1
|
Gano A, Wojcik H, Danseglio NC, Kelliher K, Varlinskaya EI, Deak T. Adolescent intermittent ethanol (AIE) sensitized fever in male Sprague Dawley rats exposed to poly I:C in adulthood. Brain Behav Immun 2024; 120:82-97. [PMID: 38777284 PMCID: PMC11269031 DOI: 10.1016/j.bbi.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024] Open
Abstract
Fever plays an indispensable role in host defense processes and is used as a rapid index of infection severity. Unfortunately, there are also substantial individual differences in fever reactions with biological sex, immunological history, and other demographic variables contributing to adverse outcomes of infection. The present series of studies were designed to test the hypothesis that a history of adolescent alcohol misuse may be a latent experiential variable that determines fever severity using polyinosinic:polycytidylic acid (poly I:C), a synthetic form of double-stranded RNA that mimics a viral challenge. Adult male and female Sprague Dawley rats were injected with 0 (saline) or 4 mg/kg poly I:C to first establish sex differences in fever sensitivity in Experiment 1 using implanted radiotelemetry devices for remote tracking. In Experiments 2 and 3, adolescent males and females were exposed to either water or ethanol (0 or 4 g/kg intragastrically, 3 days on, 2 days off, ∼P30-P50, 4 cycles/12 exposures total). After a period of abstinence, adult rats (∼P80-96) were then challenged with saline or poly I:C, and fever induction and maintenance were examined across a prolonged time course of 8 h using implanted probes. In Experiments 4 and 5, adult male and female subjects with a prior history of adolescent water or adolescent intermittent ethanol (AIE) were given saline or poly I:C, with tissue collected for protein and gene expression analysis at 5 h post-injection. Initial sex differences in fever sensitivity were minimal in response to the 4 mg/kg dose of poly I:C in ethanol-naïve rats. AIE exposed males injected with poly I:C showed a sensitized fever response as well as enhanced TLR3, IκBα, and IL-1β expression in the nucleus of the solitary tract. Other brain regions related to thermoregulation and peripheral organs such as spleen, liver, and blood showed generalized immune responses to poly I:C, with no differences evident between AIE and water-exposed males. In contrast, AIE did not affect responsiveness to poly I:C in females. Thus, the present findings suggest that adolescent binge drinking may produce sex-specific and long-lasting effects on fever reactivity to viral infection, with preliminary evidence suggesting that these effects may be due to centrally-mediated changes in fever regulation rather than peripheral immunological mechanisms.
Collapse
Affiliation(s)
- Anny Gano
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Hannah Wojcik
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Nina C Danseglio
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Kaitlyn Kelliher
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Elena I Varlinskaya
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA.
| |
Collapse
|
2
|
Abstract
The innate immune system plays a critical role in the ethanol-induced neuroimmune response in the brain. Ethanol initiates the innate immune response via activation of the innate immune receptors Toll-like receptors (TLRs, e.g., TLR4, TLR3, TLR7) and NOD-like receptors (inflammasome NLRs) leading to a release of a plethora of chemokines and cytokines and development of the innate immune response. Cytokines and chemokines can have pro- or anti-inflammatory properties through which they regulate the immune response. In this chapter, we will focus on key cytokines (e.g., IL-1, IL-6, TNF-α) and chemokines (e.g., MCP-1/CCL2) that mediate the ethanol-induced neuroimmune responses. In this regard, we will use IL-1β, as an example cytokine, to discuss the neuromodulatory properties of cytokines on cellular properties and synaptic transmission. We will discuss their involvement through a set of evidence: (1) changes in gene and protein expression following ethanol exposure, (2) association of gene polymorphisms (humans) and alterations in gene expression (animal models) with increased alcohol intake, and (3) modulation of alcohol-related behaviors by transgenic or pharmacological manipulations of chemokine and cytokine systems. Over the last years, our understanding of the molecular mechanisms mediating cytokine- and chemokine-dependent regulation of immune responses has advanced tremendously, and we review evidence pointing to cytokines and chemokines serving as neuromodulators and regulators of neurotransmission.
