1
|
Liaw YS, Augustine GJ. The claustrum and consciousness: An update. Int J Clin Health Psychol 2023; 23:100405. [PMID: 37701759 PMCID: PMC10493512 DOI: 10.1016/j.ijchp.2023.100405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023] Open
Abstract
The seminal paper of Crick and Koch (2005) proposed that the claustrum, an enigmatic and thin grey matter structure that lies beside the insular cortex, may be involved in the processing of consciousness. As a result, this otherwise obscure structure has received ever-increasing interest in the search for neural correlates of consciousness. Here we review theories of consciousness and discuss the possible relationship between the claustrum and consciousness. We review relevant experimental evidence collected since the Crick and Koch (2005) paper and consider whether these findings support or contradict their hypothesis. We also explore how future experimental work can be designed to clarify how consciousness emerges from neural activity and to understand the role of the claustrum in consciousness.
Collapse
Affiliation(s)
- Yin Siang Liaw
- Neuroscience & Mental Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - George J. Augustine
- Neuroscience & Mental Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
2
|
Pavel B, Menardy F, Rotaru D, Paslaru AC, Acatrinei C, Zagrean L, Popa D, Zagrean AM. Electrical Stimulation in the Claustrum Area Induces a Deepening of Isoflurane Anesthesia in Rat. Brain Sci 2019; 9:brainsci9110304. [PMID: 31683949 PMCID: PMC6895863 DOI: 10.3390/brainsci9110304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 11/16/2022] Open
Abstract
The role of the claustrum in consciousness and vigilance states was proposed more than two decades ago; however, its role in anesthesia is not yet understood, and this requires more investigation. The aim of our study was to assess the impact of claustrum electrical stimulation during isoflurane anesthesia in adult rats. The claustrum in the left hemisphere was electrically stimulated using a bipolar tungsten electrode inserted stereotaxically. In order to monitor the anesthetic depth, the electrocorticogram (ECoG) was recorded before, during, and after claustrum stimulation using frontal and parietal epidural electrodes placed over the left hemisphere. After reaching stabilized slow-wave isoflurane anesthesia, twenty stimuli, each of one second duration with ten seconds interstimulus duration, were applied. ECoG analysis has shown that, after a delay from the beginning of stimulation, the slow-wave ECoG signal changed to a transient burst suppression (BS) pattern. Our results show that electrical stimulation of the claustrum area during slow-wave isoflurane anesthesia induces a transitory increase in anesthetic depth, documented by the appearance of a BS ECoG pattern, and suggests a potential role of claustrum in anesthesia.
Collapse
Affiliation(s)
- Bogdan Pavel
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania.
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.
| | - Fabien Menardy
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.
| | - Diana Rotaru
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE58AF, UK.
| | - Alexandru Catalin Paslaru
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Camelia Acatrinei
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Leon Zagrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Daniela Popa
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania.
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.
| | - Ana-Maria Zagrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| |
Collapse
|
3
|
Palomero-Gallagher N, Zilles K. Cyto- and receptor architectonic mapping of the human brain. HANDBOOK OF CLINICAL NEUROLOGY 2018; 150:355-387. [PMID: 29496153 DOI: 10.1016/b978-0-444-63639-3.00024-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mapping of the human brain is more than the generation of an atlas-based parcellation of brain regions using histologic or histochemical criteria. It is the attempt to provide a topographically informed model of the structural and functional organization of the brain. To achieve this goal a multimodal atlas of the detailed microscopic and neurochemical structure of the brain must be registered to a stereotaxic reference space or brain, which also serves as reference for topographic assignment of functional data, e.g., functional magnet resonance imaging, electroencephalography, or magnetoencephalography, as well as metabolic imaging, e.g., positron emission tomography. Although classic maps remain pioneering steps, they do not match recent concepts of the functional organization in many regions, and suffer from methodic drawbacks. This chapter provides a summary of the recent status of human brain mapping, which is based on multimodal approaches integrating results of quantitative cyto- and receptor architectonic studies with focus on the cerebral cortex in a widely used reference brain. Descriptions of the methods for observer-independent and statistically testable cytoarchitectonic parcellations, quantitative multireceptor mapping, and registration to the reference brain, including the concept of probability maps and a toolbox for using the maps in functional neuroimaging studies, are provided.
