1
|
Bozzo M, Costa S, Obino V, Bachetti T, Marcenaro E, Pestarino M, Schubert M, Candiani S. Functional Conservation and Genetic Divergence of Chordate Glycinergic Neurotransmission: Insights from Amphioxus Glycine Transporters. Cells 2021; 10:cells10123392. [PMID: 34943900 PMCID: PMC8699752 DOI: 10.3390/cells10123392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022] Open
Abstract
Glycine is an important neurotransmitter in vertebrates, performing both excitatory and inhibitory actions. Synaptic levels of glycine are tightly controlled by the action of two glycine transporters, GlyT1 and GlyT2, located on the surface of glial cells and neurons, respectively. Only limited information is available on glycinergic neurotransmission in invertebrates, and the evolution of glycinergic neurotransmission is poorly understood. Here, by combining phylogenetic and gene expression analyses, we characterized the glycine transporter complement of amphioxus, an important invertebrate model for studying the evolution of chordates. We show that amphioxus possess three glycine transporter genes. Two of these (GlyT2.1 and GlyT2.2) are closely related to GlyT2 of vertebrates, whereas the third (GlyT) is a member of an ancestral clade of deuterostome glycine transporters. GlyT2.2 expression is predominantly non-neural, whereas GlyT and GlyT2.1 are widely expressed in the amphioxus nervous system and are differentially expressed, respectively, in neurons and glia. Vertebrate glycinergic neurons express GlyT2 and glia GlyT1, suggesting that the evolution of the chordate glycinergic system was accompanied by a paralog-specific inversion of gene expression. Despite this genetic divergence between amphioxus and vertebrates, we found strong evidence for conservation in the role glycinergic neurotransmission plays during larval swimming, the implication being that the neural networks controlling the rhythmic movement of chordate bodies may be homologous.
Collapse
Affiliation(s)
- Matteo Bozzo
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università degli Studi di Genova, 16132 Genoa, Italy; (S.C.); (T.B.); (M.P.)
- Dipartimento di Medicina Sperimentale (DIMES), Università degli Studi di Genova, 16132 Genoa, Italy; (V.O.); (E.M.)
- Correspondence: (M.B.); (S.C.); Tel.: +39-010-335-8043 (M.B.); +39-010-335-8051 (S.C.)
| | - Simone Costa
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università degli Studi di Genova, 16132 Genoa, Italy; (S.C.); (T.B.); (M.P.)
| | - Valentina Obino
- Dipartimento di Medicina Sperimentale (DIMES), Università degli Studi di Genova, 16132 Genoa, Italy; (V.O.); (E.M.)
| | - Tiziana Bachetti
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università degli Studi di Genova, 16132 Genoa, Italy; (S.C.); (T.B.); (M.P.)
| | - Emanuela Marcenaro
- Dipartimento di Medicina Sperimentale (DIMES), Università degli Studi di Genova, 16132 Genoa, Italy; (V.O.); (E.M.)
| | - Mario Pestarino
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università degli Studi di Genova, 16132 Genoa, Italy; (S.C.); (T.B.); (M.P.)
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France;
| | - Simona Candiani
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università degli Studi di Genova, 16132 Genoa, Italy; (S.C.); (T.B.); (M.P.)
- Correspondence: (M.B.); (S.C.); Tel.: +39-010-335-8043 (M.B.); +39-010-335-8051 (S.C.)
| |
Collapse
|
2
|
Selina A, John D, Loganathan L, Madhuri V. Case report of a PRDM5 linked brittle cornea syndrome type 2 in association with a novel SLC6A5 mutation. Indian J Ophthalmol 2020; 68:2545-2547. [PMID: 33120686 PMCID: PMC7774228 DOI: 10.4103/ijo.ijo_325_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A 3-year-old girl presenting with blue sclera, hyperlaxity and developmental dysplasia of hip was found to have bilateral corneal thinning with astigmatism and keratoconus. By clinical exome sequencing, a frameshift mutation c.713_716 del TTTG p.(Val238Alafs*35) in PRDM5 gene causing brittle cornea syndrome 2 and a novel frameshift mutation c.401dup p.(Ser135Glufs*53) in SLC6A5 gene causing Hyperekplexia 3 were identified. No features of hyperekplexia were identified in proband. The novel homozygous mutation of SLC6A5 gene in the proband was presently asymptomatic but they were apprised of the possibility of developing neurological symptoms in the later years.