Collapse
Affiliation(s)
- Marisa Roberto
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA.
| | - Reesha R Patel
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Michal Bajo
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
3
|
Ishiguro T, Takeda J, Fang X, Bronson H, Olson DM. Interleukin (IL)-1 in rat parturition: IL-1 receptors 1 and 2 and accessory proteins abundance in pregnant rat uterus at term - regulation by progesterone. Physiol Rep 2016; 4:4/14/e12866. [PMID: 27440742 PMCID: PMC4962072 DOI: 10.14814/phy2.12866] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/13/2016] [Indexed: 11/24/2022] Open
Abstract
The role of interleukin-1 (IL-1), a pro-inflammatory cytokine, in parturition is typically noted by changes in its concentrations. Studying the expression of its receptor family, IL-1 receptor (IL-1R) 1, IL-1R2, IL-1R accessory protein (IL-1RAcP), and its predominantly brain isoform, IL-1RAcPb, during late gestation in the uterus in the Long-Evans rat is another. We assessed changes in their mRNA and protein relative abundance in the uterus and compared IL-1RAcP and IL-1RAcPb mRNA abundance in uterus, cervix, ovaries, placenta, and whole blood of Long-Evans rats during late gestation or in RU486 and progesterone-treated dams using quantitative real-time PCR and western immunoblotting. IL-1R1, IL-1RAcP, and IL-1RAcPb mRNA abundance significantly increased in the uterus at delivery whereas IL-1R2 mRNA abundance significantly decreased. IL-1R1 protein increased at term and IL-1R2 protein decreased at term compared to nonpregnant uteri. IL1-RAcPb mRNA abundance was less than IL-1RAcP, but in the lower uterine segment it was the highest of all tissues examined. RU486 stimulated preterm delivery and an increase in IL-1R1 mRNA abundance whereas progesterone administration extended pregnancy and suppressed the increase in IL-1R1. These data suggest that changes in uterine sensitivity to IL-1 occur during late gestation and suggest another level of regulation for the control of delivery. The roles for IL-1RAcP and IL-1RAcPb need to be determined, but may relate to different intracellular signaling pathways.
Collapse
Affiliation(s)
- Tomohito Ishiguro
- Departments of Obstetrics and Gynecology, Physiology & Pediatrics, University of Alberta, Edmonton, Canada Departments of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan Departments of Obstetrics and Gynecology, Koshigaya Municipal Hospital, Koshigaya, Japan
| | - Jun Takeda
- Departments of Obstetrics and Gynecology, Physiology & Pediatrics, University of Alberta, Edmonton, Canada Departments of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Xin Fang
- Departments of Obstetrics and Gynecology, Physiology & Pediatrics, University of Alberta, Edmonton, Canada
| | - Heather Bronson
- Departments of Obstetrics and Gynecology, Physiology & Pediatrics, University of Alberta, Edmonton, Canada
| | - David M Olson
- Departments of Obstetrics and Gynecology, Physiology & Pediatrics, University of Alberta, Edmonton, Canada
| |
Collapse
|
4
|
Bajo M, Varodayan FP, Madamba SG, Robert AJ, Casal LM, Oleata CS, Siggins GR, Roberto M. IL-1 interacts with ethanol effects on GABAergic transmission in the mouse central amygdala. Front Pharmacol 2015; 6:49. [PMID: 25852553 PMCID: PMC4365713 DOI: 10.3389/fphar.2015.00049] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 02/28/2015] [Indexed: 11/13/2022] Open
Abstract
Neuroinflammation is hypothesized to enhance alcohol consumption and contribute to the development of alcoholism. GABAergic transmission in the central amygdala (CeA) plays an important role in the transition to alcohol dependence. Therefore, we studied the effects of interleukin-1β (IL-1β), a proinflammatory cytokine mediating ethanol-induced neuroinflammation, and its interaction with ethanol on CeA GABAegic transmission in B6129SF2/J mice. We also assessed ethanol intake in B6129SF2/J mice. Intake with unlimited (24 h) ethanol access was 9.2–12.7 g/kg (3–15% ethanol), while limited (2 h) access produced an intake of 4.1 ± 0.5 g/kg (15% ethanol). In our electrophysiology experiments, we found that recombinant IL-1β (50 and 100 ng/ml) significantly decreased the amplitude of evoked inhibitory postsynaptic potentials (eIPSPs), with no significant effects on paired-pulse facilitation (PPF). IL-1β (50 ng/ml) had dual effects on spontaneous miniature inhibitory postsynaptic currents (mIPSCs): increasing mIPSC frequencies in most CeA neurons, but decreasing both mIPSC frequencies and amplitudes in a few cells. The IL-1β receptor antagonist (IL-1ra; 100 ng/ml) also had dual effects on mIPSCs and prevented the actions of IL-1β on mIPSC frequencies. These results suggest that IL-1β can alter CeA GABAergic transmission at pre- and postsynaptic sites. Ethanol (44 mM) significantly increased eIPSP amplitudes, decreased PPFs, and increased mIPSC frequencies. IL-1β did not alter ethanol’s enhancement of the eIPSP amplitude, but, in IL-1β-responsive neurons, the ethanol effects on mIPSC frequencies were lost. Overall, our data suggest that the IL-1 system is involved in basal GABAergic transmission and that IL-1β interacts with the ethanol-induced facilitation of CeA GABAergic transmission.