Collapse
Affiliation(s)
- Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH, Aachen, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH, Aachen, Germany; JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany.
| |
Collapse
|
4
|
Carletti R, Tacconi S, Mugnaini M, Gerrard P. Receptor distribution studies. Curr Opin Pharmacol 2017; 35:94-100. [PMID: 28803835 DOI: 10.1016/j.coph.2017.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/23/2017] [Indexed: 12/18/2022]
Abstract
Receptor distribution studies have played a key role in the characterization of receptor systems (e.g. GABAB, NMDA (GluNRs), and Neurokinin 1) and in generating hypotheses to exploit these systems as potential therapeutic targets. Distribution studies can provide important information on the potential role of candidate receptors in normal physiology/disease and alert for possible adverse effects of targeting the receptors. Moreover, they can provide valuable information relating to quantitative target engagement (e.g. % receptor occupancy) to drive mechanistic pharmacokinetic/pharmacodynamic (PK/PD) hypotheses for compounds in the Drug Discovery process. Finally, receptor distribution and quantitative target engagement studies can be used to validate truly translational technologies such as PET ligands and pharmacoEEG paradigms to facilitate bridging of the preclinical/clinical interface and thus increase probability of success.
Collapse
Affiliation(s)
- Renzo Carletti
- Center of Drug Discovery & Development, Aptuit S.r.l., via Fleming 4, 37135 Verona, Italy.
| | - Stefano Tacconi
- Center of Drug Discovery & Development, Aptuit S.r.l., via Fleming 4, 37135 Verona, Italy
| | - Manolo Mugnaini
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co. KG, Knollstraße 50, 67061 Ludwigshafen, Germany
| | - Philip Gerrard
- Center of Drug Discovery & Development, Aptuit S.r.l., via Fleming 4, 37135 Verona, Italy
| |
Collapse
|
5
|
Hadzic M, Jack A, Wahle P. Ionotropic glutamate receptors: Which ones, when, and where in the mammalian neocortex. J Comp Neurol 2016; 525:976-1033. [PMID: 27560295 DOI: 10.1002/cne.24103] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 12/14/2022]
Abstract
A multitude of 18 iGluR receptor subunits, many of which are diversified by splicing and RNA editing, localize to >20 excitatory and inhibitory neocortical neuron types defined by physiology, morphology, and transcriptome in addition to various types of glial, endothelial, and blood cells. Here we have compiled the published expression of iGluR subunits in the areas and cell types of developing and adult cortex of rat, mouse, carnivore, bovine, monkey, and human as determined with antibody- and mRNA-based techniques. iGluRs are differentially expressed in the cortical areas and in the species, and all have a unique developmental pattern. Differences are quantitative rather than a mere absence/presence of expression. iGluR are too ubiquitously expressed and of limited use as markers for areas or layers. A focus has been the iGluR profile of cortical interneuron types. For instance, GluK1 and GluN3A are enriched in, but not specific for, interneurons; moreover, the interneurons expressing these subunits belong to different types. Adressing the types is still a major hurdle because type-specific markers are lacking, and the frequently used neuropeptide/CaBP signatures are subject to regulation by age and activity and vary as well between species and areas. RNA-seq reveals almost all subunits in the two morphofunctionally characterized interneuron types of adult cortical layer I, suggesting a fairly broad expression at the RNA level. It remains to be determined whether all proteins are synthesized, to which pre- or postsynaptic subdomains in a given neuron type they localize, and whether all are involved in synaptic transmission. J. Comp. Neurol. 525:976-1033, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Minela Hadzic
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| | - Alexander Jack
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| | - Petra Wahle
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| |
Collapse
|
6
|
Patru MC, Reser DH. A New Perspective on Delusional States - Evidence for Claustrum Involvement. Front Psychiatry 2015; 6:158. [PMID: 26617532 PMCID: PMC4639708 DOI: 10.3389/fpsyt.2015.00158] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/26/2015] [Indexed: 12/21/2022] Open
Abstract
Delusions are a hallmark positive symptom of schizophrenia, although they are also associated with a wide variety of other psychiatric and neurological disorders. The heterogeneity of clinical presentation and underlying disease, along with a lack of experimental animal models, make delusions exceptionally difficult to study in isolation, either in schizophrenia or other diseases. To date, no detailed studies have focused specifically on the neural mechanisms of delusion, although some studies have reported characteristic activation of specific brain areas or networks associated with them. Here, we present a novel hypothesis and extant supporting evidence implicating the claustrum, a relatively poorly understood forebrain nucleus, as a potential common center for delusional states.
