested by enhanced DNase I sensitivity and obstruction to DNA sequencing, could be a contributing factor of the increased sequence diversity. Linkage disequilibrium (LD) analysis yielded prominent low LD points that supported ongoing recombination. LD contrast revealed significant dissimilarity between control and schizophrenic cohorts. Among the large array of inferred haplotypes, H26 and H73 were identified to be protective, and H19 and H81 risk-conferring, toward the development of schizophrenia. Conclusions/Significance The co-occurrence of hotspot recombination and positive selection in the S1–S29 segment of GABRB2 has provided a plausible contribution to the molecular genetics mechanisms for schizophrenia. The present findings therefore suggest that genome regions characterized by the co-occurrence of positive selection and hotspot recombination, two interacting factors both affecting genetic diversity, merit close scrutiny with respect to the etiology of common complex disorders.
Collapse
|
31
|
Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C, Przeworski M, Coop G, de Massy B. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 2009; 327:836-40. [PMID: 20044539 DOI: 10.1126/science.1183439] [Citation(s) in RCA: 730] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Meiotic recombination events cluster into narrow segments of the genome, defined as hotspots. Here, we demonstrate that a major player for hotspot specification is the Prdm9 gene. First, two mouse strains that differ in hotspot usage are polymorphic for the zinc finger DNA binding array of PRDM9. Second, the human consensus PRDM9 allele is predicted to recognize the 13-mer motif enriched at human hotspots; this DNA binding specificity is verified by in vitro studies. Third, allelic variants of PRDM9 zinc fingers are significantly associated with variability in genome-wide hotspot usage among humans. Our results provide a molecular basis for the distribution of meiotic recombination in mammals, in which the binding of PRDM9 to specific DNA sequences targets the initiation of recombination at specific locations in the genome.
Collapse
Affiliation(s)
- F Baudat
- Institut de Génétique Humaine, UPR1142, CNRS, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ng SH, Maas SA, Petkov PM, Mills KD, Paigen K. Colocalization of somatic and meiotic double strand breaks near the Myc oncogene on mouse chromosome 15. Genes Chromosomes Cancer 2009; 48:925-30. [PMID: 19603522 DOI: 10.1002/gcc.20693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Both somatic and meiotic recombinations involve the repair of DNA double strand breaks (DSBs) that occur at preferred locations in the genome. Improper repair of DSBs during either mitosis or meiosis can lead to mutations, chromosomal aberration such as translocations, cancer, and/or cell death. Currently, no model exists that explains the locations of either spontaneous somatic DSBs or programmed meiotic DSBs or relates them to each other. One common class of tumorigenic translocations arising from DSBs is chromosomal rearrangements near the Myc oncogene. Myc translocations have been associated with Burkitt lymphoma in humans, plasmacytoma in mice, and immunocytoma in rats. Comparing the locations of somatic and meiotic DSBs near the mouse Myc oncogene, we demonstrated that the placement of these DSBs is not random and that both events clustered in the same short discrete region of the genome. Our work shows that both somatic and meiotic DSBs tend to occur in proximity to each other within the Myc region, suggesting that they share common originating features. It is likely that some regions of the genome are more susceptible to both somatic and meiotic DSBs, and the locations of meiotic hotspots may be an indicator of genomic regions more susceptible to DNA damage.
Collapse
Affiliation(s)
- Siemon H Ng
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | | | | |
Collapse
|
33
|
Duret L, Galtier N. Biased gene conversion and the evolution of mammalian genomic landscapes. Annu Rev Genomics Hum Genet 2009; 10:285-311. [PMID: 19630562 DOI: 10.1146/annurev-genom-082908-150001] [Citation(s) in RCA: 485] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recombination is typically thought of as a symmetrical process resulting in large-scale reciprocal genetic exchanges between homologous chromosomes. Recombination events, however, are also accompanied by short-scale, unidirectional exchanges known as gene conversion in the neighborhood of the initiating double-strand break. A large body of evidence suggests that gene conversion is GC-biased in many eukaryotes, including mammals and human. AT/GC heterozygotes produce more GC- than AT-gametes, thus conferring a population advantage to GC-alleles in high-recombining regions. This apparently unimportant feature of our molecular machinery has major evolutionary consequences. Structurally, GC-biased gene conversion explains the spatial distribution of GC-content in mammalian genomes-the so-called isochore structure. Functionally, GC-biased gene conversion promotes the segregation and fixation of deleterious AT --> GC mutations, thus increasing our genomic mutation load. Here we review the recent evidence for a GC-biased gene conversion process in mammals, and its consequences for genomic landscapes, molecular evolution, and human functional genomics.