Collapse
Affiliation(s)
- Michal Bajo
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute La Jolla, CA, USA
| | - Florence P Varodayan
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute La Jolla, CA, USA
| | - Samuel G Madamba
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute La Jolla, CA, USA
| | - Amanda J Robert
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute La Jolla, CA, USA
| | - Lindsey M Casal
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute La Jolla, CA, USA
| | - Christopher S Oleata
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute La Jolla, CA, USA
| | - George R Siggins
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute La Jolla, CA, USA
| | - Marisa Roberto
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute La Jolla, CA, USA
| |
Collapse
|
5
|
Wu W, Zhang H. Role of tumor necrosis factor-α and interleukin-1β in anorexia induction following oral exposure to the trichothecene deoxynivalenol (vomitoxin) in the mouse. J Toxicol Sci 2014; 39:875-86. [DOI: 10.2131/jts.39.875] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Wenda Wu
- College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Haibin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, China
| |
Collapse
|
6
|
Rage F, Silhol M, Tapia-Arancibia L. IL-1β regulation of BDNF expression in rat cultured hypothalamic neurons depends on the presence of glial cells. Neurochem Int 2006; 49:433-41. [DOI: 10.1016/j.neuint.2006.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 03/01/2006] [Indexed: 11/25/2022]
|
7
|
Tabarean IV, Korn H, Bartfai T. Interleukin-1beta induces hyperpolarization and modulates synaptic inhibition in preoptic and anterior hypothalamic neurons. Neuroscience 2006; 141:1685-95. [PMID: 16777343 DOI: 10.1016/j.neuroscience.2006.05.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 05/03/2006] [Accepted: 05/04/2006] [Indexed: 11/26/2022]
Abstract
Most of the inflammatory effects of the cytokine interleukin 1beta (IL-1beta) are mediated by induction of cyclooxygenase (COX)2 and the subsequent synthesis and release of prostaglandin E2. This transcription-dependent process takes 45-60 min, but IL-1beta, a well-characterized endogenous pyrogen also exerts faster neuronal actions in the preoptic area/anterior hypothalamus. Here, we have studied the fast (1-3 min) signaling by IL-1beta using whole-cell patch clamp recordings in preoptic area/anterior hypothalamus neurons. Exposure to IL-1beta (0.1-1 nM) hyperpolarized a subset ( approximately 20%) of preoptic area/anterior hypothalamus neurons, decreased their input resistance and reduced their firing rate. These effects were associated with an increased frequency of bicuculline-sensitive spontaneous inhibitory postsynaptic currents and putative miniature inhibitory postsynaptic currents, strongly suggesting a presynaptic mechanism of action. These effects require the type 1 interleukin 1 receptor (IL-1R1), and the adapter protein myeloid differentiation primary response protein (MyD88), since they were not observed in cultures obtained from IL-1R1 (-/-) or from MyD88 (-/-) mice. Ceramide, a second messenger of the IL-1R1-dependent fast signaling cascade, is produced by IL-1R1-MyD88-mediated activation of the neutral sphingomyelinase. C2-ceramide, its cell penetrating analog, also increased the frequency of miniature inhibitory postsynaptic currents in a subset of cells. Both IL-1beta and ceramide reduced the delayed rectifier and the A-type K(+) currents in preoptic area/anterior hypothalamus neurons. The latter effect may account in part for the increased spontaneous inhibitory postsynaptic current frequency as suggested by experiments with the A-type K(+) channel blockers 4-aminopyridine. Taken together our data suggest that IL-1beta inhibits the activity of preoptic area/anterior hypothalamus neurons by increasing the presynaptic release of GABA.