Collapse
Affiliation(s)
- Maria Cristina Patru
- Department of Psychiatry, Hôpitaux Universitaires de Genève , Geneve , Switzerland
| | - David H Reser
- Department of Physiology, Monash University , Melbourne , Australia
| |
Collapse
|
7
|
Gaier ED, Eipper BA, Mains RE. Copper signaling in the mammalian nervous system: synaptic effects. J Neurosci Res 2012; 91:2-19. [PMID: 23115049 DOI: 10.1002/jnr.23143] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 08/05/2012] [Accepted: 08/17/2012] [Indexed: 12/14/2022]
Abstract
Copper is an essential metal present at high levels in the CNS. Its role as a cofactor in mitochondrial ATP production and in essential cuproenzymes is well defined. Menkes and Wilson's diseases are severe neurodegenerative conditions that demonstrate the importance of Cu transport into the secretory pathway. In the brain, intracellular levels of Cu, which is almost entirely protein bound, exceed extracellular levels by more than 100-fold. Cu stored in the secretory pathway is released in a Ca(2+)-dependent manner and can transiently reach concentrations over 100 μM at synapses. The ability of low micromolar levels of Cu to bind to and modulate the function of γ-aminobutyric acid type A (GABA(A)) receptors, N-methyl-D-aspartate (NMDA) receptors, and voltage-gated Ca(2+) channels contributes to its effects on synaptic transmission. Cu also binds to amyloid precursor protein and prion protein; both proteins are found at synapses and brain Cu homeostasis is disrupted in mice lacking either protein. Especially intriguing is the ability of Cu to affect AMP-activated protein kinase (AMPK), a monitor of cellular energy status. Despite this, few investigators have examined the direct effects of Cu on synaptic transmission and plasticity. Although the variability of results demonstrates complex influences of Cu that are highly method sensitive, these studies nevertheless strongly support important roles for endogenous Cu and new roles for Cu-binding proteins in synaptic function/plasticity and behavior. Further study of the many roles of Cu in nervous system function will reveal targets for intervention in other diseases in which Cu homeostasis is disrupted.
Collapse
Affiliation(s)
- E D Gaier
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030-3401, USA
| | | | | |
Collapse
|
8
|
Platt DM, Rowlett JK, Spealman RD. Attenuation of cocaine self-administration in squirrel monkeys following repeated administration of the mGluR5 antagonist MPEP: comparison with dizocilpine. Psychopharmacology (Berl) 2008; 200:167-76. [PMID: 18509621 PMCID: PMC2536745 DOI: 10.1007/s00213-008-1191-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 04/26/2008] [Indexed: 10/22/2022]
Abstract
RATIONALE The mGluR5 antagonist MPEP has effects that suggest potential as a pharmacotherapy for cocaine addiction. MPEP can attenuate self-administration of cocaine in animals; however, studies usually involved only acute treatment with MPEP and a single dose of self-administered cocaine. Cocaine addicts use varied amounts of cocaine over long periods of time, and an effective pharmacotherapy would almost certainly require more chronic treatment. OBJECTIVES The present study (1) compared the effects of repeated treatment with MPEP or the NMDA receptor antagonist dizocilpine on the reinforcing effects of a range of doses of cocaine and (2) determined the pharmacological specificity of the effects of the drugs in attenuating cocaine self-administration compared to food-reinforced behavior. An effective pharmacotherapy should selectively reduce cocaine self-administration. MATERIALS AND METHODS Groups of monkeys responded under a fixed-ratio schedule of i.v. cocaine self-administration or food-pellet delivery. The effects of daily treatment with MPEP and dizocilpine were determined under both the schedule of i.v. cocaine injection and food delivery. RESULTS Treatment with MPEP and dizocilpine significantly reduced cocaine self-administration, producing rightward and downward shifts in the ascending limb of the cocaine dose-response function. MPEP and dizocilpine selectively and significantly attenuated self-administration of a low reinforcing dose of cocaine compared to food without evidence of tolerance. CONCLUSIONS Both MPEP and dizocilpine functioned as partially surmountable antagonists of the reinforcing effects of cocaine. The similar effects of the two drugs raises the possibility that MPEP attenuated the reinforcing effects of cocaine, at least in part, via mGluR5-mediated inhibition of NMDA receptor activity.