Collapse
Affiliation(s)
- Laurent Duret
- Université de Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622, Villeurbanne, France.
| | | |
Collapse
|
34
|
Castric V, Bechsgaard JS, Grenier S, Noureddine R, Schierup MH, Vekemans X. Molecular Evolution within and between Self-Incompatibility Specificities. Mol Biol Evol 2009; 27:11-20. [DOI: 10.1093/molbev/msp224] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
35
|
Emergence of Complex Haplotypes from Microevolutionary Variation in Sequence and Structure of Colias Phosphoglucose Isomerase. J Mol Evol 2009; 68:433-47. [DOI: 10.1007/s00239-009-9237-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Revised: 03/03/2009] [Accepted: 04/08/2009] [Indexed: 10/20/2022]
|
36
|
Parvanov ED, Ng SHS, Petkov PM, Paigen K. Trans-regulation of mouse meiotic recombination hotspots by Rcr1. PLoS Biol 2009; 7:e36. [PMID: 19226189 PMCID: PMC2642880 DOI: 10.1371/journal.pbio.1000036] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 01/07/2009] [Indexed: 11/20/2022] Open
Abstract
Meiotic recombination is required for the orderly segregation of chromosomes during meiosis and for providing genetic diversity among offspring. Among mammals, as well as yeast and higher plants, recombination preferentially occurs at highly delimited chromosomal sites 1–2 kb long known as hotspots. Although considerable progress has been made in understanding the roles various proteins play in carrying out the molecular events of the recombination process, relatively little is understood about the factors controlling the location and relative activity of mammalian recombination hotspots. To search for trans-acting factors controlling the positioning of recombination events, we compared the locations of crossovers arising in an 8-Mb segment of a 100-Mb region of mouse Chromosome 1 (Chr 1) when the longer region was heterozygous C57BL/6J (B6) × CAST/EiJ (CAST) and the remainder of the genome was either similarly heterozygous or entirely homozygous B6. The lack of CAST alleles in the remainder of the genome resulted in profound changes in hotspot activity in both females and males. Recombination activity was lost at several hotspots; new, previously undetected hotspots appeared; and still other hotspots remained unaffected, indicating the presence of distant trans-acting gene(s) whose CAST allele(s) activate or suppress the activity of specific hotspots. Testing the activity of three activated hotspots in sperm samples from individual male progeny of two genetic crosses, we identified a single trans-acting regulator of hotspot activity, designated Rcr1, that is located in a 5.30-Mb interval (11.74–17.04 Mb) on Chr 17. Using an Escherichia coli cloning assay to characterize the molecular products of recombination at two of these hotspots, we found that Rcr1 controls the appearance of both crossover and noncrossover gene conversion events, indicating that it likely controls the sites of the double-strand DNA breaks that initiate the recombination process. Recombination is an essential aspect of meiosis, ensuring proper contact and exchange of genetic material between homologous parental chromosomes, as well as their subsequent segregation to produce haploid gametes. In humans and mice, recombination events are located at preferential sites termed hotspots, whose placement and activity are tightly regulated. We have now identified a hotspot-regulating locus in mammals, Rcr1, that simultaneously controls the locations of multiple hotspots. The discovery of Rcr1 indicates the existence of a newly emerging class of genes important in the recombination processes. Gaining further insights into their function may contribute to a better understanding of genetic factors underlying human fertility and evolution. Rcr1 is identified as atrans-regulator of meiotic recombination hotspots that appears to act at the initiation of recombination and that maps to a 5.3-megabase region on mouse Chromosome 17.