Collapse
Affiliation(s)
- I V Tabarean
- Harold L. Dorris Neurological Research Center, Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
8
|
Deak T, Bordner KA, McElderry NK, Barnum CJ, Blandino P, Deak MM, Tammariello SP. Stress-induced increases in hypothalamic IL-1: a systematic analysis of multiple stressor paradigms. Brain Res Bull 2005; 64:541-56. [PMID: 15639551 DOI: 10.1016/j.brainresbull.2004.11.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 11/08/2004] [Accepted: 11/10/2004] [Indexed: 11/27/2022]
Abstract
Exposure to stressors such as footshock, tailshock, and immobilization have been shown to induce hypothalamic IL-1 production, while other stressors such as restraint, maternal separation, social isolation, and predator exposure have no effect on hypothalamic IL-1 levels. This disparity of findings has led to considerable controversy regarding the ability of stressors to induce hypothalamic IL-1 expression. Thus, the goal of the following experiments was to examine hypothalamic IL-1 responses in adult male Sprague-Dawley rats following exposure to a diverse set of stressors. Our data indicate that exposure to 2h of restraint in a Plexiglas tube, glucoprivic challenge induced by administration of 2-deoxyglucose (2-DG), or insulin-induced hypoglycemia all fail to alter hypothalamic IL-1 levels despite robust activation of the pituitary-adrenal response. However, when restraint was administered on an orbital shaker or in combination with insulin-induced hypoglycemia, robust increases in hypothalamic IL-1 were observed. No effects of glucoprivic (2-DG) challenge were observed when combined with restraint, indicating some specificity in the hypothalamic IL-1 response to stress. We also provide a preliminary validation of the ELISA detection method for IL-1, showing that (a) Western blot analyses confirmed strong immunopositive banding at the apparent molecular weight of both mature IL-1beta and the IL-1beta prohormone, and (b) footshock led to a two-fold increase in mRNA for IL-1 in the hypothalamus as detected by RT-PCR. These data provide novel insight into the characteristics of a stressor that may be necessary for the observation of stress-induced increases in hypothalamic IL-1.
Collapse
Affiliation(s)
- Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Diem R, Hobom M, Grötsch P, Kramer B, Bähr M. Interleukin-1 beta protects neurons via the interleukin-1 (IL-1) receptor-mediated Akt pathway and by IL-1 receptor-independent decrease of transmembrane currents in vivo. Mol Cell Neurosci 2003; 22:487-500. [PMID: 12727445 DOI: 10.1016/s1044-7431(02)00042-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recently, we have demonstrated that tumor necrosis factor-alpha (TNF-alpha) rescues retinal ganglion cells (RGCs) from retrograde cell death in vivo after axotomy of the optic nerve. The mechanism of RGC rescue was dependent on TNF-receptor I-mediated potassium current reduction and consecutive activation of the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway. Here, we present evidence that interleukin-1 beta (IL-1 beta) also promotes RGC survival, but shows distinct differences with respect to its neuroprotective mechanisms. Using whole-cell and outside-out patch-clamp techniques, we observed that IL-1 beta decreased both inward sodium current amplitudes and outward potassium current amplitudes. Counteracting these effects by sodium or potassium channel opening inhibited the survival-promoting effects of this cytokine. IL-1 beta-induced current reduction could not be abolished by the interleukin-1 receptor antagonist, indicating that the electrophysiological effects of IL-1 beta are independent of interleukin-1 receptor I (IL-1RI) activation. Western blot analysis revealed an IL-1 beta-induced IL-1RI-dependent upregulation of phospho-Akt. Antagonism of the survival-promoting effects of IL-1 beta by PI3-K inhibition revealed the functional relevance of the PI3-K/Akt pathway in IL-1 beta-induced signal transduction in vivo.