Collapse
Affiliation(s)
- Donna M Platt
- New England Primate Research Center, Harvard Medical School, One Pine Hill Drive, P.O. Box 9102, Southborough, MA 01772-9102, USA.
| | | | | |
Collapse
|
9
|
Nilsson A, Eriksson M, Muly EC, Akesson E, Samuelsson EB, Bogdanovic N, Benedikz E, Sundström E. Analysis of NR3A receptor subunits in human native NMDA receptors. Brain Res 2007; 1186:102-12. [PMID: 17997397 DOI: 10.1016/j.brainres.2007.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 08/25/2007] [Accepted: 09/10/2007] [Indexed: 10/22/2022]
Abstract
NR3A, representing the third class of NMDA receptor subunits, was first studied in rats, demonstrating ubiquitous expression in the developing central nervous system (CNS), but in the adult mainly expressed in spinal cord and some forebrain nuclei. Subsequent studies showed that rodent and non-human primate NR3A expression differs. We have studied the distribution of NR3A in the human CNS and show a widespread distribution of NR3A protein in adult human brain. NR3A mRNA and protein were found in all regions of the cerebral cortex, and also in the subcortical forebrain, midbrain and hindbrain. Only very low levels of NR3A mRNA and protein could be detected in homogenized adult human spinal cord, and in situ hybridization showed that expression was limited to ventral motoneurons. We found that NR3A is associated with NR1, NR2A and NR2B in adult human CNS, suggesting the existence of native NR1-NR2A/B-NR3A assemblies in adult human CNS. While NR1 and NR2A could only be efficiently solubilized by deoxycholate, NR3A was extracted by all detergents, suggesting that a large fraction is weakly anchored to cell membranes and other proteins. Using size exclusion chromatography we found that just as for NR1, a large fraction of NR3A exists as monomers and dimers, suggesting that these two glycine binding subunits behave similarly with regard to receptor assembly and trafficking.
Collapse
Affiliation(s)
- Anna Nilsson
- Division of Neurodegeneration and Neuroinflammation, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Novum, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Lee B, Platt DM, Rowlett JK, Adewale AS, Spealman RD. Attenuation of behavioral effects of cocaine by the Metabotropic Glutamate Receptor 5 Antagonist 2-Methyl-6-(phenylethynyl)-pyridine in squirrel monkeys: comparison with dizocilpine. J Pharmacol Exp Ther 2005; 312:1232-40. [PMID: 15550570 DOI: 10.1124/jpet.104.078733] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Growing evidence suggests a role for metabotropic glutamate receptors (mGluRs) in the behavioral effects of cocaine related to its abuse. The mGluR5 subtype, in particular, has come under scrutiny due to its distribution in brain regions associated with drug addiction. This study investigated interactions between the selective mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) and cocaine in squirrel monkeys whose lever-pressing behavior was 1) maintained under a second-order schedule of cocaine self-administration, 2) extinguished and then reinstated by cocaine priming, and 3) controlled by the discriminative stimulus (DS) effects of cocaine. Additional studies determined the effects of MPEP on unconditioned behaviors, coordination, and muscle resistance. In each experiment, the effects of MPEP were compared with those of the N-methyl-d-aspartate antagonist dizocilpine. MPEP attenuated cocaine self-administration, cocaine-induced reinstatement of drug seeking, and the DS effects of cocaine at doses that did not markedly impair motor function or operant behavior in the context of drug discrimination. Dizocilpine also attenuated cocaine self-administration, but it did not significantly alter cocaine-induced reinstatement of drug seeking, and it enhanced rather than attenuated the DS effects of cocaine. The findings point to a significant contribution of mGluR5 mechanisms in the behavioral effects of cocaine related to its abuse and suggest that MPEP has properties of a functional cocaine antagonist, which are not secondary to antagonism at NMDA receptors. The contrasting interactions of MPEP and dizocilpine with cocaine imply that glutamate acting through different metabotropic and ionotropic receptors may modulate the behavioral effects of cocaine in qualitatively different ways.