Collapse
|
37
|
Bourgon R, Mancera E, Brozzi A, Steinmetz LM, Huber W. Array-based genotyping in S.cerevisiae using semi-supervised clustering. ACTA ACUST UNITED AC 2009; 25:1056-62. [PMID: 19237444 PMCID: PMC2666814 DOI: 10.1093/bioinformatics/btp104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION Microarrays provide an accurate and cost-effective method for genotyping large numbers of individuals at high resolution. The resulting data permit the identification of loci at which genetic variation is associated with quantitative traits, or fine mapping of meiotic recombination, which is a key determinant of genetic diversity among individuals. Several issues inherent to short oligonucleotide arrays -- cross-hybridization, or variability in probe response to target -- have the potential to produce genotyping errors. There is a need for improved statistical methods for array-based genotyping. RESULTS We developed ssGenotyping (ssG), a multivariate, semi-supervised approach for using microarrays to genotype haploid individuals at thousands of polymorphic sites. Using a meiotic recombination dataset, we show that ssG is more accurate than existing supervised classification methods, and that it produces denser marker coverage. The ssG algorithm is able to fit probe-specific affinity differences and to detect and filter spurious signal, permitting high-confidence genotyping at nucleotide resolution. We also demonstrate that oligonucleotide probe response depends significantly on genomic background, even when the probe's specific target sequence is unchanged. As a result, supervised classifiers trained on reference strains may not generalize well to diverged strains; ssG's semi-supervised approach, on the other hand, adapts automatically.
Collapse
Affiliation(s)
- Richard Bourgon
- EMBL, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | | | | | | | | |
Collapse
|
38
|
Abstract
The recombination between homologous chromosomes during the prophase of the first meiotic division plays an essential role in the formation of euploid gametes, as well as contributing to genetic diversity through the generation of new allele combinations. Two types of products are formed, crossovers (CO) and gene conversions not associated with a crossover, also called noncrossovers (NCO). They result from the repair through differentiated pathways of a common initiating event, DNA double-strand breaks, formation of which is programmed during early meiotic prophase. In contrast to CO, little is known on the frequency, distribution, and regulation of NCO in mammals, mostly due to the technical challenge represented by their detection. However, the development of batch sperm-typing methods allowed for the detection of meiotic NCO products at meiotic recombination hotspots in human and mice. Several recent studies based on this technique demonstrated that mammalian CO hotspots are sites of recombination initiation and that the formation of CO and NCO has different genetic requirements. Here, we describe a method for detecting and characterizing CO and NCO, which has been applied to the analysis of the mouse Psmb9 recombination hotspot.
Collapse
Affiliation(s)
- Frédéric Baudat
- Institute of Human Genetics, Centre National de la Recherche Scienitifique, Montpellier, France
| | | |
Collapse
|
39
|
Ludin K, Mata J, Watt S, Lehmann E, Bähler J, Kohli J. Sites of strong Rec12/Spo11 binding in the fission yeast genome are associated with meiotic recombination and with centromeres. Chromosoma 2008; 117:431-44. [PMID: 18449558 PMCID: PMC3671157 DOI: 10.1007/s00412-008-0159-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 03/14/2008] [Accepted: 03/14/2008] [Indexed: 10/22/2022]
Abstract
Meiotic recombination arises from Rec12/Spo11-dependent formation of DNA double-strand breaks (DSBs) and their subsequent repair. We identified Rec12-binding peaks across the Schizosaccharomyces pombe genome using chromatin immunoprecipitation after reversible formaldehyde cross-linking combined with whole-genome DNA microarrays. Strong Rec12 binding coincided with previously identified DSBs at the recombination hotspots ura4A, mbs1, and mbs2 and correlated with DSB formation at a new site. In addition, Rec12 binding corresponded to eight novel conversion hotspots and correlated with crossover density in segments of chromosome I. Notably, Rec12 binding inversely correlated with guanine-cytosine (GC) content, contrary to findings in Saccharomyces cerevisiae. Although both replication origins and Rec12-binding sites preferred AT-rich gene-free regions, they seemed to exclude each other. We also uncovered a connection between binding sites of Rec12 and meiotic cohesin Rec8. Rec12-binding peaks lay often within 2.5 kb of a Rec8-binding peak. Rec12 binding showed preference for large intergenic regions and was found to bind preferentially near to genes expressed strongly in meiosis. Surprisingly, Rec12 binding was also detected in centromeric core regions, which raises the intriguing possibility that Rec12 plays additional roles in meiotic chromosome dynamics.