Collapse
Affiliation(s)
- Agnes Selina
- Department of Paediatric Orthopaedics, Christian Medical College; Centre for Stem Cell Research, A Unit of in Stem Bengaluru, Christian Medical College, Vellore, Tamil Nadu, India
| | - Deepa John
- Department of Ophthalmology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Lakshmi Loganathan
- Department of Paediatric Orthopaedics, Christian Medical College; Centre for Stem Cell Research, A Unit of in Stem Bengaluru, Christian Medical College, Vellore, Tamil Nadu, India
| | - Vrisha Madhuri
- Department of Paediatric Orthopaedics, Christian Medical College; Centre for Stem Cell Research, A Unit of in Stem Bengaluru, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
3
|
López-Corcuera B, Geerlings A, Aragón C. Glycine neurotransmitter transporters: an update. Mol Membr Biol 2009. [DOI: 10.1080/09687680010028762] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
4
|
Modulation of Glutamate and Glycine Transporters by Niflumic, Flufenamic and Mefenamic Acids. Neurochem Res 2009; 34:1738-47. [DOI: 10.1007/s11064-009-9983-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Accepted: 04/20/2009] [Indexed: 12/21/2022]
|
5
|
Eulenburg V, Becker K, Gomeza J, Schmitt B, Becker CM, Betz H. Mutations within the human GLYT2 (SLC6A5) gene associated with hyperekplexia. Biochem Biophys Res Commun 2006; 348:400-5. [PMID: 16884688 DOI: 10.1016/j.bbrc.2006.07.080] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 07/07/2006] [Indexed: 11/28/2022]
Abstract
Hereditary hyperekplexia is a neuromotor disorder characterized by exaggerated startle reflexes and muscle stiffness in the neonate. The disease has been associated with mutations in the glycine receptor subunit genes GLRA1 and GLRB. Here, we describe mutations within the neuronal glycine transporter 2 gene (GLYT2, or SLC6A5, ) of hyperekplexia patients, whose symptoms cannot be attributed to glycine receptor mutations. One of the GLYT2 mutations identified causes truncation of the transporter protein and a complete loss of transport function. Our results are consistent with GLYT2 being a disease gene in human hyperekplexia.
Collapse
Affiliation(s)
- Volker Eulenburg
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, Deutschordenstrasse 46, 60529 Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
6
|
Wolin RL, Santillán A, Tang L, Huang C, Jiang X, Lovenberg TW. Inhibitors of the glycine transporter type-2 (GlyT-2): synthesis and biological activity of benzoylpiperidine derivatives. Bioorg Med Chem 2005; 12:4511-32. [PMID: 15265500 DOI: 10.1016/j.bmc.2004.05.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Accepted: 05/24/2004] [Indexed: 10/26/2022]
Abstract
A series of benzoylpiperidine analogs related to 4a was prepared, and their ability to inhibit the uptake of [(14)C]-glycine in COS7 cells transfected with human glycine transporter type-2 (GlyT-2) was evaluated. Small structural changes to the benzoylpiperidine region of the molecule led to a significant decrease in GlyT-2 inhibitory activity. In contrast, the distal aryl ring was more tolerant to functional group modifications and could accommodate a variety of substitutes at the C-2 or C-3 positions. Comparable activities to 4a were obtained by replacing the anilino nitrogen with an ether linkage 27 or by exchanging the isopropoxy ether moiety with an isopropyl amino group 15. A distinct preference for a 2-carbon tether (n=1) was observed relative to the corresponding 3-carbon homolog (n=2).
Collapse
Affiliation(s)
- Ronald L Wolin
- Johnson & Johnson Pharmaceutical Research and Development, LLC, 3210 Merryfield Row, San Diego, CA 92121, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Wolin RL, Venkatesan H, Tang L, Santillán A, Barclay T, Wilson S, Lee DH, Lovenberg TW. Novel glycine transporter type-2 reuptake inhibitors. Part 1: alpha-amino acid derivatives. Bioorg Med Chem 2005; 12:4477-92. [PMID: 15265498 DOI: 10.1016/j.bmc.2004.05.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Accepted: 05/24/2004] [Indexed: 10/26/2022]
Abstract
A variety of alpha-amino acid derivatives were prepared as glycine transport inhibitors and their ability to block the uptake of [(14)C]-glycine in COS7 cells transfected with human glycine transporter-2 (hGlyT-2) was evaluated. An array of substituents at the chiral center was studied and overall, L-phenylalanine was identified as the preferred amino acid residue. Compounds prepared from l-amino acids were more potent GlyT-2 inhibitors than analogs derived from the corresponding d-amino acids. Introducing an achiral amino acid such as glycine, or incorporating geminal substitution in the alpha-position, led to a significant reduction in GlyT-2 inhibitory properties.