Collapse
Affiliation(s)
- Buyean Lee
- Harvard Medical School, New England Primate Research Center, P.O. Box 9102, Southborough, MA 01772-9102, USA
| | | | | | | | | |
Collapse
|
11
|
Guirado S, Real MA, Olmos JL, Dávila JC. Distinct types of nitric oxide-producing neurons in the developing and adult mouse claustrum. J Comp Neurol 2003; 465:431-44. [PMID: 12966566 DOI: 10.1002/cne.10835] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We studied at the light and electron microscopic levels the nitric oxide-producing neurons in the mouse claustrum. Nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase histochemistry and neuronal nitric oxide synthase (nNOS) immunohistochemical staining were used to reveal putative nitrergic neurons. We also analyzed colocalization of nNOS with the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) as well as the ontogenesis of the nNOS-immunoreactive neurons, providing evidence for different populations of nitrergic neurons in the mouse claustrum. The general staining pattern was similar for the histochemical and the immunohistochemical methods, resulting in neuron and neuropil staining throughout the whole claustrum. We described two populations of nitric oxide-producing neurons in the mouse claustrum on the basis of a different level of nNOS expression. Densely nNOS-stained neurons were mostly GABA immunoreactive, displayed ultrastructural features typically seen in aspiny neurons, and may originate in the subpallium; they were first seen in the claustrum at embryonic stage 17.5 and probably represent local inhibitory interneurons. Densely stained cells were found from rostral to caudal levels throughout the dorsal claustrum and the endopiriform nucleus. Lightly nNOS-stained neurons, on the other hand, were more numerous than densely stained ones, especially in the dorsal claustrum. These claustral lightly stained cells, barely observed in the NADPH-diaphorase reacted sections, were mostly non-GABAergic, and appeared earlier during ontogenesis than densely stained cells (at embryonic stages 15.5-16.5). We suggest that these neurons are probably projection neurons.
Collapse
Affiliation(s)
- Salvador Guirado
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain.
| | | | | | | |
Collapse
|
12
|
Latysheva NV, Rayevsky KS. Chronic neonatal N-methyl-D-aspartate receptor blockade induces learning deficits and transient hypoactivity in young rats. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27:787-94. [PMID: 12921911 DOI: 10.1016/s0278-5846(03)00110-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A blockade of N-methyl-D-aspartate (NMDA)-type of glutamate receptor in rodents is believed to provide a pharmacological model of schizophrenia-related psychosis. Since neurodevelopmental abnormality, at least partly, could contribute to the pathogenesis of schizophrenia, the aim of this study was to recapitulate cognitive impairments accompanying this disorder in rats by a chronic neonatal treatment with a noncompetitive NMDA antagonist MK-801. Rat pups were treated with a low dose of MK-801 (0.05 mg/kg s.c.) chronically from early postnatal period (PD 7-49) known to be critical for glutamatergic system maturation. Locomotor activity in the "open-field" test, anxiety level in the elevated plus-maze test, and learning capacity in food rewarded spatial task were examined in young animals. Chronic MK-801 treatment produced a decrease of spontaneous motor and exploratory activity in 16- to 28-day-old rats. At the same time, a hyperlocomotion in response to acute administration of MK-801 was observed as well. Spatial learning of MK-801-treated rats was found to be negatively affected. Treated rats were able to respond to stress stimuli in the adequate manner but their anxiety level was found to be lower than in controls. Behavioral disturbances appeared to be temporary, and no such abnormalities could be detected at the age of 16 weeks. Thus, even mild chronic neonatal blockade of NMDA receptors may lead to a specific pattern of cognitive abnormalities presumably resulting from impairments of sensory information processing at the cortical-basal ganglia level.
Collapse
Affiliation(s)
- Nadejda V Latysheva
- Laboratory of Neurochemical Pharmacology, Research Institute of Pharmacology, Russian Academy of Medical Sciences, Baltiyskaya, 8, 125315 Moscow, Russia
| | | |
Collapse
|
13
|
Erlandsson K, Bressan RA, Mulligan RS, Gunn RN, Cunningham VJ, Owens J, Wyper D, Ell PJ, Pilowsky LS. Kinetic modelling of [123I]CNS 1261--a potential SPET tracer for the NMDA receptor. Nucl Med Biol 2003; 30:441-54. [PMID: 12767402 DOI: 10.1016/s0969-8051(02)00450-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
N-(1-napthyl)-N'-(3-[(123)I]-iodophenyl)-N-methylguanidine ([(123)I]CNS 1261) is a novel SPET ligand developed for imaging the NMDA receptor intra-channel MK 801/PCP/ketamine site. Data was acquired in 7 healthy volunteers after bolus injection of [(123)I]CNS 1261. Kinetic modeling showed reversible tracer binding. Arterial and venous time-activity curves overlapped after 90 min. The rank order of binding was: Thalamus > striatum > cortical regions > white matter. This distribution concurs with [(11)C]-ketamine and [(18)F]-memantine PET studies. These data provide a methodological basis for further direct in vivo challenge studies.