Collapse
Affiliation(s)
- Katja Ludin
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
40
|
Cut thy neighbor: cyclic birth and death of recombination hotspots via genetic conflict. Genetics 2008; 179:2229-38. [PMID: 18689896 DOI: 10.1534/genetics.107.085563] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Most recombination takes place in numerous, localized regions called hotspots. However, empirical evidence indicates that nascent hotspots are susceptible to removal due to biased gene conversion, so it is paradoxical that they should be so widespread. Previous modeling work has shown that hotspots can evolve due to genetic drift overpowering their intrinsic disadvantage. Here we synthesize recent theoretical and empirical results to show how natural selection can favor hotspots. We propose that hotspots are part of a cycle of antagonistic coevolution between two tightly linked chromosomal regions: an inducer region that initiates recombination during meiosis by cutting within a nearby region of DNA and the cut region itself, which can evolve to be resistant to cutting. Antagonistic coevolution between inducers and their cut sites is driven by recurrent episodes of Hill-Robertson interference, genetic hitchhiking, and biased gene conversion.
Collapse
|
41
|
Paigen K, Szatkiewicz JP, Sawyer K, Leahy N, Parvanov ED, Ng SHS, Graber JH, Broman KW, Petkov PM. The recombinational anatomy of a mouse chromosome. PLoS Genet 2008; 4:e1000119. [PMID: 18617997 PMCID: PMC2440539 DOI: 10.1371/journal.pgen.1000119] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 06/04/2008] [Indexed: 11/18/2022] Open
Abstract
Among mammals, genetic recombination occurs at highly delimited sites known as recombination hotspots. They are typically 1–2 kb long and vary as much as a 1,000-fold or more in recombination activity. Although much is known about the molecular details of the recombination process itself, the factors determining the location and relative activity of hotspots are poorly understood. To further our understanding, we have collected and mapped the locations of 5,472 crossover events along mouse Chromosome 1 arising in 6,028 meioses of male and female reciprocal F1 hybrids of C57BL/6J and CAST/EiJ mice. Crossovers were mapped to a minimum resolution of 225 kb, and those in the telomere-proximal 24.7 Mb were further mapped to resolve individual hotspots. Recombination rates were evolutionarily conserved on a regional scale, but not at the local level. There was a clear negative-exponential relationship between the relative activity and abundance of hotspot activity classes, such that a small number of the most active hotspots account for the majority of recombination. Females had 1.2× higher overall recombination than males did, although the sex ratio showed considerable regional variation. Locally, entirely sex-specific hotspots were rare. The initiation of recombination at the most active hotspot was regulated independently on the two parental chromatids, and analysis of reciprocal crosses indicated that parental imprinting has subtle effects on recombination rates. It appears that the regulation of mammalian recombination is a complex, dynamic process involving multiple factors reflecting species, sex, individual variation within species, and the properties of individual hotspots. In most eukaryotic organisms, recombination—the exchange of genetic information between homologous chromosomes—ensures the proper recognition and segregation of chromosomes during meiosis. Recombination events in mammals are not randomly positioned along the chromosomes but occur in preferential 1–2-kilobase sequences termed hotspots. Different species such as humans and mice do not share hotspots, although the same principles almost certainly regulate their placement in the genome. Hotspot positions and activities depend on genetic background and show sex-specific differences. In this study, we present a detailed analysis of recombination activity along the largest mouse chromosome, finding that recombination is regulated on multiple levels, including regional positioning relative to the chromosomal ends, local gene content, sex-specific mechanisms of hotspot recognition, and parental origin. Our results will contribute to further understanding of one of the most fundamental biological processes and are likely to cast light on several aspects of population genetics and evolutionary biology, as well as enhance our practical ability to define the genetic components of human disease.