Collapse
Affiliation(s)
- Ronald L Wolin
- Johnson & Johnson Pharmaceutical Research and Development, LLC, 3210 Merryfield Row, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Petkó M, Veress G, Vereb G, Storm-Mathisen J, Antal M. Commissural propriospinal connections between the lateral aspects of laminae III-IV in the lumbar spinal cord of rats. J Comp Neurol 2005; 480:364-77. [PMID: 15558798 DOI: 10.1002/cne.20356] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It has been established that there is a strong functional link between sensory neural circuits on the two sides of the spinal cord. In one of our recent studies we provided a morphological confirmation of this functional phenomenon, presenting evidence for the presence of a direct commissural connection between the lateral aspects of the dorsal horn on the two sides of the lumbar spinal cord. By using a combination of neural tracing and immunocytochemical detection of neural markers like vesicular glutamate transporters, glutamic acid decarboxylase, glycine transporter, and met-enkephalin (which are characteristic of various subsets of excitatory and inhibitory neurons), we investigated here the distribution, synaptic relations, and neurochemical characteristics of the commissural axon terminals. We found that the cells of origin of commissural fibers in the lateral aspect of the dorsal horn were confined to laminae III-IV and projected to the corresponding area of the contralateral gray matter. Most of the commissural axon terminals established synaptic contacts with dendrites. Axospinous or axosomatic synaptic contacts were found in limited numbers. We demonstrated that interactions among commissural neurons also exist. More than three-fourths of the labeled axon terminals were immunostained for glutamic acid decarboxylase and/or glycine transporter, but none of them showed positive immunoreaction for met-enkephalin and vesicular glutamate transporters. The results indicate that there is a substantial reciprocal commissural synaptic interaction between the lateral aspects of laminae III-IV on the two sides of the lumbar spinal cord and that this pathway may transmit both inhibitory and excitatory signals to their postsynaptic targets.
Collapse
Affiliation(s)
- Mihály Petkó
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical and Health Science Center, University of Debrecen, H-4012 Debrecen, Hungary
| | | | | | | | | |
Collapse
|
9
|
Pérez-León JA, López-Vera E, Salceda R. Pharmacological properties of glycine transport in the frog retina. Neurochem Res 2004; 29:313-8. [PMID: 14992291 DOI: 10.1023/b:nere.0000010460.34646.34] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The high-affinity glycine transport in neurons and glial cells is the primary means for inactivating synaptic glycine. Two different glycine transporter genes, Glyt-1 and Glyt-2, have been cloned. Glyt-1 has been reported to occur in the retina, but there is no evidence for expression of the Glyt-2 transporter. We have pharmacologically characterized glycine transport in the frog retina. 3H-Glycine uptake in the retina was insensitive to modulation by phorbol esters or changes in cAMP levels, and was partially inhibited by sarcosine. Differential sensitivity of glycine transport to sarcosine was exhibited by synaptosomal fractions from the inner and outer plexiform layers of the frog retina. The Na+ Hill coefficient of glycine uptake was 2.0, as has been reported for Glyt-2. In addition, amoxapine, a specific inhibitor of the Glyt-2a isoform, reduced by 60% glycine uptake by P2 synaptosomal fraction. Our results indicate the presence of different glycine transporter isoforms in the frog retina, acting mainly through the classical inhibitory glycine system.
Collapse
Affiliation(s)
- Jorge A Pérez-León
- Departamento de Neurociencias, Instituto de Fisiología Celular, UNAM, México, DF
| | | | | |
Collapse
|
10
|
Abstract
Glycine exerts multiple functions in the central nervous system, as an inhibitory neurotransmitter through activation of specific, Cl--permeable, ligand-gated ionotropic receptors and as an obligatory co-agonist with glutamate on the activation of N-methyl-D-aspartate (NMDA) receptors. In some areas of the central nervous system, glycine seems to be co-released with gamma-aminobutyric acid (GABA), the main inhibitory amino acid neurotransmitter. The synaptic action of glycine ends by active recapture through sodium- and chloride-coupled glycine transporters located in glial and neuronal plasma membranes, whose structure-function relationship is being studied. The trafficking and plasma membrane expressions of these proteins are controlled by regulatory mechanisms. Glycine transporter inhibitors may find application in the treatment of muscle tone defects, epilepsy, schizophrenia, pain and neurodegenerative disorders. This review deals on recent progress on localization, transport mechanisms, structure, regulation and pharmacology of the glycine transporters (GLYTs).
Collapse
Affiliation(s)
- Carmen Aragón
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | | |
Collapse
|
11
|
Evans J, Herdon H, Cairns W, O'Brien E, Chapman C, Terrett J, Gloger I. Cloning, functional characterisation and population analysis of a variant form of the human glycine type 2 transporter. FEBS Lett 1999; 463:301-6. [PMID: 10606742 DOI: 10.1016/s0014-5793(99)01636-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two forms of glycine transporter have been described to date, GlyT-1 and GlyT-2. The GlyT-2 form is expressed mainly in the spinal cord, brainstem and cerebellum. Here we describe the identification of a variant form of the human GlyT-2 (SC6), showing three amino acid changes to the previously reported protein. Population analysis identified the allele causing one of the polymorphisms, D463N, at 10% within the population with 3% being homozygous for the change. We also transfected our new variant into mammalian cells and compared it to the published cDNA, showing that the three amino acid changes present have no major effect on the biochemical properties of the transporter.
Collapse
Affiliation(s)
- J Evans
- Molecular Biology Department, SmithKline Beecham Pharmaceuticals, Harlow, UK
| | | | | | | | | | | | | |
Collapse
|