Collapse
Affiliation(s)
- Kjell Erlandsson
- Institute of Nuclear Medicine, Royal Free and University College Medical School, Middlesex Hospital, Mortimer Street, London W1T 3AA, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Eriksson M, Nilsson A, Froelich-Fabre S, Akesson E, Dunker J, Seiger A, Folkesson R, Benedikz E, Sundström E. Cloning and expression of the human N-methyl-D-aspartate receptor subunit NR3A. Neurosci Lett 2002; 321:177-81. [PMID: 11880201 DOI: 10.1016/s0304-3940(01)02524-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Native N-methyl-D-aspartate (NMDA) receptors are heteromeric assemblies of four or five subunits. The NMDA receptor subunits, NR1, NR2A, NR2B, NR2C, and NR2D have been cloned in several species, including man. The NR3A subunit, which in rodents is predominantly expressed during early development, seems to function by reducing the NMDA receptor response. The human homologue to the rat NR3A, however, had not been cloned. In order to study the functions of the human NR3A (hNR3A), we have cloned and sequenced the hNR3A. It was found to share 88% of the DNA sequence with the rat gene, corresponding to a 93% homology at the amino acid level. Based on available data from human genome databases, we localized the gene to chromosome 9. The transcript could be detected by in situ hybridization in human fetal spinal cord and forebrain. Two splice variants of NR3A have been reported in rat brain, the longer of the two containing a 60 bp insert in the intracellular domain. We were unable to detect this 60 bp insert in fetal or adult human brain, suggesting that only the short variant is expressed in humans.
Collapse
Affiliation(s)
- Maria Eriksson
- Section of Experimental Geriatrics, NEUROTEC, Karolinska Institutet, KFC Novum, S-141 86 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Calon F, Morissette M, Ghribi O, Goulet M, Grondin R, Blanchet PJ, Bédard PJ, Di Paolo T. Alteration of glutamate receptors in the striatum of dyskinetic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys following dopamine agonist treatment. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26:127-38. [PMID: 11853103 DOI: 10.1016/s0278-5846(01)00237-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal lesion and dopaminomimetic treatment on parameters of glutamatergic activity within the basal ganglia of monkeys were studied in relation with the development of dyskinesias. Drug-naive controls, saline-treated MPTP monkeys, as well as MPTP monkeys treated with either a long-acting D2 agonist (cabergoline) or a D1 agonist (SKF-82958) given by intermittent injections or continuous infusion, were included in this study. 3H-L-glutamate, 3H-alpha-amino-3-hydroxy-5-methylisoxasole-4-propionate (AMPA), 3H-glycine, 3H-CGP39653 (an N-methyl-D-aspartate, NMDA, antagonist selective for NR1/NR2A assembly) and 3H-Ro 25-6981 (an NMDA antagonist selective for NR1/NR2B assembly), specific binding to glutamate receptors, the expression of the NR1 subunit of NMDA receptors and glutamate, glutamine and glycine concentrations were studied by autoradiography, in situ hybridization and high-performance liquid chromatography (HPLC), respectively. Pulsatile SKF-82958 and cabergoline treatment relieved parkinsonian symptoms, whereas animals continuously treated with SKF-82958 remained akinetic. Pulsatile SKF-82958 induced dyskinesias in two of the three animals tested, whereas cabergoline did not. MPTP induced no significant changes of striatal specific binding of the radioligands used, NR1 mRNA expression and amino acid concentrations. In the putamen, pulsatile SKF-82958 treatment was associated with decreased content of glycine and glutamate, whereas only glycine was decreased in cabergoline-treated monkeys. Cabergoline and continuous administration of SKF-82958 led to lower levels of NR1 mRNA in the caudate in comparison to pulsatile SKF-82958 administration. The development of dyskinesias following a D1 agonist treatment was associated with an upregulation of 3H-glutamate [+49%], 3H-AMPA [+38%], 3H-CGP39653 [+ 111%], 3H-glycine [+ 26%, nonsignificant] and 3H-Ro 25-6981 [+ 33%] specific binding in the striatum in comparison to nondyskinetic MPTP monkeys. Our data suggest that supersensitivity to glutamatergic input in the striatum might play a role in the pathogenesis of dopaminomimetic-induced dyskinesias and further support the therapeutic potential of glutamate antagonists in Parkinson's disease.