Collapse
Affiliation(s)
- Kenneth Paigen
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Jin P. Szatkiewicz
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Kathryn Sawyer
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Nicole Leahy
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Emil D. Parvanov
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Siemon H. S. Ng
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Joel H. Graber
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Karl W. Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Petko M. Petkov
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail:
| |
Collapse
|
42
|
Fraction of informative recombinations: a heuristic approach to analyze recombination rates. Genetics 2008; 178:2069-79. [PMID: 18430934 DOI: 10.1534/genetics.107.082255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this article we present a new heuristic approach (informative recombinations, InfRec) to analyze recombination density at the sequence level. InfRec is intuitive and easy and combines previously developed methods that (i) resolve genotypes into haplotypes, (ii) estimate the minimum number of recombinations, and (iii) evaluate the fraction of informative recombinations. We tested this approach in its sliding-window version on 117 genes from the SeattleSNPs program, resequenced in 24 African-Americans (AAs) and 23 European-Americans (EAs). We obtained population recombination rate estimates (rho(obs)) of 0.85 and 0.37 kb(-1) in AAs and EAs, respectively. Coalescence simulations indicated that these values account for both the recombinations and the gene conversions in the history of the sample. The intensity of rho(obs) varied considerably along the sequence, revealing the presence of recombination hotspots. Overall, we observed approximately 80% of recombinations in one-third and approximately 50% in only 10% of the sequence. InfRec performance, tested on published simulated and additional experimental data sets, was similar to that of other hotspot detection methods. Fast, intuitive, and visual, InfRec is not constrained by sample size limitations. It facilitates understanding data and provides a simple and flexible tool to analyze recombination intensity along the sequence.
Collapse
|
43
|
Davis L, Rozalén AE, Moreno S, Smith GR, Martín-Castellanos C. Rec25 and Rec27, novel linear-element components, link cohesin to meiotic DNA breakage and recombination. Curr Biol 2008; 18:849-54. [PMID: 18514516 PMCID: PMC3119532 DOI: 10.1016/j.cub.2008.05.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 04/18/2008] [Accepted: 05/02/2008] [Indexed: 01/12/2023]
Abstract
Meiosis is a specialized nuclear division by which sexually reproducing diploid organisms generate haploid gametes. Recombination between homologous chromosomes facilitates accurate meiotic chromosome segregation and is initiated by DNA double-strand breaks (DSBs) made by the conserved topoisomerase-like protein Spo11 (Rec12 in fission yeast), but DSBs are not evenly distributed across the genome. In Schizosaccharomyces pombe, proteinaceous structures known as linear elements (LinEs) are formed during meiotic prophase. The meiosis-specific cohesin subunits Rec8 and Rec11 are essential for DSB formation in some regions of the genome, as well as for formation of LinEs or the related synaptonemal complex (SC) in other eukaryotes. Proteins required for DSB formation decorate LinEs, and mutants lacking Rec10, a major component of LinEs, are completely defective for recombination. Although recombination may occur in the context of LinEs, it is not well understood how Rec10 is loaded onto chromosomes. We describe two novel components of LinEs in fission yeast, Rec25 and Rec27. Comparisons of rec25Delta, rec27Delta, and rec10Delta mutants suggest multiple pathways to load Rec10. In the major pathway, Rec10 is loaded, together with Rec25 and Rec27, in a Rec8-dependent manner with subsequent region-specific effects on recombination.
Collapse
Affiliation(s)
- Luther Davis
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, U.S.A
| | - Ana E. Rozalén
- Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Sergio Moreno
- Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Gerald R. Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, U.S.A
| | - Cristina Martín-Castellanos
- Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
44
|
Meiotic Chromatin: The Substrate for Recombination Initiation. RECOMBINATION AND MEIOSIS 2008. [DOI: 10.1007/7050_2008_040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
45
|
Keeney S. Spo11 and the Formation of DNA Double-Strand Breaks in Meiosis. GENOME DYNAMICS AND STABILITY 2008; 2:81-123. [PMID: 21927624 PMCID: PMC3172816 DOI: 10.1007/7050_2007_026] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Meiotic recombination is carried out through a specialized pathway for the formation and repair of DNA double-strand breaks made by the Spo11 protein, a relative of archaeal topoisomerase VI. This review summarizes recent studies that provide insight to the mechanism of DNA cleavage by Spo11, functional interactions of Spo11 with other proteins required for break formation, mechanisms that control the timing of recombination initiation, and evolutionary conservation and divergence of these processes.