Collapse
Affiliation(s)
- Ricarda Diem
- Neurologische Universitätsklinik, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany.
| | | | | | | | | |
Collapse
|
10
|
Armstrong ME, Loscher CE, Lynch MA, Mills KHG. IL-1beta-dependent neurological effects of the whole cell pertussis vaccine: a role for IL-1-associated signalling components in vaccine reactogenicity. J Neuroimmunol 2003; 136:25-33. [PMID: 12620640 DOI: 10.1016/s0165-5728(02)00468-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immunization with the whole cell pertussis vaccine (Pw), but not the acellular pertussis vaccine (Pa), is associated with a number of neurological side effects. Previously, we have demonstrated a role for interleukin-1beta (IL-1beta) in Pw reactogenicity. Here we report that parenteral Pw administration resulted in a concomitant increase IL-1 type I receptor (IL-1RI) mRNA and a decrease in IL-1 type II receptor (IL-1RII) mRNA expression in the murine hypothalamus. These Pw-induced changes were accompanied by an increase in caspase-1 and interleukin-1beta (IL-1beta), and were associated with increased activity of the stress-activated kinase, p38. In contrast, immunization with Pa failed to activate pro-inflammatory IL-1 responses but resulted in increased IL-1 receptor antagonist (IL-1ra) production. These results suggest that the neurological effects of Pw are associated with central activation of IL-1beta and IL-1-associated signalling components.
Collapse
Affiliation(s)
- Michelle E Armstrong
- Immune Regulation Research Group, Department of Biochemistry, Trinity College, Dublin 2, Ireland
| | | | | | | |
Collapse
|
11
|
Wei R, Listwak SJ, Sternberg EM. Lewis hypothalamic cells constitutively and upon stimulation express higher levels of mRNA for pro-inflammatory cytokines and related molecules: comparison with inflammatory resistant Fischer rat hypothalamic cells. J Neuroimmunol 2003; 135:10-28. [PMID: 12576220 DOI: 10.1016/s0165-5728(02)00429-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Endogenous hypothalamic pro-inflammatory cytokines modulate the hypothalamic-pituitary-adrenal (HPA) axis responses. To investigate whether hypothalamic IL-1beta, IL-6, and tumor necrosis factor-alpha (TNF-alpha) are associated with differential inflammatory susceptibilities between Lewis (LEW/N) and Fischer (F344/N) rats, mRNA levels of pro-inflammatory cytokines and related molecules in hypothalamic cell cultures of both strains were quantified by real-time polymerase chain reaction (PCR). In addition to IL-1beta, IL-6, TNF-alpha, and their receptors, LEW/N hypothalamic cells also transcribed more anti-inflammatory molecules, IL-1RII, IL-1RA, and transforming growth factor (TGFbeta1), than F334/N cells. Our findings suggest that a balance exists between transcripts for endogenous pro- and anti-inflammatory molecules in LEW/N rats that may allow them, under basal conditions, to maintain hypothalamic homeostasis and health. However, under stimulated conditions, this balance may be more easily perturbed toward chronic inflammation.
Collapse
Affiliation(s)
- Rongtai Wei
- Integrative Neural Immune Program, NIMH, NIH, 36 Convent Drive, Room 1A23, Bethesda, MD 20892-4020, USA
| | | | | |
Collapse
|
12
|
Abstract
Immune-system activity induces changes in animal behavior such as decreased food intake, decreased exploratory behavior, increased sleep, and impaired cognitive functioning. These changes are mediated by proinflammatory cytokines, and the administration of cytokines produces the same profile of behavior change as do infection and inflammation. Results demonstrating differential effects of immune-system activation depending on environmental contingencies and physiological states support the hypothesis that the behavioral effects of immune activity may be mediated by motivation. In this article, the author outlines the behavioral changes induced by immune-system activation and discusses evidence for a motivational analysis of immune-induced behavior change and the potential involvement of motivation in human sickness behavior.
Collapse
Affiliation(s)
- Susan J Larson
- Department of Psychology, Concordia College, Moorhead, MN 56562, USA.
| |
Collapse
|
13
|
Cytokines in the brain: From localization and function to clinical implications. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1567-7443(01)80032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|