Collapse
Affiliation(s)
- Frédéric Calon
- Oncology and Molecular Endocrinology Research Center Laval University Medical Center (CHUL), Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Knapp DJ, Braun CJ, Duncan GE, Qian Y, Fernandes A, Crews FT, Breese GR. Regional Specificity Of Ethanol and NMDA Action in Brain Revealed With FOS-Like Immunohistochemistry and Differential Routes of Drug Administration. Alcohol Clin Exp Res 2001. [DOI: 10.1111/j.1530-0277.2001.tb02173.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Tajiri K, Emori K, Murata M, Tanaka K, Suzuki M, Uehara T, Sumiyoshi T, Ashby CR, Kurachi M. Intracerebroventricular administration of NMDA-R1 antisense oligodeoxynucleotide significantly alters the activity of ventral tegmental area dopamine neurons: an electrophysiological study. Synapse 2001; 40:275-81. [PMID: 11309843 DOI: 10.1002/syn.1050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this study, we determined the activity of midbrain dopamine (DA) neurons in male albino rats following the intracerebroventricular (i.c.v.) administration of antisense oligodeoxynucleotide (aODN) against the mRNA for the NR1 subunit of the NMDA receptor. In addition, the effect of aODN on the specific binding of the NMDA receptor ligand [(3)H]MK-801 was also examined in various brain areas, including the midbrain. Antisense ODN against the NR1 mRNA, the corresponding sense ODN (sODN) or saline was continuously administered into the right ventricle of rats by osmotic minipumps for 7 days (20 nmol/day). Autoradiographic binding studies indicated that aODN significantly reduced the density of [(3)H]MK-801 binding by an average of 20-30% in several forebrain regions, including the anterior cingulate cortex, caudate putamen, and nucleus accumbens. However, [(3)H]MK-801 binding was not significantly altered in the ventral tegmental area (VTA) or substantia nigra pars compacta (SNC). Subsequently, using the technique of extracellular single-unit recording, the number, as well as the firing pattern, of spontaneously active DA neurons was determined in the VTA and SNC. The administration of aODN did not significantly alter the number of spontaneously active VTA and SNC DA neurons compared to saline- of sODN-treated animals. Furthermore, the firing pattern of spontaneously active SNC DA neurons was not significantly altered. However, for spontaneously active VTA DA neurons, the administration of aODN significantly decreased the percent events in bursts, number of bursts, and percentage of DA neurons exhibiting a bursting pattern compared to saline- and sODN-treated animals, i.e., neurons show less bursting activity. The present results suggest that subchronic aODN treatment against the mRNA for the NR1 subunit of the NMDA receptors can reduce NMDA receptor number and can result in an altered activity of spontaneously active VTA DA neurons in anesthetized rats.
Collapse
MESH Headings
- Action Potentials/drug effects
- Action Potentials/physiology
- Animals
- Autoradiography
- Binding, Competitive/drug effects
- Binding, Competitive/genetics
- Dizocilpine Maleate/pharmacokinetics
- Dopamine/metabolism
- Down-Regulation/drug effects
- Down-Regulation/genetics
- Excitatory Amino Acid Antagonists/pharmacokinetics
- Injections, Intraventricular
- Male
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Oligodeoxyribonucleotides, Antisense/genetics
- Oligodeoxyribonucleotides, Antisense/pharmacology
- RNA, Messenger/analysis
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Radioligand Assay
- Rats
- Rats, Sprague-Dawley
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Substantia Nigra/cytology
- Substantia Nigra/drug effects
- Substantia Nigra/metabolism
- Tritium/pharmacokinetics
- Ventral Tegmental Area/cytology
- Ventral Tegmental Area/drug effects
- Ventral Tegmental Area/metabolism
Collapse
Affiliation(s)
- K Tajiri
- Department of Neuropsychiatry, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Toyama, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mugnaini M, Meoni P, Bunnemann B, Corsi M, Bowery NG. Allosteric modulation of [3H]-CGP39653 binding through the glycine site of the NMDA receptor: further studies in rat and human brain. Br J Pharmacol 2001; 132:1883-97. [PMID: 11309261 PMCID: PMC1572734 DOI: 10.1038/sj.bjp.0704017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2000] [Revised: 02/01/2001] [Accepted: 02/01/2001] [Indexed: 11/08/2022] Open
Abstract