Collapse
Affiliation(s)
- Scott Keeney
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY 10021 USA,
| |
Collapse
|
46
|
Baudat F, de Massy B. Cis- and trans-acting elements regulate the mouse Psmb9 meiotic recombination hotspot. PLoS Genet 2007; 3:e100. [PMID: 17590084 PMCID: PMC1892046 DOI: 10.1371/journal.pgen.0030100] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 05/04/2007] [Indexed: 01/28/2023] Open
Abstract
In most eukaryotes, the prophase of the first meiotic division is characterized by a high level of homologous recombination between homologous chromosomes. Recombination events are not distributed evenly within the genome, but vary both locally and at large scale. Locally, most recombination events are clustered in short intervals (a few kilobases) called hotspots, separated by large intervening regions with no or very little recombination. Despite the importance of regulating both the frequency and the distribution of recombination events, the genetic factors controlling the activity of the recombination hotspots in mammals are still poorly understood. We previously characterized a recombination hotspot located close to the Psmb9 gene in the mouse major histocompatibility complex by sperm typing, demonstrating that it is a site of recombination initiation. With the goal of uncovering some of the genetic factors controlling the activity of this initiation site, we analyzed this hotspot in both male and female germ lines and compared the level of recombination in different hybrid mice. We show that a haplotype-specific element acts at distance and in trans to activate about 2,000-fold the recombination activity at Psmb9. Another haplotype-specific element acts in cis to repress initiation of recombination, and we propose this control to be due to polymorphisms located within the initiation zone. In addition, we describe subtle variations in the frequency and distribution of recombination events related to strain and sex differences. These findings show that most regulations observed act at the level of initiation and provide the first analysis of the control of the activity of a meiotic recombination hotspot in the mouse genome that reveals the interactions of elements located both in and outside the hotspot. In most sexually reproducing species, during meiosis a high level of recombination between homologous chromosomes is induced. These events are not evenly distributed in the genome but clustered in small regions called hotspots. The genetic factors controlling their activity in mammals are still poorly understood. We have performed experiments to identify factors that influence the recombination activity of a hotspot in the mouse genome. By detecting the recombination products by a PCR-based method, we show that the variation of hotspot activity (up to 2,000-fold) is mainly due to differences of initiation frequencies, rather than differences at later steps of recombination. In addition, we identify several levels of controls. First, the initiation of recombination is activated by a haplotype-specific element, localized outside the hotspot and acting in trans (when heterozygous, this element allows for recombination initiation on both homologous chromosomes). This suggests a unique type of regulation requiring the presence of a diffusible factor and/or of communications between homologous chromosomes before recombination. A second element represses the recombination initiation in cis, which might indicate the influence of local polymorphisms affecting initiation events. Our results provide the first functional analysis of the control of recombination initiation sites for meiotic recombination in mammals.
Collapse
Affiliation(s)
- Frédéric Baudat
- Institute of Human Genetics, Centre National de la Recherche Scientifique, Unité Propre de Recherche 1142, Montpellier, France
| | - Bernard de Massy
- Institute of Human Genetics, Centre National de la Recherche Scientifique, Unité Propre de Recherche 1142, Montpellier, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
47
|
Esch E, Szymaniak JM, Yates H, Pawlowski WP, Buckler ES. Using crossover breakpoints in recombinant inbred lines to identify quantitative trait loci controlling the global recombination frequency. Genetics 2007; 177:1851-8. [PMID: 17947409 PMCID: PMC2147985 DOI: 10.1534/genetics.107.080622] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 08/28/2007] [Indexed: 01/02/2023] Open
Abstract
Recombination is a crucial component of evolution and breeding, producing new genetic combinations on which selection can act. Rates of recombination vary tremendously, not only between species but also within species and for specific chromosomal segments. In this study, by examining recombination events captured in recombinant inbred mapping populations previously created for maize, wheat, Arabidopsis, and mouse, we demonstrate that substantial variation exists for genomewide crossover rates in both outcrossed and inbred plant and animal species. We also identify quantitative trait loci (QTL) that control this variation. The method that we developed and employed here holds promise for elucidating factors that regulate meiotic recombination and for creation of hyperrecombinogenic lines, which can help overcome limited recombination that hampers breeding progress.
Collapse
Affiliation(s)
- Elisabeth Esch
- Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | | | | | | | | |
Collapse
|
48
|
Baudat F, de Massy B. Regulating double-stranded DNA break repair towards crossover or non-crossover during mammalian meiosis. Chromosome Res 2007; 15:565-77. [PMID: 17674146 DOI: 10.1007/s10577-007-1140-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During meiosis the programmed induction of DNA double-stranded breaks (DSB) leads to crossover (CO) and non-crossover products (NCO). One key role of CO is to connect homologs before metaphase I and thus to ensure the proper reductional segregation. This role implies an accurate regulation of CO frequency with the establishment of at least one CO per chromosome arm. Current major challenges are to understand how CO and NCO formation are regulated and what is the role of NCO. We present here the current knowledge about CO and NCO and their regulation in mammals. CO density varies widely along chromosomes and their distribution is not random as they are subject to positive interference. As documented in the mouse and human, a significant excess of DSB are generated relative to the number of CO. In fact, evidence has been obtained for the formation of NCO products, for regulation of the choice of DSB repair towards CO or NCO and for a CO specific pathway. We discuss the roles of Msh4, Msh5 and Sycp1 which affect DSB repair and probably not only the CO pathway. We suggest that, in mammals, the regulation of NCO differs from that described in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Frédéric Baudat
- Institute of Human Genetics, UPR1142/CNRS, 141 rue de la Cardonille, 34396, Montpellier cedex 5, France
| | | |
Collapse
|
49
|
Cromie GA, Smith GR. Branching out: meiotic recombination and its regulation. Trends Cell Biol 2007; 17:448-55. [PMID: 17719784 DOI: 10.1016/j.tcb.2007.07.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 07/10/2007] [Accepted: 07/12/2007] [Indexed: 11/27/2022]
Abstract
Homologous recombination is a dynamic process by which DNA sequences and strands are exchanged. In meiosis, the reciprocal DNA recombination events called crossovers are central to the generation of genetic diversity in gametes and are required for homolog segregation in most organisms. Recent studies have shed light on how meiotic crossovers and other recombination products form, how their position and number are regulated and how the DNA molecules undergoing recombination are chosen. These studies indicate that the long-dominant, unifying model of recombination proposed by Szostak et al. applies, with modification, only to a subset of recombination events. Instead, crossover formation and its control involve multiple pathways, with considerable variation among model organisms. These observations force us to 'branch out' in our thinking about meiotic recombination.
Collapse
Affiliation(s)
- Gareth A Cromie
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA.
| | | |
Collapse
|
50
|
Kauppi L, Jasin M, Keeney S. Meiotic crossover hotspots contained in haplotype block boundaries of the mouse genome. Proc Natl Acad Sci U S A 2007; 104:13396-401. [PMID: 17690247 PMCID: PMC1948908 DOI: 10.1073/pnas.0701965104] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Fertility requires successful chromosome segregation in meiosis, which in most sexual organisms depends on the formation of appropriately placed crossovers. The nonrandom genome-wide distributions of meiotic recombination events have been examined at the molecular level experimentally in yeast and by inference from linkage disequilibrium patterns in humans. Thus far, no method has existed for pinpointing sites of crossing-over on a genome-wide scale in an experimentally tractable animal whose genome size and complexity models that of humans. Here, we present a genomic approach to identify mouse crossover hotspots, based on targeting haplotype block boundaries. This represents a previously undescribed method potentially applicable to large-scale mouse hotspot identification. Using this method, we have successfully predicted the location of two previously uncharacterized crossover hotspots in male mice. As increasing amounts of single-nucleotide polymorphism data emerge, this approach will be useful for investigating the recombination landscape of the mouse genome.
Collapse
Affiliation(s)
- Liisa Kauppi
- Molecular Biology and Developmental Biology Programs, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.
| | | | | |
Collapse
|