Binding of D,L-(E)-2-amino-4-[(3)H]-propyl-5-phosphono-3-pentenoic acid ([(3)H]-CGP39653), a selective antagonist at the glutamate site of the NMDA receptor, is modulated by glycine in rat brain tissue. We have further investigated this phenomenon in rodent and human brain by means of receptor binding and quantitative autoradiography techniques. In rat cerebral cortical membranes the glycine antagonist 3-[2-(Phenylaminocarbonyl)ethenyl]-4,6-dichloro-indole-2-carboxylic acid sodium salt (GV150526A) did not change basal [(3)H]-CGP39653 binding, but competitively reversed the high affinity component of [(3)H]-CGP39653 binding inhibition by glycine, with a pK(B) value of 8.38, in line with its affinity for the glycine site (pK(i)=8.49 vs. [(3)H]-glycine). Glycine (10 microM) significantly decreased [(3)H]-CGP39653 affinity for the NMDA receptor (with no change in the B(max)), whereas enhanced L-glutamate affinity (P<0.05, paired-samples Student's t-test). In rat brain sections the addition of GV150526A (30 microM) to the incubation medium increased [(3)H]-CGP39653 binding to 208% of control (average between areas), indicating the presence of endogenous glycine. The enhancement presented significant regional differences (P<0.05, two-way ANOVA), with striatum higher than cerebral cortex (282 and 187% of control, respectively; P<0.05, Fisher's LSD). On the contrary, there was not any significant variation in affinity values of [(3)H]-CGP39653, L-glutamate, glycine and GV150526A in striatal and cortical membranes. These results confirmed the existence of regionally distinct NMDA receptors subtypes with different glycine/glutamate allosteric modulation. Whole brain autoradiography revealed an uneven distribution of [(3)H]-CGP39653 binding sites in human brain. High levels of binding were determined in hippocampus and in cingulate, frontoparietal and insular cortex. Intermediate to low levels of binding were found in diencephalic nuclei and basal ganglia. [(3)H]-CGP39653 binding was increased to 216% of control (mean between areas) by 30 microM GV150526A. The enhancement, however, did not present significant regional differences. These results introduce GV150526A as a useful tool to identify NMDA receptor subtypes by means of receptor autoradiography; moreover, they demonstrate that the allosteric inhibition of [(3)H]-CGP39653 binding by glycine parallels an increase in receptor affinity to the endogenous ligand L-glutamate. Finally, this study provides the first detailed anatomical description of the regional distribution of [(3)H]-CGP39653 binding sites in human brain.
Collapse
Affiliation(s)
- M Mugnaini
- GlaxoSmithKline Group, GlaxoWellcome S. p. A., Medicines Research Centre, Via Fleming 4, 37100 Verona, Italy.
| | | | | | | | | |
Collapse
|
19
|
Meoni P, Bunnemann BH, Kingsbury AE, Trist DG, Bowery NG. NMDA NR1 subunit mRNA and glutamate NMDA-sensitive binding are differentially affected in the striatum and pre-frontal cortex of Parkinson's disease patients. Neuropharmacology 1999; 38:625-33. [PMID: 10340300 DOI: 10.1016/s0028-3908(98)00219-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Changes in the levels of mRNA for the NR1 subunit of the glutamate NMDA receptor and in NMDA-sensitive glutamate binding were investigated in consecutive sections of the prefrontal cortex and striatum of control and Parkinson's disease (PD) post-mortem brain using in-situ hybridisation and receptor autoradiography. Both markers of NMDA receptors were found to be relatively unaffected when measured by microdensitometry in the prefrontal cortex of control and PD brains. At a cellular level, a subpopulation of small and medium neurons in the superficial layers of the prefrontal cortex of the PD group showed a decreased expression of NMDA NR1 mRNA, with the maximal decrease in cortical layer IV. In the striatum, levels of glutamate binding to the NMDA receptor detected by receptor autoradiodgraphy were significantly reduced in the PD group, while no change could be detected at a macroscopical level in NMDA NR1 mRNA expression. Consequently, we suggest that the important decrease in agonist binding to the NMDA receptor observed in this study in the caudate and putamen of PD brains, in the absence of any major change in NMDA NR1 mRNA levels might reflect the degeneration of pre-synaptic NMDA receptors located on nigro-striatal projections particularly affected by the disease. Small changes observed at a cellular level in subsets of neurons of both prefrontal cortex and striatum will be discussed at the light of neurochemical changes characteristics of PD.
Collapse
Affiliation(s)
- P Meoni
- Department of Pharmacology, Medical School, University of Birmingham, Edgbaston, UK.
| | | | | | | | | |
Collapse
|